

US Department of the Interior Bureau of Land Management

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessment

CENTRAL OREGON

MARCH 2015

TABLE OF	CONTENTS
Section	

I 2

Section	on		Page
١.	Intro	DUCTION AND ASSESSMENT OBJECTIVES	1-1
	1.1	Executive Overview	I-
	1.2	Background	
		1.2.1 Identification of FIAT Assessment Areas	
	1.3	Statement of Objectives	
	1.4	Issues, Assumptions, and Considerations Common to All Assessments	
	١.5	Fire Operations Priorities	
	1.6	Collaboration	I-!
		I.6.1 Meetings	I-(
2.	DATA	MANAGEMENT AND STEP-DOWN PROCESS	2-1
	2.1	Examination of FIAT Step 1 Findings	2-
		2.1.1 Determination of Emphasis Areas in Central Oregon	2-2
		2.1.2 Step 2 Data Management and Development in Central Oregon	2-3
	2.2	Incorporation of Local Data for Central Oregon Step 2 Assessment	2-7
		2.2.1 Rationale for Selection	2-7
	2.3	National Data Layers	2-7
		2.3.1 Breeding Bird Density	2-7
		2.3.2 Wildfire Threats	
		2.3.3 Soil Moisture/Temperature Regime	2-4
		2.3.4 Sagebrush Landscape Cover	۲-۲۲.
2	Δsses	SMENT AREA CHARACTERIZATION	2-c 3_1
5.	3 1	Central Oregon Assessment Area	
4	5.1		- J- ۱
4.	EMPHA		
	4.1	Emphasis Area and Project Planning Areas	
		4.1.1 Emphasis Areas Overview	
	4.2	4.1.2 Project Planning Areas Overview	
	4.2	Central Oregon Project Planning Areas	
		4.2.1 Brotners Project Planning Area	4-14-14
		4.2.2 Hay Creek Project Planning Area	۲-۲-۱۵ ۵ / ۵
		4.2.2 12 Mile Project Planning Area	
5.	LOOK	ING AHEAD: IMPLEMENTATION, NEPA, AND MONITORING	5-1
	5.1	Implementation Strategy	
		5.1.1 Fuels Management	
		5.1.2 Habitat Restoration and Recovery	5-3
		5.1.3 Fire Operations	5-!
		5.1.4 Post-Fire Rehabilitation	5-6
	5.2	Monitoring and Adaptive Management	5-6
6.	LIST O	F PREPARERS	6 -1
-	Decen		7 1

March 2015

i

APPENDICES

Α	Mads

- B GIS Data
- C Soil Temperature and Moisture Regime Attribute Table
- D Meeting Locations and Participants
- TABLES Page 10 2-1 11 12 3-1 13 3-2 Emphasis Area Acreage in Project Planning Areas in the Central Oregon Basin Landscape.....3-2 14 3-3 15 Location of Central Oregon Project Planning Areas4-2 4-1 Size of Central Oregon PPAs4-2 16 4-2 17 4-3 Prineville District Fire Operations Management Strategies4-7 18 4-4 19 4-5 Vegetation Categories4-14 Brothers Summary of Burn Probability4-14 20 4-6 21 4-7 Brothers Fuels Management Potential Treatments4-15 22 4-8 Brothers Habitat Restoration Potential Treatments4-17 23 4-9 Brothers Post-Fire Rehabilitation Management Strategies4-18 Brothers Project Planning Area Treatment Summary Table......4-19 24 4-10 25 4-11 Hay Creek GRSG Habitat Matrix Categories......4-20 26 4-12 4-13 Hay Creek Vegetation Categories......4-20 27 28 4-14 Hay Creek Summary of Burn Probability......4-21 29 4-15 Hay Creek Fuels Management Potential Treatments4-21 30 Hay Creek Fire Operations Management Strategies4-23 4-16 31 4-17 Hay Creek Habitat Restoration Potential Treatments......4-24 32 4-18 Post-Fire Rehabilitation Management Strategies4-25 Hay Creek Project Planning Area Treatment Summary Table......4-25 33 4-19 34 4-20 Paulina Vegetation Categories......4-27 35 Paulina Summary of Burn Probability......4-27 4-21 36 4-22 Paulina Sage-Grouse Habitat Matrix Categories......4-28 37 4-23 Paulina Habitat Restoration Potential Treatments4-28 38 4-24 Paulina Post-Fire Rehabilitation Management Strategies......4-29 39 4-25 Paulina Project Planning Area Treatment Summary Table4-30 40 4-26 12 Mile Vegetation Categories4-31 41 12 Mile Sage-Grouse Habitat Matrix Categories4-32 4-27 12 Mile Summary of Burn Probability4-32 42 4-28 43 4-29 12 Mile Fuels Management Potential Treatments4-32 44 4-30 12 Mile Habitat Restoration Potential Treatments4-34 45 12 Mile Post-Fire Rehabilitation Management Strategies4-35 4-31 46 4-32 12 Mile Project Planning Area Treatment Summary Table4-36 47 5-I 48 Fuels Management Potential Treatment Areas in Project Planning Areas in Central 5-2 49

Ι	5-3	Habitat Restoration and Recovery Potential Treatment Areas in Central Oregon
2	5-4	Fire Operations Potential Treatment Areas In Project Planning Areas in Central Oregon5-6
3	5-5	Post-Fire Rehabilitation Potential Treatment Areas in Project Planning Areas in Central
4		Oregon
5		-
6		

7

FIGURES

8			
9	-	Map of FIAT Assessment Teams in relation to WAFWA Management Zones	I-7
10	3-1	Central Oregon Assessment Area	3-4
11	3-2	Central Oregon Sage Grouse Habitat Matrix Categories	3-5
12	3-3	Central Oregon Soil Moisture Temperature Regime Condition Classes	3-6
13	3-4	Central Oregon Sage-Grouse Habitat Matrix	3-7
14	3-5	Central Oregon Fire History and Emphasis Areas	3-8
15	4-I	Map of Central Oregon Emphasis Areas and Project Planning Areas	4-3
16	4-2	Map of Central Oregon Project Planning Areas	4-4
17	4-3	Map of Central Oregon Project Planning Areas and District Boundaries	4-5
18	4-4	Map of Central Oregon Fire Management Operation Strategies	4-11
19	4-5	Map of Central Oregon SEAT Response Area	4-12
20	4-6	Map of Central Oregon Guard Station Response Areas	4-13
21	5-I	FIAT Process	5-2
22	5-I	Central Oregon Fuels Management Potential Treatments	5-8
23	5-2	Central Oregon Habitat Restoration Potential Treatments for Conifer	5-9
24	5-3	Central Oregon Habitat Restoration Potential Treatments	5-10
25	5-4	Central Oregon Post Fire Rehabilitation Management Strategies	5-11
26			

	ACRONYMS AN	ID ABBREVIATIONS	Full Phrase
2 3	BBD		breeding bird densities
4	BLM	United States Department of the Interior, B	ureau of Land Management
5	COFMS	Central Orego	n Fire Management Service
6	СОТ	Con	servation Objectives Team
8	DSL	Oregon	Department of State Lands
9 10	EIS	envir	onmental impact statement
	ESR	emergency sta	bilization and rehabilitation
12	FIAT	fire an	d invasives assessment tool
14	Forest Service	United States Department of	Agriculture, Forest Service
15	FRCC		fire regime condition class
16			6
17	GRSG		Greater Sage-Grouse
18			C
19	NEPA	National Enviro	nmental Policy Act of 1969
20	NOC	BLM N	lational Operations Center
21	NRCS	Natural Reso	ource Conservation Service
22			
23	ODF	Oreg	on Department of Forestry
24	ODFW	Oregon Depa	rtment of Fish and Wildlife
25			
26	PAC	pric	ority areas for conservation
27	PPA		project planning area
28			
29	RAC		Redmond Air Center
30	RFPA	Rangeland	Fire Protection Association
31	RMPA	resource ma	nagement plan amendment
32	R&R		resistance and resilience
33			
34	TNC		The Nature Conservancy
35			
36	USFWS	United Stat	es Fish and Wildlife Service
37			
38	WAFWA	Western Association of	f Fish and Wildlife Agencies
			-

SECTION I INTRODUCTION AND ASSESSMENT OBJECTIVES

3 I.I EXECUTIVE OVERVIEW

4	This assessment was developed using methods described in the FIAT Report
5	(Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion
6	Assessment, 2014). This process is designed to identify strategies that
7	ameliorate threats to Greater Sage-Grouse (Centrocercus urophasianus) and their
8	habitats. It incorporates emerging science, regional findings, and local data to
9	identify management opportunities that counter detrimental ecological trends in
10	wildfire, invasive annual grasses, and conifer expansion.

11The Central Oregon Fire and Invasives Assessment Tool (FIAT) identifies 9712miles of potential linear fuels treatments, 554,824 acres of potential conifer13treatment, 526,109 acres of potential invasive plant treatments, and 372,59414acres of post-fire rehabilitation. The FIAT also identifies site-appropriate15management strategies for fire operations and post-fire decisions.

16(FIAT is also used interchangeably to describe the written report, the science-17based process, and the analysis tools used.)

18 I.2 BACKGROUND

19	The purpose of this assessment is to identify potential project areas and
20	management strategies in highly valued sage-grouse (GRSG) habitats, which, if
21	implemented, would reduce the threats to GRSG. The Conservation Objectives
22	Team (COT) report (USFWS 2013) and other scientific publications identify
23	two primary threats to the sustainability of GRSG in the western portion of the
24	species range: wildfire and conversion of sagebrush habitat to invasive annual
25	grass-dominated vegetative communities. For the purposes of this assessment,
26	invasive species are limited to and hereafter are referred to as invasive annual
27	grasses. Conifer expansion (also called encroachment) is also addressed in this
28	assessment.

I 2 3 4 5	To address these concerns, the Bureau of Land Management (BLM) and United States Forest Service (USFS) have committed to completing GRSG wildfire, invasive annual grasses, and conifer expansion assessments (see Greater Sage- Grouse Land Use Plan Amendments, BLM Instruction Memorandum WO-2014- 134).
6 7 8 9 10 11	The objective of FIAT assessments is to identify priority habitat areas and management strategies to reduce the threats to GRSG from invasive annual grasses, wildfires, and conifer expansion. In addition, these assessments are designed to provide the United States Fish and Wildlife Service (USFWS) with regulatory certainty on the extent, location, and rationale for management opportunities to address significant threats to GRSG.
12 13 14	In early 2013, an interagency team of wildlife, vegetation, fire, and fuels managers was assembled to develop the FIAT assessment protocols. The FIAT process designed by this team involves two steps:
15 16	I. Establish the regional context for priority GRSG habitats and threat factors
7 8 9	 Incorporate local data with Step I findings to identify potential project areas, treatment opportunities, and management strategies to ameliorate threats to GRSG.
20 21 22	FIAT Step 1 was completed from February 2013 to August 2014; Step 2 was initiated in September 2014 and concludes at the end of February 2015. This assessment represents the final product and signals completion of FIAT Step 2.
20 21 22 23 24 25 26	 FIAT Step I was completed from February 2013 to August 2014; Step 2 was initiated in September 2014 and concludes at the end of February 2015. This assessment represents the final product and signals completion of FIAT Step 2. I.2.1 Identification of FIAT Assessment Areas FIAT assessment areas roughly correspond to select priority areas for conservation (PACs), which were identified in the COT report (USFWS 2013). In FIAT Step 1, the following five assessment areas were identified:
20 21 22 23 24 25 26 27	 FIAT Step I was completed from February 2013 to August 2014; Step 2 was initiated in September 2014 and concludes at the end of February 2015. This assessment represents the final product and signals completion of FIAT Step 2. I.2.1 Identification of FIAT Assessment Areas FIAT assessment areas roughly correspond to select priority areas for conservation (PACs), which were identified in the COT report (USFWS 2013). In FIAT Step 1, the following five assessment areas were identified: Central Oregon
20 21 22 23 24 25 26 27 28	 FIAT Step I was completed from February 2013 to August 2014; Step 2 was initiated in September 2014 and concludes at the end of February 2015. This assessment represents the final product and signals completion of FIAT Step 2. I.2.1 Identification of FIAT Assessment Areas FIAT assessment areas roughly correspond to select priority areas for conservation (PACs), which were identified in the COT report (USFWS 2013). In FIAT Step I, the following five assessment areas were identified: Central Oregon Northern Great Basin
20 21 22 23 24 25 26 27 28 29	 FIAT Step I was completed from February 2013 to August 2014; Step 2 was initiated in September 2014 and concludes at the end of February 2015. This assessment represents the final product and signals completion of FIAT Step 2. I.2.1 Identification of FIAT Assessment Areas FIAT assessment areas roughly correspond to select priority areas for conservation (PACs), which were identified in the COT report (USFWS 2013). In FIAT Step I, the following five assessment areas were identified: Central Oregon Northern Great Basin Snake/Salmon/Beaverhead
20 21 22 23 24 25 26 27 28 29 30	 FIAT Step I was completed from February 2013 to August 2014; Step 2 was initiated in September 2014 and concludes at the end of February 2015. This assessment represents the final product and signals completion of FIAT Step 2. I.2.1 Identification of FIAT Assessment Areas FIAT assessment areas roughly correspond to select priority areas for conservation (PACs), which were identified in the COT report (USFWS 2013). In FIAT Step I, the following five assessment areas were identified: Central Oregon Northern Great Basin Snake/Salmon/Beaverhead Southern Great Basin
20 21 22 23 24 25 26 27 28 29 30 31	 FIAT Step I was completed from February 2013 to August 2014; Step 2 was initiated in September 2014 and concludes at the end of February 2015. This assessment represents the final product and signals completion of FIAT Step 2. 1.2.1 Identification of FIAT Assessment Areas FIAT assessment areas roughly correspond to select priority areas for conservation (PACs), which were identified in the COT report (USFWS 2013). In FIAT Step I, the following five assessment areas were identified: Central Oregon Northern Great Basin Snake/Salmon/Beaverhead Southern Great Basin Western Great Basin/Warm Springs Valley
20 21 22 23 24 25 26 27 28 29 30 31 32	 FIAT Step I was completed from February 2013 to August 2014; Step 2 was initiated in September 2014 and concludes at the end of February 2015. This assessment represents the final product and signals completion of FIAT Step 2. 1.2.1 Identification of FIAT Assessment Areas FIAT assessment areas roughly correspond to select priority areas for conservation (PACs), which were identified in the COT report (USFWS 2013). In FIAT Step I, the following five assessment areas were identified: Central Oregon Northern Great Basin Snake/Salmon/Beaverhead Southern Great Basin Western Great Basin/Warm Springs Valley These were identified at a regional scale using the following criteria:
20 21 22 23 24 25 26 27 28 29 30 31 31 32 33	 FIAT Step I was completed from February 2013 to August 2014; Step 2 was initiated in September 2014 and concludes at the end of February 2015. This assessment represents the final product and signals completion of FIAT Step 2. 1.2.1 Identification of FIAT Assessment Areas FIAT assessment areas roughly correspond to select priority areas for conservation (PACs), which were identified in the COT report (USFWS 2013). In FIAT Step 1, the following five assessment areas were identified: Central Oregon Northern Great Basin Snake/Salmon/Beaverhead Southern Great Basin Western Great Basin/Warm Springs Valley These were identified at a regional scale using the following criteria: PACs, as identified in the 2013 USFWS COT report (USFWS 2013)
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	 FIAT Step I was completed from February 2013 to August 2014; Step 2 was initiated in September 2014 and concludes at the end of February 2015. This assessment represents the final product and signals completion of FIAT Step 2. 1.2.1 Identification of FIAT Assessment Areas FIAT assessment areas roughly correspond to select priority areas for conservation (PACs), which were identified in the COT report (USFWS 2013). In FIAT Step 1, the following five assessment areas were identified: Central Oregon Northern Great Basin Snake/Salmon/Beaverhead Southern Great Basin Western Great Basin/Warm Springs Valley These were identified at a regional scale using the following criteria: PACs, as identified in the 2013 USFWS COT report (USFWS 2013) State-scale breeding bird density (BBD; Doherty 2010)

l 2		 Patterns of resistance to annual grass invasion and resilience following disturbance (after Chambers et al. 2014)
3		Relative risk of wildfire occurrence (FPA 2014)
4		• Degree of conifer expansion (as modeled by Manier et al. 2013)
5 6	1.3	STATEMENT OF OBJECTIVES The objectives originally stated in the FIAT report are the following:
7 8		 Identify important GRSG-occupied habitats and baseline data layers important in defining and prioritizing habitats
9 10 11		 Assess the resistance to invasive annual grasses and resilience after disturbance and prioritizing emphasis areas for conservation and restoration
2 3		 Identify geospatially explicit management strategies to conserve GRSG habitats
4 5 6 7 8 9		The Oregon Sage-Grouse Environmental Impact Statement/Resource Management Plan Amendment (EIS/RMPA) describes the FIAT process and the reasoning for using it. FIAT looks at wildfire, invasive annual grasses, and conifer encroachment. It provides priorities for wildfire, fuels, sagebrush, and juniper treatments through the use of fire and invasives assessments. These assessments follow the strategic approach detailed in Chambers et al. (2014).
20 21 22 23 24 25 26		This strategic approach for conserving sagebrush ecosystems and GRSG focuses on threats to GRSG habitat caused by invasive annual grasses and altered fire regimes. It focuses on the sagebrush ecosystems and their resilience to disturbance and resistance to invasive annual grasses. Additionally, it considers the distribution, relative abundance, and persistence of GRSG populations in order to develop conservation strategies at both broad landscape and site- specific scales.
27 28 29 30 31 32 33 34		A GRSG habitat matrix links the relative resilience and resistance of sagebrush ecosystems with GRSG habitat requirements. The purpose is to help land managers assess the relative risks and determine the appropriate management strategies to mitigate those risks. Emphasis areas for management actions are prioritized by overlaying matrix components with GRSG PACs, BBDs, and specific habitat threats. Decision tools are included to help determine the most appropriate management treatments for each of the emphasis areas that are identified.
35 36 37 38 39		The Central Oregon PACs were included in FIAT primarily due to the risk of conifer encroachment degrading GRSG habitat. The other PACs included in the FIAT assessments primarily focus on wildfire and invasive annual grasses. This makes the Central Oregon PACs unique in some ways among the other PACs in the FIAT assessment.

I.4 ISSUES, ASSUMPTIONS, AND CONSIDERATIONS COMMON TO ALL ASSESSMENTS

The following list denotes elements that are common to all five FIAT assessments:

• Assessments must be revisited as landscape conditions change. Because landscape conditions are highly dynamic, management needs will change over time. The management opportunities and priorities identified in this assessment are relevant for today's landscape conditions. As disturbances such as wildfire occur in the assessment area, it is imperative that the priorities and management themes be revisited and redefined. This form of adaptive management is integrated into the Sage-Grouse Monitoring Strategy described in Section 5.

• Additional analysis will be required. Most potential treatments identified in this assessment will require further National Environmental Policy Act (NEPA) analysis. During NEPA analysis, the exact location and extent of treatment may be adjusted, based on more refined local information. Summary tables presented in Section 4 denote if NEPA is completed, has begun, or is needed for potential treatments. Consequently, many potential treatments detailed in Section 4 are subject to change as a result of refinement during NEPA.

• **Proper management is required.** The assumption is that for treatments to be effective once implemented, proper management of ongoing land uses will occur. Such land uses as grazing, wild horses and burros, and off-highway vehicles, are potential impediments to successful implementation of FIAT-identified treatments. In order for these treatments to be successful, proper management of land uses must occur at the time of treatment, which may require rest or exclusion from use, and following treatment, such as the proper intensity and location of uses.

• Identifying potential treatments was highly collaborative. FIAT teams used the data and science from the FIAT Report and General Technical Report RMRS-GTR-326 (Chambers et al. 2014) to identify potential treatment opportunities. In addition, guidance in the FIAT report directed teams to "use the best available local information" and engage in collaboration with agency partners. These partners included the Natural Resources Conservation Service, US Fish and Wildlife Service, and state fish and wildlife agencies. As a result, potential treatments identified in this assessment were strongly influenced by local data not present in the FIAT report: lek locations, seasonal habitats, and projects identified in other collaborative settings.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

I.5 FIRE OPERATIONS PRIORITIES

Т

25

26

27

28

29

30

31

32

2 The 1st, 2nd, and 3rd order priorities identified for fire operations integrate 3 guidance from the FIAT report, General Technical Report RMRS-GTR-326, wildfire potential, and local data. Fire operations priorities are consistent with 4 5 guidance established in the BLM's Fire Operations Action Plan Instruction 6 Memorandum (IM No. FA IM-2015-016) and Secretarial Order No. 3336. In 7 addition to these data sources, FIAT fire operations priorities were established 8 using local information, such as fire spread patterns and barriers, ignition 9 frequency, and fire history. Fire operations priorities identified in this 10 assessment are specific to the BLM.

II I.6 COLLABORATION

- 12The FIAT process requires partnership with cooperators, agencies, and others13involved in land or wildlife management in the FIAT assessment areas. Central14Oregon FIAT meetings were held in Prineville on September 29 and 30,15October 28, and December 2 and 4, 2014, and on January 6 and February 24,162015.
- 17 Collaboration in Central Oregon consisted of having the following agencies and
 18 partners at all five of the Central Oregon FIAT meetings: the BLM, USFWS,
 19 Oregon Department of Fish and Wildlife (ODFW), Oregon Department of
 20 Forestry (ODF), The Nature Conservancy (TNC), US Department of
 21 Agriculture Natural Resource Conservation Service (NRCS), Oregon Sage
 22 Grouse Conservation Partnership (SageCon), and the US Forest Service (Forest
 23 Service).
- 24 Meetings attendees participated in the following:
 - Reviewed FIAT Step I data for accuracy
 - Incorporated refined local information, such as lek¹ location, BBD density, telemetry, vegetation, fire occurrence, and other data to augment Step I findings
 - Identified project planning areas (PPAs), potential treatments, and appropriate management strategies in the four program areas
 - Documented the rationale and local factors influencing the identification of management strategies

33In addition to attending the key meetings, the Central Oregon FIAT Team34Leader, Craig Goodell, and representatives of SageCon and TNC met. They35discussed the best available local data in Oregon that could add value to the36FIAT assessment. They shared data that proved to be very valuable in Step 2 of37the FIAT assessment protocols. Additionally, an e-mail list was created that38included all Central Oregon FIAT partners. Any information relevant to the

March 2015

¹A lek is patch of ground used by male GRSGs for communal display during breeding season.

FIAT in Central Oregon was shared with this group throughout the assessment process.

I.6.1 Meetings

1 2

3

4

5

6

7

8

9

10

The Central Oregon FIAT meetings were all held in Prineville to make it easy for local area partners to attend. Meeting attendees were the BLM, NRCS, ODFW, SageCon, TNC, USFWS, and ODF. The Forest Service did not participate in the meetings, but its staff were consulted about portions of the Malheur, Ochoco, and Deschutes National Forests that intersect with the Hay Creek, Paulina, and Brothers PPAs. For more detail on Central Oregon meeting attendance, see Appendix D.

Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

March 2015 Snake, Salmon, and Beaverhead Warm Springs Valley NV/Western Great Basin Date Saved: 3/24/2015 Data Sources: Bureau of Land Management, ESRI Basedata This page intentionally left blank.

I

SECTION 2

2 DATA MANAGEMENT AND STEP-DOWN

PROCESS

4 5 6 7 8		The first component of the Wildfire and Invasive Annual Grasses Assessment describes the factors that collectively provide the GRSG landscape context. The Greater Sage-Grouse Wildfire, Invasive Annual Grasses and Conifer Expansion Assessment (Fire and Invasive Assessment Team 2014) provides this context. The assessment includes a discussion of PACs and BBD, as well as the following:
9 10		 Soil temperature and moisture regimes (indicators of resistance to annual grasses and resilience after disturbance)
П		Landscape sagebrush cover
12		Conifer expansion
3 4 5		See Chambers et al. (2014) for a detailed description of invasive annual grass and wildfire threats to GRSG habitat. Priority PACs and emphasis areas are derived from examining this GRSG landscape context.
6 7 8 9	2.1	EXAMINATION OF FIAT STEP I FINDINGS In Central Oregon, the collaborating agencies and partners examined the FIAT Step I findings during the first meeting in Prineville on September 29 and 30, 2014.
20 21		The following four criteria were used for identifying priority PACs in the FIAT Step I process:
22 23 24		 High density of GRSG. Seventy-five percent BBD was selected, based on Doherty et al. (2010). The intent was to use habitat criteria and a static data set that could be compared across PACs.

l 2	nesting and strutting periods (e.g., winter habitat) and 2009 data, which do not include recent fires.	that it uses
3 4 5 6 7 8 9 10	 Sufficient sagebrush cover. Landscape cover has a strong to GRSG persistence (Knick 2013). There are three sagebrush cover: 0 to 25 percent, 26 to 65 percent, an percent. Existing data is derived from LANDFIRE imagery. Using local data in Step 2 of the FIAT assessme will greatly benefit the understanding of existing cover good correlation between where sagebrush is and wher found. 	g correlation e classes of id 66 to 100 using 2000 nt protocols c. There is a re GRSG are
 2 3 4 5	 Soil temperature and moisture regimes. Areas at great warm-dry sites. Their degree of resistance and resilience correlated to the number of invasive species (Chan 2014). Native perennial grasses take longer to become r in hotter and drier soils after being disturbed. 	test risk are te is strongly nbers et al. reestablished
16 17 18 19 20	 <u>Conifer expansion</u>. This is derived from the Baseline Er Report (Manier et al. 2013). Step 2 of the FIAT protocols will inform more specific classifications distribution across the landscape and will identify whe work could be completed. 	ovironmental assessment of juniper ere the best
21 2 22 23 24 25 26 27	1.1 Determination of Emphasis Areas in Central Oregon Emphasis areas for the Central Oregon PACs were determined by I, page 5, of the Greater Sage-Grouse Wildfire, Invasive Annual Conifer Expansion Assessment (Fire and Invasive Assessment Team right side of the flow chart under Conifer Expansion Threat was con the Central Oregon PACs were examined, using the data layers iden flow chart, as follows:	using Figure Grasses and 2014). The nsulted, then ntified in the
21 2 22 23 24 25 26 27 28	 I.I Determination of Emphasis Areas in Central Oregon Emphasis areas for the Central Oregon PACs were determined by I, page 5, of the Greater Sage-Grouse Wildfire, Invasive Annual Conifer Expansion Assessment (Fire and Invasive Assessment Team right side of the flow chart under Conifer Expansion Threat was con the Central Oregon PACs were examined, using the data layers idea flow chart, as follows: PACs 	using Figure Grasses and 2014). The nsulted, then ntified in the
21 2 22 23 24 25 26 27 28 29	 I.I Determination of Emphasis Areas in Central Oregon Emphasis areas for the Central Oregon PACs were determined by I, page 5, of the Greater Sage-Grouse Wildfire, Invasive Annual Conifer Expansion Assessment (Fire and Invasive Assessment Team right side of the flow chart under Conifer Expansion Threat was con the Central Oregon PACs were examined, using the data layers idea flow chart, as follows: PACs	using Figure Grasses and 2014). The nsulted, then ntified in the
21 22 23 24 25 26 27 28 29 30	 I.I Determination of Emphasis Areas in Central Oregon Emphasis areas for the Central Oregon PACs were determined by I, page 5, of the Greater Sage-Grouse Wildfire, Invasive Annual Conifer Expansion Assessment (Fire and Invasive Assessment Team right side of the flow chart under Conifer Expansion Threat was con the Central Oregon PACs were examined, using the data layers idea flow chart, as follows: PACs	using Figure Grasses and a 2014). The nsulted, then ntified in the
21 22 23 24 25 26 27 28 29 30 31	 I.I Determination of Emphasis Areas in Central Oregon Emphasis areas for the Central Oregon PACs were determined by I, page 5, of the Greater Sage-Grouse Wildfire, Invasive Annual Conifer Expansion Assessment (Fire and Invasive Assessment Team right side of the flow chart under Conifer Expansion Threat was con the Central Oregon PACs were examined, using the data layers idea flow chart, as follows: PACs	using Figure Grasses and a 2014). The asulted, then antified in the
21 22 23 24 25 26 27 28 29 30 31 32 33	 1.1 Determination of Emphasis Areas in Central Oregon Emphasis areas for the Central Oregon PACs were determined by page 5, of the Greater Sage-Grouse Wildfire, Invasive Annual Conifer Expansion Assessment (Fire and Invasive Assessment Team right side of the flow chart under Conifer Expansion Threat was con the Central Oregon PACs were examined, using the data layers idea flow chart, as follows: PACs 75 percent BBD areas Sagebrush landscape cover Conifer expansion map By doing this Step 1 exercise, the following PACs were identified meet the criteria to be included in this FIAT assessment:	using Figure Grasses and a 2014). The nsulted, then ntified in the that did not
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	 1.1 Determination of Emphasis Areas in Central Oregon Emphasis areas for the Central Oregon PACs were determined by page 5, of the Greater Sage-Grouse Wildfire, Invasive Annual Conifer Expansion Assessment (Fire and Invasive Assessment Team right side of the flow chart under Conifer Expansion Threat was con the Central Oregon PACs were examined, using the data layers idea flow chart, as follows: PACs 75 percent BBD areas Sagebrush landscape cover Conifer expansion map By doing this Step 1 exercise, the following PACs were identified meet the criteria to be included in this FIAT assessment: The Brothers Wagon Tire and Picture Rock PACs did r 75 percent BBD requirement 	using Figure Grasses and 2014). The nsulted, then ntified in the that did not

I	2.1.2	Step 2 Data Management and Development in Central Oregon					
2		Once the emphasis areas for the Central Oregon PACs were determined, the					
3		available data in Oregon was looked at. This was done to assist with a more					
4		detailed assessment of the landscape elements and conditions in and next to					
5		those PACS in the context of the following:					
6		GRSG habitat					
7		Resistance and resilience of the vegetation systems to disturbance					
8		Wildfires					
9		Conifer encroachment					
10		Invasive annual grasses					
11		The BLM worked with the BLM Prineville District and its partners, especially the					
12		NRCS, TNC, ODFW and SageCon, to identify the best available local data that					
13		would inform the FIAT Step 2 assessment process.					
14		Through this, several data sets were identified that provided significant					
15		additional information during the Step 2 assessment. These data layers are listed					
16		below.					

Data Layer Name	Data Source	Data Available Range-Wide?	Data Gaps?	Notes
Sage-Grouse Priority Areas for Conservation	NOC	Yes	No	This polygon data set represents the GRSG PACs identified in the USFWS COT Report (2013).
Soil Moisture Temperature Regimes	NOC	Yes	Yes	Soil moisture and temperature regime data are from the Landscape Conservation Management and Analysis Portal.
SMA [Surface Management Agency] & SPP [Special Public Purpose] Data - Clipped to the 15 Mile Buffered FIAT Boundaries	NOC	Yes	No	Clipped to the 15-mile buffered, Step 2-approved, FIAT region boundaries.
FIAT Region Boundary	NOC	Yes	No	These data are approved to use in the Step 2 assessment. These boundaries have been modified from the COT-based PAC boundaries and include USFWS-recommended PACs.
Individual State Sage-Grouse Breeding Density Area	NOC	Yes	Yes	The GRSG BBD Mapping Project model is run on the spatial extent of the data, so the results of dissolving this state data together is not equivalent to the range-wide GRSG breeding density area.
5 Class Burn Probability Map Derived from FSIM Modeling	NOC	Yes	No	_
Aspect Data from the 30m NED	NOC	Yes	No	_
Elevation Data from the 30m NED	NOC	Yes	No	—
FIAT Resistance Resilience Matrix	NOC	Yes	Yes	FIAT. Intersect soil moisture temperature regimes sagebrush cover classes to create a spatial depiction of the Sage Grouse Habitat Matrix in Chambers et al. (2014).
FIAT Step I Conifer Expansion Model	NOC	Yes	Yes	—
FIAT Step I Sagebrush Cover Model (3 Class)	NOC	Yes	Yes	
Fire Occurrence Areas	NOC	Yes	No	Regionally leveled fire occurrence areas from the Westwide Risk Assessment
Fire Threat Index	NOC	Yes	No Regionally leveled fire threat index from the Westwide Risk Assessment	
GeoMAC Fire Perimeters	NOC	Yes	No	Extracted from GeoMAC for 2000 through 2013. For each assessment area, all fire perimeters were extracted that intersect the 15-mile buffer.

Table 2-1 FIAT Data Layers

Data Layer Name	Data Source	Data Available Range-Wide?	Data Gaps?	Notes
Suppression Difficulty Rating	NOC	Yes	No	Regionally leveled suppression difficulty rating from the Westwide Risk Assessment
Westwide Risk Assessment Regionally Leveled Expected Flame Length	NOC	Yes	No	_
Westwide Risk Assessment Regionally Leveled Expected Rate of Spread	NOC	Yes	No	—
ILAP Current Vegetation Data SEOR_Current Veg_BLM_SageCC	ORSO	Yes	Yes	Built using the ILAP current vegetation data. Information summarized at <5%, 5-10%, 10-25%, and >25%. This is based on sagebrush cover exceeding 25%, native grasses starting to decline, and invasive annual grasses starting to increase. The data could be helpful to assess where fuels and restoration treatments might be most appropriate.
Annual Grasses	ORSO	No	Yes	The data source is BLM Oregon Office employee, Maria Fiorella. This coverage was created by the Institute for Natural Resources as part of the Integrated Landscape Assessment Project.
Soils FIAT Table 2 (Chambers et al. 2014) RR	BLM PRD	No	Yes	Jenni Moffitt, Local Prineville Soils Data. Local soils data includes RAIL, which is a draft soil survey of Crook, Wheeler, and Grant Counties and 620, which is the soil survey for upper Deschutes County. The soil moisture and temperature regimes were then combined with the sagebrush dominance layer to produce a more refined, localized resistance/resilience matrix.
Sage Grouse Priority (Fire Operations)	BLM PRD	No	No	Kristy Swartz and Dan Ridenour with assistance from Monte Kuk, in conjunction with Healthy Lands Initiative, Local Prineville Data. Provides priority fire response information to dispatch and the local duty officers.
Healthy Lands Initiative	BLM PRD	No	No	Healthy Lands Initiative project areas on the Prineville District were identified. These project

Table 2-1 FIAT Data Layers

Data Layer Name	Data Source	Data Available Range-Wide?	Data Gaps?	Notes
				areas focused on identifying treatment needs in priority GRSG habitat.
Roads (GTRN_PUB_ROADS_ARC)	ORSO	Yes	No	
NTM Tree Cover	TNC	No	Yes	Used for the Refined conifer encroachment model for Oregon: Tree cover for trees \geq 7 feet in height; 30-meter resolution, with a 10-meter resolution data product pending. Tied to 2013 NAIP and LandSat imagery. Method also uses LiDAR where available.
Oregon Greater Sage Grouse Leks Point (grsg_leks_or_point)	ORSO	Yes	Yes	_
Fire History	ORSO	Yes	Yes	_
Weed Infestation (WeedInfestationLocation)	ORSO	Yes	Yes	From NISIMS
30 Mile Response Area	BLM PRD	No	No	Dan Ridenour, Local Prineville Data. This is a 30- mile radius from all Prineville fire guard stations located near GRSG habitat. Areas in the 30-mile buffer are considered to be within a reasonable response time, determined to be a maximum of two hours.
Sage Grouse Connectivity	TNC	No	Yes	The BLM worked with TNC, ODFW, and others to identify potential connectivity habitats. Several products were produced following a method similar to that used in Washington. For this effort, the lek kernel and least cost pathways were analyzed.
Ecological Site Inventory	BLM PRD	No	Yes	Jenni Moffitt, Local Prineville Data. The ecological site inventory method uses soils information to map ecological sites and plant communities and the collection of natural resource and vegetation attributes. Local data collected over the last 10 years were used to identify vegetative conditions and species composition.

Table 2-1 FIAT Data Layers

I	2.2	INCORPORATION OF LOCAL DATA FOR CENTRAL OREGON STEP 2 ASSESSMENT
2		

2.2.1 Rationale for Selection

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

The following data layers were selected to further inform the FIAT Step 2 process in Central Oregon.

- The TNC Sage Grouse Connectivity layer was used to determine if there were important habitat connectivity areas next to the emphasis areas that should be included in the PPAs.
- The NTM Tree Cover was developed especially for conifer encroachment issues in Oregon and is much more robust than the national data sets. This data provided excellent information to help determine priorities for conifer treatments.
- The Soils R&R Layer was developed locally by Prineville District employee Jenni Moffitt, with refined local soil survey data. It provided a much more fine-scale resolution for the soil moisture and temperature regimes and resistance/resilience information than the national data. This aided the team in making better decisions about proposed restoration and rehabilitation projects and fire operations priorities.
 - The RFPA apparatus data layer will aid in cooperative fire response. Locations and types of RFPA apparatus data will be loaded into the dispatch computer-aided design (CAD) system to facilitate an appropriate multiagency response to wildfires.
- The Sage Grouse Priority data layer was developed locally to prioritize areas of high value GRSG habitat for fire suppression response. The 30-Mile Response data layer was developed to depict initial attack response times, which relate directly to the probability of successful fire suppression. This data indicate that additional stations should be staffed in Central Oregon.
 - Local invasive species data were used to increase the accuracy of the invasive species data in the emphasis areas. Restoration and rehabilitation decisions were then made using this data, along with on-the-ground knowledge from local specialists.
- 34The data layers above were used to help inform the FIAT Step 2b management35questions and determine the associated management strategies and proposed36treatments in the PPAs and emphasis areas.
- 37 2.3 NATIONAL DATA LAYERS
 38

39 2.3. I	Breeding Bird Density
------------------	------------------------------

40Sources: Individual state GRSG Breeding Density Area from the BLM National41Operations Center and data from the GRSG BBD Mapping Project.

l 2 3		The model is run on the spatial extent of the data, so the result of dissolving this state data together is not equivalent to the Range-Wide Sage-Grouse Breeding Density Area Conifer Expansion.	
4 5	2.3.2	Wildfire Threats	
6		 5 Class Burn Probability derived from FSIM modeling 	
7 8		 Fire Occurrence Areas (Regionally Leveled Fire Occurrence Areas) from Westwide Risk Assessment 	
9 10		 Fire Threat Index (Regionally Leveled Fire Threat Index) from Westwide Risk Assessment 	
 2		 Suppression Difficulty Rating (Regionally Leveled Suppression Difficulty Rating) from Westwide Risk Assessment 	
13 14		 Westwide Risk Assessment Regionally Leveled Expected Flame Length 	
15 16		 Westwide Risk Assessment Regionally Leveled Expected Rate of Spread 	
17 18 19 20	2.3.3	Soil Moisture/Temperature Regime Sources: Soil Moisture Temperature Regimes Data from the BLM National Operations Center and Soil Moisture and Temperature Regime Data from the Landscape Conservation Management and Analysis Portal	
21 22 23 24	2.3.4	Sagebrush Landscape Cover Sources: Sagebrush Distribution from LANDFIRE and Sagebrush Distribution and Percent Landscape Cover from the Landscape Conservation Management and Analysis Other Data Layers	
25 26	2.3.5	Other Data Layers Used	
27 28 29 30		Conifer Expansion Model Piñon-Juniper and Conifer Encroachment (derived) Depicts the combined piñon- juniper and conifer interface in the GRSG study area that is within 120 meters of the sagebrush land cover data gaps identified	
31 32 33 34		GRSG Data The 2013 COT GRSG population shape file was produced by the 2013 GRSG Conservation Objectives Team. The GRSG PACs polygon data set represents the GRSG PACs identified in the 2013 GRSG COT Report.	
35 36 37 38		 Other Geographies The Western Association of Fish and Wildlife Agencies (WAFWA) Management Zones contains the original WAFWA Management Zones shape file. This data set depicts a preliminary version of the 	

l 2	management zone boundaries for GRSG and Gunnison Sage-Grouse in the western United States and Canada.
3 •	National Table 2 Sagebrush Soil Regime Overlay Calculation.
4 • 5 6 7 8	FIAT Region Boundaries (November 18, 2014 cleaned version) includes all five official region boundaries. These data are approved to use in the Step 2 assessment. The boundaries have been modified from the COT-base PAC boundaries and include USFWS recommended PACs.
9	

This page intentionally left blank.

I

SECTION 3 ASSESSMENT AREA CHARACTERIZATION

3	3.I	CENTRAL OREGON ASSESSMENT AREA
4		The Central Oregon assessment area (see Figure 3-1) encompasses the
5		entirety of the Central Oregon GRSG population. The ODFW made the
6		following observations in its 2011 Greater Sage-Grouse Conservation
7		Assessment and Strategy for Oregon:
8 9		 The Central Oregon GRSG population has declined the most in Oregon.
10		 Juniper and sage-juniper are the two largest risks.
11		• The Central Oregon population is at the northern edge of the
12		GRSG range, so connectivity in this region is especially important.
13		• The BLM-administered lands and private lands are nearly equal in
14		the region, thus requiring additional efforts to identify cooperative
15		conservation projects.
16		The ODFW identified four PACs, totaling 813,764 acres in the Central Oregon
17		GRSG population. Landownership in the PACs consists of intermixed private,
18		state, and public lands, with roughly 60 percent administered by the BLM.
19		Through this FIAT process, 559,736 acres (68.7 percent) were identified as
20		PPAs. Risks to these habitats were identified as primarily conifer expansion and
21		annual grasses. The remaining 254,028 acres in the PACs and those areas
22		outside of them were not identified as PPAs, primarily because they did not
23		meet the 75 percent BBD requirement.
24		In Central Oregon, juniper is a natural component of the vegetation landscape.
25		Historically, juniper was restricted mostly to rocky ridgelines and areas that did
26		not see fire for long intervals. With successful fire suppression, juniper has
27		spread from its historical range into sagebrush areas, which would have burned
28		too frequently to support juniper woodlands. In Central Oregon, the greatest

threat to GRSG habitat is this conifer encroachment. Wildfire and invasive annual grasses still pose a significant threat in Central Oregon but not to the extent that they do across much of the rest of the Great Basin.

As **Table 3-1** shows, 90 percent of the landscape in the Central Oregon PACs is in the moderate to high R&R categories, with moderate to high sagebrush landscape cover. Central Oregon PACs have relatively high quality habitat that are also relatively resistant to invasive annual grasses and relatively resilient to disturbances such as fire. This makes Central Oregon unique among the other FIAT areas, with R&R not being quite as big a driver in the process of management strategies and priority setting (See **Figures 3-2 through 3-4**).

11 The BLM used the sage-grouse habitat matrix to help inform decisions, establish 12 emphasis areas (see Table 3-2 and Figure 4-1), and set priorities but also used 13 additional data and local expert knowledge to make these decisions. This is the 14 reason that some of the management activity priorities, such as fire operations, 15 do not follow the sage-grouse habitat matrix precisely. The BLM also chose to 16 use passive restoration for ES&R in many areas that had high R&R and currently 17 showed limited presence of invasive species. The BLM also considered fire 18 history in this process (see Table 3-3 and Figure 3-5).

Table 3-1 GRSG Habitat Matrix Categories

Matrix Category	IA	I B	IC	2 A	2B	2C	3 A	3B	3C
Percent of Central Oregon PPAs	3	18	13	I	6	53	<	I	I

19

Т

2

3

Table 3-2Emphasis Area Acreage in Project Planning Areas in the Central Oregon Basin Landscape

РРА	Acres of Emphasis Area in PPA	Percentage of Emphasis Area in PPA	Total Acres in the PPA
Brothers	205,237.48	94.39	217,440.10
Hay Creek	34,738.96	97.22	35,731.63
Paulina	55,620.17	59.3 I	93,784.56
12 Mile	156,158.44	73.39	212,779.80
Total for all PPAs	451,755.05	80.71	559,736.09

20

Table 3-3
Fire History In Central Oregon's PPAs

Year	Acres	Number of Fires
1999	2,030.76	3
2000	0.00	0
2001	0.00	0
2002	385.16	I

3-2

Year	Acres	Number of Fires
2003	0.00	0
2004	0.00	0
2005	307.28	I
2006	1,929.75	I
2007	119.19	2
2008	4,039.54	2
2009	0.00	0
2010	0.00	0
2011	0.00	0
2012	5,584.66	2
2013	30.60	I
2014	26.96	I
Total	14,453.90	14

Table 3-3Fire History In Central Oregon's PPAs

I

Soil Moisture Temperature Regime Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Central Oregon Assessment Area Bureau of Land Management U.S. Department of the Interior

1:1,500,000

Central Oregon Assessment Area Bureau of Land Management U.S. Department of the Interior

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

0

March 2015 Date Saved: 3/6/2015 Data Sources: Bureau of Land Management, ESRI 1:1,467,805

Central Oregon Fire History and Emphasis Areas Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Central Oregon Assessment Area Bureau of Land Management U.S. Department of the Interior

SECTION 4

2 EMPHASIS AREA AND PROJECT PLANNING

3 **AREAS**

6

7

8

9

10

П

12

13

14

15

16

17

4 4.1 EMPHASIS AREA AND PROJECT PLANNING AREAS

4.1.1 Emphasis Areas Overview

Chambers et al. (2014) illustrates a step-down approach for identifying and assessing priority GRSG habitats across large landscapes and provides guidelines to identify effective management strategies/actions and habitat restoration needs across four primary federal agency program areas: fuels management, fire operations, habitat restoration/recovery, and post-fire-rehabilitation. The approach is based on widely available data, described in Section 2.3, to provide consistency across millions of acres and includes: (1) PACs, (2) BBDs, (3) habitat suitability as indicated by the landscape cover of sagebrush (not foliar cover), (4) resilience and resistance and dominant ecological types as indicated by soil temperature and moisture regimes, and (5) habitat threats as indicated by cover of cheatgrass, cover of piñon and juniper, and by fire history.

18 Using this approach, development and review teams were identified and tasked 19 with initiating the FIAT process in an effort to reduce threats to GRSG resulting 20 from impacts from invasive annual grasses, wildfires, and conifer expansion. Step 21 I FIAT team members included individuals from federal agencies that administer 22 the four federal program areas that are the focus of the assessment. They used 23 this approach to identify priority habitat areas, further referred to as focal 24 habitats. Emphasis areas (see Figure 4-1) are the portions of a PAC with 25 important habitat characteristics and bird populations that are most impacted by 26 the previously identified threats. See Greater Sage-Grouse Wildlife, Invasive Annual 27 Grasses & Conifer Expansion Assessment (2014) for further Step I details. The 28 results of Step I of the FIAT process, including geospatial data, were made 29 available as the starting point for the assessment teams identified for Step 2 of 30 the FIAT process.

March 2015

4.1.2 Project Planning Areas Overview

As part of the FIAT Step 2 process, the Central Oregon assessment team assessed and identified Project Planning Areas (PPAs) (see **Figure 4-2**, Project Planning Areas and **Figure 4-3**, Project Planning Areas and District Boundries) and associated proactive and reactive management strategies and associated vegetation treatments focused on the four program areas (fuels management, fire operations, habitat restoration and recovery, and post-fire rehabilitation management). The team used emphasis areas as the spatial starting point and through the Step 2 process, identified 4 unique PPAs (see **Table 4-1** and **Table 4-2**).

IIEach PPA contains at least one emphasis area (see Figure 4-3). For most PPAs,I2management strategies/actions and treatments were identified outside ofI3emphasis areas based on local knowledge that these areas are crucial to theI4long-term viability of GRSG populations in the PPA.

15 The team subsequently used a series of worksheet templates prepared for each 16 program area to identify treatment opportunities for the four program areas in 17 each PPA. Team members participated in four in-person workshops to discuss 18 and complete the assessment for each PPA. In order to consider the broadest 19 spectrum of possible treatment opportunities, the team did not consider 20 landownership when conducting these assessments. Additionally, the team 21 restricted potential fuelbreaks to existing roads in order to minimize further 22 disturbance, fragmentation, and reduce the likelihood of increasing invasive 23 annual grass abundance.

Table 4-1		
Location of Central Oregon Project Planning Areas		

Project Planning Area Name	BLM District Office
Paulina PPA	Prineville District
Brothers PPA	Prineville District
12 Mile PPA	Prineville District
Hay Creek PPA	Burns District

24

Т

2

3

4

5

6

7

8

9

10

Table 4-2Size of Central Oregon PPAs

PPA Name	Total Acres
Paulina	93,784.56
12 Mile	212,779.80
Brothers	217,440.10
Hay Creek	35,731.63
Total	559,736.09

25

I	4.2	CENTRAL OREGON PROJECT PLANNING AREAS
2		Below are descriptions of each of the PPAs in the Central Oregon Assessment
3		Area. Each PPA description includes the following:
4		A characterization of the PPA landscape
5		Examination of the proposed management strategies in the PPA
6		Spatial depiction of the proposed treatments
7		Additional supporting information is in the appendices.
8 9 10		Common to All PPAs in the Prineville District (Paulina, 12 Mile, and Brothers)
П		Fire Oberations
12		Fire operations are implemented across all three PPAs (see Figure 4-4) on the
13		Prineville District by both public and private organizations. There are no
14		unprotected lands in any of the PPAs. Mutual aid agreements exist between all
15		the organizations involved, whose suppression responsibilities are as follows:
6 7 8 9		 All federal lands in the Prineville District PPAs are protected by the Central Oregon Fire Management Service, (COFMS), which is comprised of the Prineville District BLM and the Ochoco and Deschutes National Forests assets.
20 21 22 23		 All private lands in the PPAs in the Oregon Department of Forestry, protection boundary, and any Oregon Department of State Lands (DSL) are protected by COFMS under either an offset or suppression agreement.
24 25 26		• All private lands not described above in the Paulina and 12 Mile PPAs are protected by the Post-Paulina RFPA; all the Brothers PPA private lands are protected by the Brothers-Hampton RFPA.
27		Fire operation considerations to protect all emphasis areas are as follows:
28		• Load PPA data into the CAD system at the Central Oregon
29		Interagency Dispatch Center. Create new fire operation protocol
30		for GRSG focal and emphasis areas to best protect habitat.
31		 During years with heavy annual grass fuel loading or optimal
32		perennial grass growth, large fire potential risk increases significantly
33		in all the emphasis areas. Add resources and preposition resources
34		specifically identified to protect GRSG habitat through use of "step-
35		up" plans that are tied to the unit's Fire Danger Operating Plan,
36		based on local and regional preparedness levels, the potential for
37		ignitions, or key weather events.

I 2 3 4 5	 Update resource advisor kits with treatment areas, and site data of GRSG landscape and advise line officers, fire managers, and incident commanders (ICs) of areas more and less resilient and resistant. Provide knowledge to better prioritize localized incident suppression action (extended attack).
6 7 8 9 10	 In accordance with the standards in the Interagency Standards for Fire and Aviation Operations, (Redbook), wash vehicles used in or around sites with known weed populations to reduce the spread of weeds. In the occurrence of any large fires (greater than Type 4), install a weed wash station.
 2 3	• To the extent feasible, locate base camps, spike camps, drop points, staging areas, helicopter bases, and other temporary wildfire infrastructure in areas where habitat disturbance can be minimized.
14 15	Where are priority fire management areas (spatially defined polygons having the highest need for preparedness and suppression action)?
14 15 16 17 18 19	Where are priority fire management areas (spatially defined polygons having the highest need for preparedness and suppression action)? In conjunction with IM No. 2013-128, Sage-Grouse Conservation in Fire Operations and Fuels Management, before the FIAT assessment, the BLM developed a priority response map based on habitat (also see Table 4-3). COFMS uses the map to prioritize fire response by habitat in order of priority:
14 15 16 17 18 19 20 21 22	 Where are priority fire management areas (spatially defined polygons having the highest need for preparedness and suppression action)? In conjunction with IM No. 2013-128, Sage-Grouse Conservation in Fire Operations and Fuels Management, before the FIAT assessment, the BLM developed a priority response map based on habitat (also see Table 4-3). COFMS uses the map to prioritize fire response by habitat in order of priority: Primary Priority Habitat (PPH) that is the Prineville District's identification of the best habitats in the PAC

Table 4-3
Prineville District Fire Operations Management Strategies

Priority	Priority I	Priority 2	Priority 3	Total
Paulina Acres	36,780.53	57,004.40	0.00	93,784.93
Percent of Paulina PPA	39.22	60.78	0.00	100.00
12 Mile Acres	135,897.30	76,879.77	0.00	212,777.07
Percent of 12 Mile PPA	63.87	36.13	0.00	100.00
Brothers Acres	144,068.42	73,285.72	0.00	217,354.14
Percent of Brothers PPA	66.26	33.70	0.00	100.00

25

26

27

Where are the greatest wildfire risks to emphasis areas, considering trends in fire occurrence and fuel conditions?

- 28 Fire frequently occurs across all the PPAs and is a natural part of the ecosystem. 29 The fire return intervals for similar fuel types are about 16 years (Martin 1982). 30
 - Three factors that govern whether a fire will become large and further degrade

March 2015

L existing GRSG habitat conditions are fuel amount and continuity, weather, and 2 topography. Of these, the BLM can affect only fuel amount and continuity. 3 Fire regime condition class (FRCC) is intended to provide a general assessment 4 of the threat wildfire may pose to ecological function and integrity, based on the 5 degree of departure from reference conditions. In the case of FRCC, reference 6 conditions are defined as the mix of successional, or structure, classes that 7 theoretically existed before 1850 (NIFTT 2010). The hazardous fuels program is 8 designed to reduce those risks. 9 The risks in the PPAs are as follows: 10 Invasive cheatgrass increasing fuel loading and creating a more • П homogenous fuel bed by infilling the spaces between perennial 12 grasses and sagebrush 13 • Western Juniper expansion increasing fire intensity and creating 14 greater ember generation and increased spot fires in front of the 15 main fire 16 The Brothers emphasis area arguably has the best public access of the four areas 17 assessed. This is because it is bisected by US Highway 20 and has the highest 18 percentage of public domain. This fact coupled with its proximity to Bend, 19 Oregon, and the recreation culture of Central Oregon in general gives it the 20 potential to experience more human-caused fires. 21 Where do opportunities exist that could enhance or improve suppression capability in and around emphasis areas? 22 23 All the emphasis areas in the Prineville District lie at the frontier of the current 24 operational radius for SEAT (see Figure 4-5) aircraft to attack fires or to 25 support firefighters. Reestablishing the Prineville SEAT base, either as a 26 dedicated base or a reload base at the municipal airport, will facilitate rapid 27 response to new fires or to support ongoing operations in any of the focal 28 areas. While the Redmond Air Center (RAC) is well situated to attack and 29 support fires in the Emphasis Areas, it is not configured to reload SEAT aircraft, 30 nor are there any water-only fill options available. Roberts Field, the host 31 location for RAC, is a primary commercial service airport, thus forcing SEATs 32 into managed takeoff, holding and landing time, and priorities in conjunction 33 with large air tankers and commercial and private air traffic. 34 The Paulina emphasis area lies outside the frontier of the current effective 35 attack radius for Dayville Guard Station. The 12 Mile and Brothers emphasis 36 areas lie outside current effective attack radius of any COFMS Guard Station. 37 Reestablishing either or both the Paulina and Hampton Guard Stations (see 38 Figure 4-6) will facilitate rapid response to new fires and will support ongoing 39 operations in any of the emphasis areas. In lieu of reestablishing the stations,

Ithere is an opportunity to reacquire apparatus and position them at Prineville2and Dayville to respond to fires that occur in the emphasis areas.

The BLM should continue to work with each RFPA to further develop their training, capacity, and infrastructure needs, refine the RFPA asset location and pre-attack spatial data and include that information in the COFMS pre-attack spatial data, and further coordinate with the RFPAs to identify the priority response areas and include GRSG suppression guidelines in the specific agreement annual operating plans.

- 9New water wells are being developed in the Brothers emphasis area. The wells10will be fitted with equipment that can connect to refill apparatus. The RFPAs are11also developing or refitting water developments to include the same capability.12Any new developments or existing developments scheduled for refurbishment13need to have the same capacity installed.
- 14Should wildfire be managed in accordance with land use plan15objectives for improving emphasis areas (e.g., reducing conifer16expansion), and if so where and under what conditions?
- 17 Current BLM LUP/FMPs allow for prescribed fire through both wildland fires
 18 and wildfires in all the emphasis areas. The Brothers emphasis area is included in
 19 the Brothers Wildland Fire Use Plan.
- 20How can fire management be coordinated across jurisdictional21boundaries to reduce risk or to improve emphasis areas?
- 22This area is under BLM, National Forest, and DSL administration and private23ownership. Opportunities exist, agreements are in place, and working24relationships are developed for assisted fire responses.
- 25 Fire Operations Asset Acquisition Prioritization
- 26The priority and rationale for asset acquisition cover all of the PPAs in the27Prineville District. The proposal is to reacquire or reestablish assets that were28previously in place in the district. These assets would help protect the areas in29and next to the FIAT PPAs, as well as other critical GRSG habitat in Central30Oregon.
- 31Based on historical fire occurrence data, the risk of habitat loss in Central32Oregon is more likely from numerous smaller fires rather than a few large fires.33However, large fires can and do occur, although they are not as likely here34when compared to other areas with GRSG habitat. Protection from this type of35habitat loss requires having additional fire management assets available, ready,36and strategically located to meet a consistent and rapid response objective for37fires in and next to the PPAs.

3

4

5

6

7

Priority I—Reacquiring the fire engines and providing requisite staffing. The key to successful fire operation in the context of FIAT identified project planning areas and surrounding habitat is the ability to consistently respond to fires. All of the Central Oregon PPAs are a mixture of public and private domain. For the 12 mile and Paulina Project Planning Areas, the amount of private domain is significant.

- Partnerships and the required formal agreements exist between the BLM and state and private agencies that respond to fires in the subject areas. While the entities involved in these partnerships and agreements can and do work across boundaries to suppress fires, each organization has its own jurisdictional responsibility; thus, each organization's first priority is to suppress fires in their jurisdiction.
- 13A more effective model of interagency fire response is being developed with14multiple partners in central and eastern Oregon; however, until this model is15fully implemented, each agency must have the ability to adequately respond to16its own fires.
- 17Priority 2—Reestablishing the Prineville SEAT base. The key to successful fire18operations in the context of FIAT identified project planning areas is the ability19to rapidly respond to fires, such as those that have occurred in the subject20areas. This requires having a rapid and effective response available and ready to21meet the stated rapid response objective to fires in or next to the PPAs; this is22to minimize habitat losses to wildfire. Currently, none of the partner agencies23have this capacity in their asset inventories.
- 24 Priority 3—Reestablishing the Hampton and Paulina Guard Stations. As stated 25 above, having these two stations reestablished and staffed will facilitate a 26 consistent and rapid response. It will allow them to meet the stated consistent 27 rapid response objective to fires and to minimize habitat loss by positioning fire 28 assets close to the PPAs. This is the third priority because reestablishing 29 stations is futile if assets are unavailable. In addition, even though the PPAs are 30 distant from the staffed guard stations, the District currently has the ability to 31 station additional operational resources in the event lightning strikes and to 32 patrol the PPAs during other times of elevated fire danger.

33

L

2

3

4

5

6

7

8

9

10

11

4.2.1 Brothers Project Planning Area

The Brothers PPA is approximately 40 miles south and east of Prineville. The planning area borders the Deschutes National Forest on the southwest and extends north across Oregon State Highway 20 directly east of Brothers. Of the 293,461 total acres in the Brothers North Wagon Tire PAC there are 272,218 acres of potential sagebrush habitat. The BLM manages most land in this PPA; the northern portions are primarily private and state lands. There is a small area of the Deschutes National Forest in the southwest, most of which is a forested habitat and not suitable GRSG habitat. Most of Brother's PPA has cool-dry soils with cool-moist soils in the far northern portion and far southern portion in the Deschutes National Forest. See **Table 4-4**.

Table 4-4 GRSG Habitat Matrix Categories

	Matrix Category	No Data	IA	IB	IC	2 A	2B	2C	3 A	3B	3C
	Acres	65.89	0.00	8,830.50	19,141.75	0.00	1,534.64	173,020.09	0.00	0.00	1,743.06
	Percent of PPA	0.03	0.00	4.06	8.80	0.00	0.71	79.57	0.00	0.00	0.80
2 3 4 5	The primary treatment objectives are to reduce conifer cover and improve understory conditions. This will be done by reducing the amount and extent of annual grasses in the north and south and to treat phase I and 2 juniper around										
6 7	the flats where it has not yet fully invaded; this will increase the extent, quality, and continuity of the GRSG habitat (see Table 4-5 and Table 4-6).										

Table 4-5 Vegetation Categories

Vegetation Category	Big Sagebrush Shrubland	Black/Low Sagebrush	Grassland	Invasives	Riparian	Salt Desert Scrub	Woodland	Other
Acres	112,792.70	0.00	52,526.51	672.69	1,509.29	0.00	6,963.51	42,829.30
Percent of PPA	51.87	0.00	24.16	0.31	0.69	0.00	3.20	19.70

18

Т

2

3

4

5

6

7

8

9

10

П

Table 4-6 Brothers Summary of Burn Probability

	High and very high burn probability in PPA (acres)	139,019.59
	High and very high burn probability in PPA (percent)	63.93
19		
20	Two large NEPA analyses have already been	completed, which cover all
21	proposed juniper treatments. Private landowne	rs have been treating some
22	juniper in the northern portions recently under the	e Mule Deer Initiative. For the
23	last few years the BLM has been treating juniper i	n the southern portion of the
24	PPA.	

Historically, large fire is not a frequent occurrence on this landscape (see **Table 4-6**). Most current fires are human caused. Additional efforts in fire prevention and education could prove to reduce the number of human-caused fires and thus reduce the risk to the GRSG habitat in this area. Closing roads is one management approach to reducing the number of human-caused ignitions. This would need to be addressed through travel management. Several major roads were identified as potential fuelbreaks where the objective is to treat annual grasses and junipers along the roadways.

9Invasive annual grass treatments were identified in the northern portion of the10PPA. The objective is to contain the distribution to this area and begin to11reduce the overall impacts through such treatments as spraying and seeding.12Integrated vegetation management techniques would be used to reduce the13spread of nonnative species while restoring native vegetation. Multiple14treatments may be necessary to meet objectives.

15Emergency stabilization and rehabilitation (ESR) treatments would be16considered for use throughout the PPA; however, areas in the north are in17poorer condition, with a potential greater need for restoration following a fire.18In general the remainder of the PPA is in relatively good condition, with fair19resiliency; for this reason, each fire would have to be assessed based on its size,20intensity, and location to determine the extent and type of ESR treatments21needed.

Fuels Management

L

2

3

4

5

6

7

8

22

23

24

25

In order to reduce risk to focal habitats in the Brothers PPA, fuels management consists mainly of improving several main access roads as linear fuelbreaks (see **Table 4-7**).

	Priority	Priority I	Priority 2	Priority 3	Total			
	Fuelbreaks miles	25.66	31.90	9.13	66.69			
	Sagebrush thinning acres	430.59	0.00	0.00	430.59			
	Percent of PPA	0.20	0.00	0.00	0.03			
26								
27		Main roads in the Brother	s PPA present oppo	ortunities for use a	as fuelbreaks			
28		across critical habitats thro	oughout the emphas	is area. The area	available for			
29		treatment is approximately	812 acres. Treatmen	t types include mair	ntaining road			
30		rights-of-way to be clear of vegetation, mowing a fuelbreak to clear vegetation						
31		(width dictated by fuel type), removing conifers, and following up with chemical						
32		and seed applications where	appropriate.	C .				
33		From a fuels management a	nd restoration persp	ective, prescribed fi	ire would be			
34		appropriate in the higher re	esistance and resilien	ce areas. Smaller fir	res are rarer			
35		now; fires tend to be larger	and more intense. For	or example, the Buc	ck Creek fire			
36		area is now cheatgrass. The	e next fire will burn	that area and into	surrounding			

Table 4-7Brothers Fuels Management Potential Treatments

- areas. Prescribed fire could be a viable option for treatment in this PPA, but suitability will be site specific. No areas were identified for prescribed fire treatments in this assessment, with the understanding that suitability of this type of treatment will be addressed in the Step 3 planning process.
- 5Two small areas with dense sagebrush canopies are proposed for experimental6sagebrush thinning. This is to reduce the height of the canopy, thus reducing the7potential for fire spread. Additionally, opening up the dense canopy will provide8opportunities for native grasses and forbs to become reestablished.
- 9Shrub densities are at or above the 30 percent canopy cover level in portions of10both the Brothers and 12 Mile PPAs. This density limits important GRSG forage11production. Because of this, there is an interest in conducting test mowing to12modify and improve decadent sagebrush, thereby encouraging understory13growth.
- 14 Due to the thick shrub canopy cover, the use of small chemical treatments or 15 mowing projects would be researched. These types of treatments would reduce 16 canopy cover and allow native grasses and forbs to become reestablished either 17 naturally or through reseeding and planting. Test locations selected are classified 18 as moderate resistance and resilience (2C) in areas with landscape shrub 19 percentages in the high category (greater than 65 percent). Because there is a 20 risk that this disturbance could lead to additional annual grass expansion, these 21 treatments may be accompanied by post-treatment seeding or herbicide 22 application.
- 23Fuels management and habitat restoration are being coordinated across24ownership lines with the BLM, private/NRCS, and Forest Service in this PPA.
- 25Biological fuels management, such as allowing livestock to graze on fine fuels,26will be considered as a possible treatment where it can be used and still meet27GRSG habitat goals and grazing permittee needs.
- 28 Habitat Restoration and Recovery
- 29There are opportunities for habitat restoration treatments in this PPA to30protect, enhance, and maintain GRSG habitat. Management will be employed to31reduce conifers. The entire project planning area has been identified as needing32some level of conifer treatments. Priorities have been determined based on the33stage of encroachment and whether the treatment is in the emphasis area.
- 34There is an opportunity to improve habitat in the southern portion of the PPA35east of Dickerson Well Road, but land managers will need to be prepared to36work with larger juniper. (For all potential treatments in this PPA, see Table374-8.) Healthy Lands Initiative treatments have been identified and were38considered in identifying the FIAT polygons and priorities. North of Highway 20,39there are ongoing opportunities for inter-organizational cooperation.

L

2

3

	Priority	Priority I	Priority 2	Priority 3	Total
	Conifer treatment acres	53,436.34	59,858.44	104,128.90	217,423.68
	Percent of PPA	24.58	27.53	47.89	100
	Invasives treatment acres	178,086.57	28,122.58	11,245.64	217,454.79
Т		01.70	12.75	5.17	100
ว		An integrated vegetation	n management app	roach will be used to	manage invasive
2		species. The sage-group	e habitat matrix s	shows this PPA to h	e moderately to
J ⊿		bighty registent and regi	iont: therefore a c	shows this ITA to b	be moderately to
-7 E		restoration will be used	based on the pro-	complitation of Dour p	
2		M/hore investive species	, based on the pre	more active approx	ch will be used
07		where invasive species	s are present, a	more active approa	unt of the DDA in
/ 0		the seel measure and	iude a smail portic	on in the northern pa	art of the FFA, in
8		the cool-moist soil zor	ie, where there a	re weed issues base	d on the annual
9		grasses layer.			
10		The annual grasses trea	tment polygon is n	nostly private and ha	s mostly novious
11		knoweed with cheater	ass Proposed tre	atments include a tie	ared approach of
12		hurn spray and seed (bootgross is cousir	a substantial soil ere	sion in this area
12		The consensus was t	bat a passivo ro	storation approach	would be used
14		throughout the rest of t	hat a passive re. $b = DD \Delta$	approach	would be used
17		the rest of t			
15		Existing Treatments			
16		The Brothers PPA is in	the project bound	aries of the High Des	ert Shrub Steppe
17		Restoration Environme	ntal Assessment (xxxxx 2011). There	are several past
18		fuels management and	habitat restoration	n proiects in the Br	others PPA that
19		have improved GRSG I	nabitat removing c	onifers in encroache	ed and expanding
20		areas. Maior emphasis i	s placed on return	ning these sites to re	esilient sagebrush
21		landscapes for GRSG us	e.		
22		To date, the BLM Prine	eville District has o	completed conifer th	inning on 15,414
23		acres and has complete	d prescribed jack	pot (i.e., localized, n	on-piled) burning
24		on 4,579 of those acres	. Another 3,752 o	f those acres is planr	ned to be jackpot
25		burned in 2015; the r	est will be burn	ed over the followi	ing two years if
26		conditions allow.			
~-					
27		Initial monitoring of the	ese projects is sho	wing improvement i	in GRSG habitat,
28		but their maintenance	will be essentia	al to keep meeting	g GRSG habitat
29		objectives. Some junipe	r cutting on privat	e lands and associate	ed with the Mule
30		Deer Initiative has bee	en completed in r	recent years, in the	PPA's northern
31		portion.			
30		Post Fire Rehabilitation M	anagement		
22 22		The optime PDA area a	will be considered	for ECR treatment	s The BIM and
עכ גנ		nie enure FFA area V		anto in the larger -	S. THE DLI'L AND
34 25		partners will determine	site-specific treath	nents in the larger po	biygons. This PPA
32		is cool-ary and is likely t	o de moderately r	esment.	

Table 4-8Brothers Habitat Restoration Potential Treatments

I	There was a recent 30- to 40-acre fire, and grass recovery has been strong. The
2	overall response in the northern portion of the PPA following treatments has
3	been mixed; some areas have returned as cheatgrass, others have not. There is
4	good perennial grass coverage. There may be some spots where restoration is
5	needed, but in general, recovery should be strong through passive restoration.
6	Planting plugs of sagebrush may be an option south of Highway 20; grass seeding
7	

7 would likely not be necessary. Restoration for ES&R will be prioritized in areas
8 where invasive species are already present. See **Table 4-9**.

	Priority		Priority I	Priority 2	Priority 3	Total
	Acres		178,076.50	28,124.26	11,243.86	217,444.62
	Percent of PPA		81.90	12.93	5.17	100
9						
10			Use of some for	rm of ground preparati	on, such as drill seeding	or harrowing, is
11			warranted and	feasible on valley bot	toms designated as 2C	and 3C. Areas
12			appropriate for	drill seeding and equip	ment use first need to b	be inventoried to
13			remove archaec	ological constraints for	prompt treatment. Hert	picide treatments
14			to suppress che	atgrass growth and fav	or seeded species shou	ld be considered
15			as a portion of	the ESR treatment pl	an. Also consider using	erosion control
16			structures in are	eas with high burn seve	rity or high risk for eros	ion (that is, areas
17			with phase 3 jun	iper encroachment).	, 5	(, , , , , , , , , , , , , , , , , , ,
18			Additionally, the	ere needs to be signif	icant effort and funding	put toward the
19			development of	local seed sources and	storing enough of a su	pply to meet the
20			needs for restor	ation and rehabilitation	l.	
21			Proposed Man	agement		
22			See Table 4-1	0 for projects that ha	ave been identified pres	sently within the
23			NEPA planning	process. See Figures 4	4-7 through 4-13 for a g	graphic depiction
24			of the proposed	treatments and strateg	gies in the PPA.	
25		4.2.2	Hay Creek Pr	oject Planning Area		
26			The Hay Creek	PPA is along the nor	rth edge of the BLM Bu	urns District and
27			addresses the e	ntirety of the Burns PA	C. It is approximately 15	miles northwest
28			of Burns, Orego	n, and falls in the Three	e Rivers Resource Area.	
29			The Hay Cree	k PPA is 35,777 acre	s, comprised of 21,737	' acres of BLM-
30			administered la	nd, 9,435 acres of priv	vate land, 4,603 acres c	of Forest Service
31			land, and two ac	cres of Oregon state la	nd. The northern sectior	n of the PPA is in
32			the Malheur Na	ational Forest; it is ma	anaged as a forested ha	abitat and is not
33			suitable for G	RSG. The BLM also	manages small sections	of land in the
34			southwestern p	ortion of the PPA as fo	orest habitat, which also	is unsuitable for
35			GRSG.			

Table 4-9Brothers Post-Fire Rehabilitation Management Strategies

Treat Descr	tment ription	Р	riorit	y		Thr Addr	eats essed		I	NEPA	•	Treatments					
Name/ Type	Acres/ Miles					(E)						Tir Fra	ne me	Certai Effectiv	nty of eness ¹		ne
All projects listed are conifer control, unless listed otherwise.	All amounts are acres, unless noted otherwise.	lst	2nd	3rd	Conifer (C)	Invasive annual grasses	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P)	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Frame (Years) ²	Completion Time Fran (0-2, 3-5, 5+ years) ³
2015 BLM	22	Х			С			W		С			I	-		20+	0-2
2015 BLM	13		Х		С			W		С			I	_		20+	0-2
2015 NRCS	14		Х		С			W		С			Ι	Ι		20+	0-2
2016 BLM	14,466	Х			С			W		С		Р		I		20+	0-2
2016 BLM	4,022		Х		С			W		С		Р		Ι		20+	0-2
2016 BLM	8			Х	С			W		С		Р		I		20+	0-2
2018 BLM	1,124	Х			С			W		С		Р				20+	3-5
2018 BLM	4,678		Х		С			W		С		Р				20+	3-5
2020 BLM	78		Х		С			W		С		Р		Ι		20+	3-5
2020 BLM	3,077			Х	С			W		С		Р		I		20+	3-5
2021 BLM	5,287		Х		С			W		С		Р		I		20+	5+
2022 BLM	144		Х		С			W		С		Р				20+	5+
2016 Invasive	465	Х				I		W	Ι			Р		I		5+	0-2
2016 Invasive	58		Х			I		W	Ι			Р		Ι		5+	0-2
2019 Invasive	213	Х				I		W	Ι			Р		Ι		5+	3-5
2023	465	Х				I		W	Ι			Р		I		5+	5+
2023	858		Х			I		W	Ι			Р		Ι		5+	5+
2016 Fuelbreak*	26 miles	Х						W			Ν	Р		Ι		5+	0-2
2016 Fuelbreak*	32 miles		Х					W			Ν	Р		I		5+	0-2
2016 Fuelbreak*	9 miles			Х				W			Ν	Р		I		5+	0-2
2017 Sagebrush thinning	429	Х						W			N	Р		Ι		30+	0-2

Table 4-10Brothers Project Planning Area Treatment Summary Table

States that if treatment, once completed, is likely or unlikely to be effective and provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = based on professional opinion, treatment is likely to be effective

²This describes the frequency of maintenance necessary to continue effectiveness (years).

³This identifies the potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors.

I

The Silvies River bisects the PPA north to south and is joined by a number of 2 smaller streams, including Hay Creek and Emigrant Creek, creating high quality 3 brood-rearing habitat.

4 The Hay Creek PPA supports a relatively isolated population of GRSG, which is 5 composed of two active leks and one inactive lek (see Table 4-11). Because 6 there are only two years of data, the lek count is inadequate to properly 7 establish a general trend in GRSG population for this PPA.

> Conifer Encroachment is the major threat to GRSG in this PPA and is identified as the primary treatment objective. The PPA contains predominantly high resistant and resilient habitat types, characterized by generally cool-moist soils (see Table 4-12). For this reason, the PPA should respond favorably to juniper control treatments.

Table 4-11 Hay Creek PPA Lek Status

Lek Name/ODFW Site ID	Conservation Status
Hay Creek #1 (HA1042-01)	Occupied pending
Hay Creek #2 (HA1042-02)	Occupied pending
Mosquito Flat (HA0024-01)	Unoccupied pending

13

Т

8 9

10

11

12

Table 4-12 Hay Creek GRSG Habitat Matrix Categories

Matrix Category	No Data	IA	IB	IC	2 A	2B	2C	3A	3B	3C
Acres	2,050.48	986.54	30,796.34	0.00	0.00	1,899.25	0.00	0.00	0.00	0.00
Percent of PPA	5.74	2.76	86.19	0.00	0.00	5.32	0.00	0.00	0.00	0.00

15	NEPA analysis has been completed to address conifer encroachment for 10,950
16	acres and a Determination of NEPA Adequacy (DNA) is being initiated to cover
17	an additional 10,787 acres in the PPA (see Table 4-13).

	Table 4-13	
Hay Creek	Vegetation	Categories

	Vegetation Category	Big Sagebrush Shrubland	Black/Low Sagebrush	Grassland	Invasives	Riparian	Salt Desert Scrub	Woodland	Other
	Acres	17,644.33	0.00	6,435.65	414.59	707.54	0.00	964.26	9,484.75
	Percent of	49.38	0.00	18.01	1.16	1.98	0.00	2.70	26.54
	PPA								
18									
19			Two CCAs :	are in progr	ess, which i	nclude the E	3LM lands	in this PPA. T	he CCAs
20			may be a ve	hicle to gen	erate fundir	ng and in-kir	nd contribu	utions involvir	ng juniper

4-20

and ponderosa pine management	Such efforts would	increase the prioritization
of this PPA.		

Fire history in the boundary of the Hay Creek PPA indicates that seven fires have burned 1,567 acres since 1980. This figure does not properly identify the potential risk to the PPA (see **Table 4-14**), especially when considering its small size and the recent history of large wildfires in the surrounding area.

Table 4-14 Hay Creek Summary of Burn Probability

	High and very high burn probability in PPA (acres)	35,279.28
	High and very high burn probability in PPA (percent)	98.73
7		
8	A network of fuelbreaks (ultimately to develop fir	e and invasive resistant green
9	strips) have been identified for establishment and a	are associated with the limited
10	roadway system, both inside and outside this	s PPA boundary. All roads
11	associated with these fuelbreaks will be maintair	ned or improved to facilitate
12	rapid initial attack for fire operations. Establishing	these fuelbreaks is to keep a
13	single wildfire from burning the entire Hay Creek F	PPA.
14	Invasive annual grass treatments were not identifi	ied and are not a priority for
15	this PPA. This is due to the high resistance and re	silience of the habitat and the
16	limited and sporadic nature of the invasion. Ann	ual grasses will be addressed
17	using the best available techniques during conifer m	naintenance treatments.
18	ESR treatments would be considered throughout	the PPA. In general the PPA's
19	high resilience will allow for natural recovery, thu	s each fire would be assessed
20	based on its size, intensity, and location to deter	rmine the extent and type of
21	ESR treatments needed.	
22	Fuels Management	
23	In order to reduce the risk of habitat conversion	on to focal areas in the Hay
24	Creek PPA, fuels management consists of improv	ing the limited roadways into
25	linear fuelbreaks (see Table 4-15).	

 Table 4-15

 Hay Creek Fuels Management Potential Treatments

	Priority	Priority I	Priority 2	Priority 3	Total
	Miles	9.13	0.00	4.83	13.96
26					
27		Using the road systems	in and outside the pe	rimeter of the Hay Cr	reek PPA, a
28		network of fuelbreaks ha	as been identified. The	ir purpose is to compa	rtmentalize
29		and establish anchor po	ints for firefighters to	safely engage any wild	fires in this
30		area. Treatment types ir	these areas include k	eeping road rights-of-w	vay clear of
31		vegetation, mowing a fu	elbreak clear of woo	dy vegetation, removir	ng conifers,
32		and following up with ch	emical and seeding app	lications where approp	oriate.

1 2

3

4

5

- Roads identified for establishing fuelbreaks next to the Hay Creek PPA are Silvies River Road and an unnamed road in the northwest that connects to Forest Service Road 37.
 - There is no one fuel reduction technique that will be most effective throughout the area and in the acceptable impact ranges of GRSG populations. Nevertheless, combinations of such techniques as biological thinning and prescribed fire in higher resistant and resilience areas could reduce the risk of catastrophic wildfire.
- 9 Biological thinning (livestock grazing to reduce fine fuels) is a valid option. It 10 directs livestock to areas in need of fine fuel reduction, while preventing overall 11 use from exceeding 50 percent for desirable perennial species. At the same 12 time, this option allows for maximum consumption of targeted invasive annual 13 grasses. Biological thinning is authorized under 43 CFR, Part 4190.1; it allows a 14 full force and effect decision to be made when the BLM determines that 15 vegetation, soil, or other resources on the public lands are at substantial risk of 16 wildfire due to such factors as drought and fuels buildup.
- 17Recent wildfires have been increasing in size and intensity, causing large-scale18habitat conversion. Prescribed fire is a viable option to build a more mosaic19landscape and create variability in fuel loads, which can slow the rate of spread,20aiding suppression efforts. It can also be used as a habitat restoration treatment21in areas with phase I or phase II juniper encroachment. It is addressed in more22detail in the habitat restoration and recovery section.
- 23 Fire Operations

L

2

3

4

5

6

7

8

24

25

26

27

- All roads identified for establishment of fuelbreaks and green strips will be maintained or improved. This will be done to facilitate faster response times for initial attack resources to help minimize the size of any wildfire occurrence in or near the PPA. Roads identified for maintenance or improvement are Silvies River Road and an unnamed road in the northwest that connects to FS 37.
- 29 Fire operations priority is separated east/west using the previously identified 30 Silvies River Road. It gives priority I to the western section of the PPA. The 31 western section of the PPA contains both active leks and, based on fire spread 32 history (typically driven by westerly winds), has a high potential of spreading to 33 the eastern portion. This effectively removes all habitat with a single fire. The 34 remainder of the PPA will have a lower priority since a wildfire has a lower 35 potential of destroying the entire PPA, based on fire spread history. See Table 36 4-16.

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	17,206.39	18,572.00	0.00	35,778.39
_	Percent of PPA	48.00	52.00	0.00	100.00
1 2		Other fire	operation considerations to	protect this PPA are as f	ollows:
3 4 5 6		•	Wash vehicles used in populations in order to real any large fires (greater that installed.	or around sites with duce the spread of weed an Type 4), a weed wasl	known weed Is. In the case of h station will be
7 8 9 10 11		•	Add resources and stati protect GRSG habitat thro to the unit fire danger oper regional preparedness leve events.	on resources specifical ough use of "step-up" pla rating plan; this will be ba els, ignition potential, an	ly identified to ans that are tied sed on local and nd key weather
12 13 14 15 16		•	Load PAC areas into CA resource value and set notifications. Look at exi create new protocols for habitat protection.	D system at Dispatch. it as a priority area sting dispatch protocols GRSG PAC areas to b	Front load this for action and s to modify or pest provide for
17 18 19 20 21 22		•	For type 3 to 5 IC designat first responders that supp fire management plan dire protection; for example, "T retain unburned fingers an threat of escape."	ions, clarify the leader's i orts the land manageme ection, as it pertains to Fo the extent it can safel nd islands that do not p	ntent to ICs and ent plan and the o GRSG habitat y be performed, ose a significant
23 24 25 26		•	Update resource advisor ki landscape, and ability to ad and less resilient and re prioritize localized incident	ts for treatment areas, si lvise fire manages and IC esistant. Provide knowl suppression action (exte	te data of GRSG is of areas more edge to better inded attack).
27 28 29 30 31		•	Familiarize duty officers with more or less resistant and for a specific area, treatr landscape engineered to prioritization and efficiency	th priority areas in GRSG I resilient, any pre-attack ment locations, and adv aid in containment).	habitat that are plan generated vantages on the (initial attack
32 33 34		•	Improve and maintain roa efficient response, suppre support for incident, and po	ads in the PAC to pro ession action, control ost incident treatment an	ovide for more lines, logistical d recovery.
35 36		•	Within PPA boundaries, pr to areas with big sagebrush	ioritize the fire suppress over low sage. Also pric	sion initial attack pritize dry-lower

Table 4-16Hay Creek Fire Operations Management Strategies

elevation sites (Wyoming big sagebrush sites) for action over moisthigh elevation sites (mountain big sagebrush sites).

3 Habitat Restoration and Recovery

L

2

4 Changes in the historical fire regime are observed throughout the Hay Creek 5 PPA. In the high elevation sagebrush steppe habitats of the Northern Great 6 Basin, fire frequency reduction has converted the dominant vegetation from 7 mountain big sagebrush/perennial grass communities to juniper woodlands. 8 Active management will be used to reduce conifers throughout the entire PPA, 9 with 13,466 acres of juniper encroachment currently observed from the conifer 10 encroachment layer. Future treatments have been identified and much of the 11 NEPA analysis has already been completed for the Hay Creek PPA.

- 12Conifer treatments would occur in areas determined appropriate by an13interdisciplinary team of experts. Actions may include cutting, limbing, brush14beating, machine piling or hand piling, pile burning, and using prescribed fire,15depending on site conditions and the ability to remove fuel in a safe and16effective manner.
- 17 Chemical treatments will continue to be used, specifically in treating annual
 18 grasses and noxious weeds following pile burning. Other treatments may be
 19 used as they become available or meet the needs of specific sites.
- 20Using combinations of these treatments (see Table 4-17) and having the ability21to use the best available tool for each area should improve the overall22effectiveness of habitat restoration. Continued management will be done post-23treatment to help maintain desirable vegetation and historical fire regimes.

Priority	Priority I	Priority 2	Priority 3	Tota
Conifer treatment acres	17,517	3,840	380	21,737
Percent of PPA	49	11	2	60
Invasives treatment acres	0.00	0.00	0.00	0.00
Percent of PPA	0.00	0.00	0.00	0.00

 Table 4-17

 Hay Creek Habitat Restoration Potential Treatments

The BLM Burns District is working through the CCA process with many permittees to ensure healthy land use in grazing allotments, which will promote GRSG habitat. The CCAs will generate permittee labor and possibly outside funding for conifer removal projects. Also, ongoing small-scale juniper removal projects to the south of the PPA may spread into the PPA as interest and permittee agreements with the USFWS develop.

31Sagebrush and perennial grasses will be seeded on the areas affected by juniper32removal. The total area seeded will depend on the treatment method used (e.g.,33pile versus broadcast burn). Seeding can be used in areas where fire is not an

25

26

27

28

29

I	aspect of the treatment if there is no adequate amount of desirable herbaceous
2	vegetation due to the severity of juniper encroachment.

Post-Fire Rehabilitation Managemer

4

5

6

7

8

9

10

11

14

15

17 18

19

Due to the small size of the Hay Creek PPA, post-fire rehabilitation will be prioritized for the entire area. ESR will be done on a site-by-site basis, with an overall goal of establishing perennial bunch grass and sagebrush communities (see **Table 4-18**). About 98 percent of the Hay Creek PPA is in the high resistance and resilience category and will likely recover with minimal vegetative assistance. However, regions exposed to severe wildfire conditions or that have lost herbaceous understory due to juniper encroachment will need to be identified and treated.

Table 4-18Post-Fire Rehabilitation Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	35,778.39	0.00	0.00	35,778.39
	Percent of PPA	100	0.00	0.00	100
12					
13		Additionally, sig	nificant effort and fundi	ing should be put toward	developing local

seed sources and storing enough of a supply to meet restoration and rehabilitation project needs.

16 Proposed Management

See **Table 4-19** for projects that have been identified presently within the NEPA planning process. See **Figures 4-14** through **4-20** for a graphic depiction of the proposed treatments and strategies in the PPA.

Treatment Priority Description			ty	Threats Addressed		NEPA		Treatments									
Name/ Type	Acres/ Miles					s (I)						Tir Fra	ne me	Certa Effecti	inty of veness ¹	ame	me
All projects listed are conifer control, unless listed otherwise.	All amounts are acres, unless noted otherwise.	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ¹	Likely	Unlikely	Maintenance Time Fra (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
E. Silvies Rangeland Restoration EA	6,730	X			С	I	R	W		С		Р		X; I		10- 15	0-2

 Table 4-19

 Hay Creek Project Planning Area Treatment Summary Table

March 2015

Treat Descri	ment iption	Р	riorit	y		Thr Addr	eats essed		1	NEPA	1	Treatments					
Name/ Type	Acres/ Miles					s (I)						Tir Fra	ne me	Certa Effectiv	inty of veness ¹	ame	me
All projects listed are conifer control, unless listed otherwise.	All amounts are acres, unless noted otherwise.	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fra (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Slickear Creek. Claw Creek EA	3,840		Х		С		R	W		С		Р		X; I		10- 15	3-5
SES Forest and Woodland Restoration	380			Х	С		R	W		С		Р		X;I		10- 15	3-5
Hay Creek PPA Restoration DNA Hay Creek	10,787	Х			С	I	R	W	Ι			P		X; I		10- 15	3-5
Fuelbreaks																	

 Table 4-19

 Hay Creek Project Planning Area Treatment Summary Table

States that if treatment, once completed, is likely or unlikely to be effective and provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = based on professional opinion, treatment is likely to be effective

²This describes the frequency of maintenance necessary to continue effectiveness (years).

³This identifies the potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors.

4.2.1 Paulina Project Planning Area

The Paulina PPA located approximately 40 miles southeast of Prineville and is next to the town of Paulina. The Paulina PPA extends north and east from Paulina to the Ochoco National Forest. It encompasses 19 percent of the 12 Mile PAC. Of the 431,001 total acres in the 12 Mile PAC, 402,149 acres are potential sagebrush habitat (see **Table 4-20**).

8Most of the landownership in the PPA is private, with scattered BLM-9administered land and small amounts of Forest Service land. The boundary of10the PPA was adjusted outside the emphasis area in order to include existing11leks, GRSG habitat, and planned treatments to the east of the emphasis area.

12The management objective is to reduce juniper canopy cover. Much of the13juniper cover in this PPA has reached phase II, so a combination of treatments is14possible, such as seeding, cutting, and pile burning.

Vegetation Category	Big Sagebrush Shrubland	Black/Low Sagebrush	Grassland	Invasives	Riparian	Salt Desert Scrub	Woodland	Other
Acres	23,004.55	0.00	39,694.33	2,760.41	4,067.78	0.00	2,494.08	21,475.69
Percent of PPA	24.53	0.00	42.33	2.94	4.34	0.00	2.66	22.90
		Containing a	innual grass	populations	and restori	ng native ι	understories	in the stiff
		Containing a sagebrush fl northern po	nnual grass ats is an ir rtions of the	populations mportant c e PPA.	and restori	ng native u of restora	understories tion, especia	in the stiff lly in the
		Containing a sagebrush fl northern po Although thi	nnual grass ats is an ir rtions of the ree specific a	populations nportant c e PPA. areas were	and restori omponent o	ng native u of restora r ESR prio	understories tion, especia rity, all wildfi	in the stiff lly in the res in this
		Containing a sagebrush fl northern po Although thi PPA should	nnual grass ats is an ir rtions of the ree specific a be evaluated	populations nportant c e PPA. areas were d because o	and restori omponent o identified fo f nearby and	ng native u of restora r ESR prio nual grass i	understories tion, especia rity, all wildfi issues and the	in the stiff lly in the res in this e reduced

Table 4-20Paulina Vegetation Categories

Table 4-21 Paulina Summary of Burn Probability

	High and very high burn probability in PPA (acres)83,903.83
0	High and very high burn probability in PPA (percent) 89.46
8	
9	Fuels Management
10	No fuelbreak treatments are identified in the Paulina PPA due to the extent of
11	agricultural lands that can be used as natural fuelbreaks.
12	From a fuels management and restoration perspective, small prescribed fires
13	would be appropriate in the higher resistance and resilience areas. Smaller fires
14	are rarer now; fires tend to be larger and more intense. Prescribed fire could be
15	a viable option for treatment in this PPA, but suitability would be very site
16	specific. No areas were identified for prescribed fire treatments in this
17	assessment, with the understanding that suitability of this type of treatment will
18	be addressed in the Step 3 planning process.
19	Land in Paulina PPA is under BLM administration or is Oregon Department of
20	State lands and private lands. Opportunities exist to implement fuel treatments
21	across all jurisdictional boundaries.
22	Habitat Restoration and Recovery
23	Habitat restoration in the Paulina PPA consists mainly of removing conifers,
24	focusing on recovering sagebrush steppe habitat for GRSG enhancement. Total
25	area available for treatment is approximately 86.721 acres. Treatment types are
26	mastication, chipping, grapple piling, hand thinning, and prescribed burning
27	(swamper, jackpot, or hand pile), combined with follow-up seeding and chemical
28	treatments as necessary. NRCS has been working with private landowners to
29	cut juniper in the east and northeastern portions of the PPA.

1	An integrated vegetation management approach will be used to manage invasive
2	species. The sage-grouse habitat matrix shows this PPA to be moderately to
3	highly resistant and resilient (see Table 4-22); therefore, a combination of both
4	passive and active restoration will be used, based on the presence or absence of
5	invasive species. Where invasive species are present, a more active approach
6	will be used.

Table 4-22Paulina Sage-Grouse Habitat Matrix Categories

	Matrix Category	No Data	IA	IB	IC	2 A	2B	2C	3 A	3B	3C
	Acres	10,031.10	0.00	31,934.71	33,236.40	0.00	5,037.21	2,886.20	0.00	32.48	666.44
	Percent of PPA	10.70	0.00	34.05	35.44	0.00	5.37	3.08	0.00	0.03	0.71
7											
8			Two p	oolygons w	vere identifi	ied for	invasives	treatment	s using	g the ii	nvasives
9			density	/ layer. Inva	sives are m	edusahe	ad, cheatg	rass, and J	apanese	brome	. Rocky
10			soils c	haracterize	the area. (Contain	ing invasiv	es is challe	enging,	given li	vestock
11			and w	ildlife preva	alence in tl	his area	a. Annual	or biannu	al spra	ying ma	ay be a
12			treatm	ent option	in the lowe	er resist	ance and r	resilience a	reas. T	his wou	ld need
13			to be	a coordin	ated proce	ss amo	ng the va	arious resp	oonsible	e agenc	ies and
14			landow	vners. Possi	ible treatme	ent cou	ld be to t	hin the ov	rstory	, but re	esponse
15			would	be bare roo	ck with poss	sible inv	asives (see	Table 4-2	23).		

Table 4-23Paulina Habitat Restoration Potential Treatments

	Priority	Priority I	Priority 2	Priority 3	Total
	Conifer treatment acres	48,556.60	38,164.32	0.00	86,720.92
	Percent of PPA	51.77	40.69	0.00	92.47
	Invasives treatment acres	31,513.93	6,248.50	56,021.99	93,784.42
	Percent of PPA	33.60	6.66	59.73	100.00
16					
17		This PPA is mostly cool	-moist and is relat	ively resilient, but	there is weed
18		prevalence in stiff sage an	nd hig sage areas. G	ans between perenr	nial grasses are
19		often filled with annuals.		app between perein	
20		An active restoration of	otion is to identify	satellite locations	(small isolated
21		patches of approximately	y five acres) and	spot spray them u	using an early
22		detection and rapid respo	, nse priority area me	ethod.	σ,
23		Areas outside these polys	gons were determir	ned to be more resi	lient and were
24		not as high a priority for t	reatment.		
25		Integrated vegetation man	agement will be use	d throughout the Pa	ulina PPA.

I	Post-Fire Rehabilitation
2	There are more post-fire active restoration options in this PPA (see Table
3	4-24). Areas of high priority for post-fire rehabilitation are mainly all high-
4	density weed areas. The remainder of the PPA would be conducive to passive
5	recovery; in any case, seeding would be challenging, due to rocky soils.

Table 4-24Paulina Post-Fire Rehabilitation Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	31,513.93	6,248.50	0.00	37,762.43
	Percent of PPA	33.60	6.66	0.00	40.27
6					
7		The prevale	ence of highly desirable, mo	oderate resiliency habita	at (2B and 2C)
8		elevates the	need for prompt fire rehabi	litation, with an emphasis	s on establishing
9		sagebrush c	over and limiting cheatgras	ss establishment post-fi	re in this area.
10		Cheatgrass	expansion and ecosystem st	ate conversion is a high	concern in this
11		focal area.			
12		First priorit	y treatments would be cent	tered on the valley bott	oms designated
13		2C and ar	ny impacted fuels or res	toration treatments. S	econd priority
14		treatments	would be 2B-designated hab	itat on the lower third o	of the slope and
15		alluvial fans	around the Mountain Range	es. High elevation fires in	n the focal area
16		may becom	e a priority for treatment	as erosion potential to	impact habitat
17		values appea	ars to be a significant risk.		
18		Treatment o	considerations are as follows	:	
19		•	Targeted seeding on north	- and east-facing micro	climates in the
20			areas designated as 2B and	2C would enhance the	e probability of
21			successful establishment.		
22		•	Some form of ground p	reparation, such as d	rill seeding or
23			harrowing, is warranted a	and feasible on valley	bottom areas
24			designated as 2C.		
25		•	Areas appropriate for drill s	seeding and equipment u	ise first need to
26			be inventoried to remove	archaeological constrain	nts for prompt
27			treatment.	-	
28		•	Herbicide treatments to s	suppress cheatgrass gro	wth and favor
29			seeded species should be	considered as a porti-	on of the ESR
30			treatment plan.		
31		•	Erosion control structures s	should be placed in areas	s with high burn
32			severity or high risk for ero	osion, that is areas with	phase 3 juniper
33			encroachment.		

I	Additionally, significant effort and funding needs to be put toward developing
2	local seed sources and storing enough of a supply to meet the needs for
3	restoration and rehabilitation projects.

Proposed Management

See **Table 4-25** for projects that have been identified presently within the NEPA planning process. See **Figures 4-21** through **4-27** for a graphic depiction of the proposed treatments and strategies in the PPA.

Table 4-25Paulina Project Planning Area Treatment Summary Table

Treat Descr	tment ription	Р	riori	t y		Thr Addr	eats essed			NEPA	1	Treatments					
Name/ Type	Acres/ Miles					(I) se						Ti Fra	me Ime	Certai Effectiv	nty of eness ¹	ame	Ime
All projects listed are conifer control,	All amounts are acres, unless noted				(C)	annual grasse	(R)	(w)	€	ed (C)	(Z)	Funding (P) ^I	enting (I) ^I			ance Time Fr	ion Time Fra 5+ years) ³
unless listed otherwise.	otherwise.	lst	2nd	3rd	Conifer (Invasive	Riparian	Wildfire	Initiated	Complet	Needed	Pending	Impleme	Likely	Unlikely	Maintena (Years) ²	Complet (0-2, 3-5,
2015 BLM	2,263		Х		С			W		С						20+	0-2
2015 NRCS	3,556	Х			С			W		С			Ι	I		20+	0-2
2015 NRCS	1,880		Х		С			W		С			I	I		20+	0-2
2016 NRCS	2,576	Х			С			W		С		Р		I		20+	0-2
2016 NRCS	560		Х		С			W		С		Р		I		20+	0-2
2017 BLM	4,110	Х			С			W		С		Р		I		20+	0-2
2017 BLM	1,227		Х		С			W		С		Р		I		20+	0-2
2017 NRCS	24		Х		С			W		С		Р		I		20+	0-2
2023 BLM	99		Х		С			W		С		Р		1		20+	5+
2016 Invasive	41	Х				Ι		W	I			Р		I		5+	0-2
2016 Invasive	17		Х			I		W	I			Р		I		5+	0-2
2016 Invasive	6			Х		I		W	I			Р		I		5+	0-2
2019 Invasive	2566	х				Ι		W	I			Ρ		I		5+	3-5
2023 Invasive	41	Х				I		W	Ι			Ρ		I		5+	5+
2023 Invasive	17		Х			Ι		W	Ι			Р		I		5+	5+

4 5

6

Table 4-25	
Paulina Project Planning Area Treatment Summar	y Table

Treat Descr	tment ription	Р	riori	t y		Thr Addr	eats essec	ł	I	NEPA	4			Trea	tments		
Name/ Type	Acres/ Miles					(I) s:						Ti Fra	me Ime	Certa Effecti	inty of veness ¹	ame	ıme
All projects listed are contfer control, unless listed otherwise.	All amounts are acres, unless noted otherwise.	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ¹	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
2023 Invasive	1606			Х		I		W	I			Р		I		5+	5+

¹States that if treatment, once completed, is likely or unlikely to be effective and provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely 2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely 3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = based on professional opinion, treatment is likely to be effective

²This describes the frequency of maintenance necessary to continue effectiveness (years).

³This identifies the potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors.

2	4.2.2	12 Mile Project Planning Area
3		The 12 Mile PPA is roughly 53 miles east-southeast of Prineville and next to
4		Paulina. It extends in a north-south direction from Paulina south to within eight
5		miles of State Highway 20 near Hampton. The 12 Mile PPA encompasses 48
6		percent of the 12 Mile PAC. Of the 431,001 total acres in the 12 Mile PAC
7		there are 402,149 acres of potential sagebrush habitat (see Table 4-26). The
8		PPA has slightly more private lands than those administered by the BLM, most
9		of which runs north-south on the western flank. Public access is limited due to
0		the amount of private lands, but there is one main county route running through
		the PPA.

	Table	4-26	
12	Mile Vegetati	on Cat	tegories

	Vegetation Category	Big Sagebrush Shrubland	Black/Low Sagebrush	Grassland	Invasives	Riparian	Salt Desert Scrub	Woodland	Other
	Acres	37,778.96	0.00	110,478.36	6,715.42	3,382.68	0.00	2,504.61	51,360.34
	Percent of PPA	17.75	0.00	51.92	3.16	1.59	0.00	1.18	24.14
12									
13			The entire e	emphasis are	ea is define	d as the PP	A and its	boundaries h	nave been
14			expanded to	include ad	ditional GR	SG habitat	that did n	ot meet the	emphasis
15		area criteria. This adjustment was made as a result of input from the NRCS and							
16			ODFW. It v	was based o	on the area	's abundanc	e of active	e leks and ke	ey conifer
17			treatment pi	ojects assoc	ciated with	those leks.			

March 2015

I

1	There is a distinct mesic/xeric break in the southern portion of the PPA, which
2	helped to define the types and locations of its treatments. It is an east-west
3	break: west is cool-dry, generally associated with Wyoming big sage, and east is
4	cool-moist, generally associated with Mountain big sage (see Table 4-27).

Table 4-2712 Mile Sage-Grouse Habitat Matrix Categories

Matrix Category	No Data	IA	IB	IC	2 A	2B	2C	3 A	3B	3C
Acres	129.67	0.00	20,269.04	137,326.04	0.00	2,937.31	50,483.54	0.00	0.00	1,164.93
Percent of PPA	0.06	0.00	9.53	64.54	0.00	1.38	23.73	0.00	0.00	0.55

5

Table 4-28								
12 Mile Summary of Burn Probabilit	y							

	High and very high burn probability in PPA (acres)	210,287.86
6	High and very high burn probability in PPA (percent)	78.83
7	Fuels Management	
, 8	Fuels management in the 12 Mile PPA consists r	mainly of conifer removal
9	focusing on recovering sagebrush steppe habitat for	GRSG enhancement. The
10	area available for treatment is approximately 214,9	00 acres. Treatment types
11	are mastication, chipping, grapple piling, hand thinni	ng, and prescribed burning
12	(jackpot or hand pile using a swamper), combined v	with follow-up seeding and
13	chemical treatments as necessary.	
14	Main roads in the 12 Mile PPA present opportunitie	es for use as fuelbreaks to
15	slow fire progression across critical habitats through	out the emphasis area. The
16	area available for treatment is approximately 198	acres (see Table 4-29).
17	Treatment types in these areas include maintaining	road rights-of-way clear of
18	vegetation, mowing a fuelbreak clear of vegetation (w	vidth dictated by fuel type),
19	removing conifers, and following up chemical and s	seeding applications where
20	appropriate.	

Table 4-29I 2 Mile Fuels Management Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Total
Fuelbreaks miles	16.34	0.00	0.00	16.34
Sagebrush thinning acres	141.42	0.00	0.00	141.42
Percent of PPA	0.07	0.00	0.00	0.07
i	and in this PPA is under ands or private lands. urisdictional boundarie	er BLM administratio Opportunities exist s. One fuelbreak has and resilient habitat	on or is Oregon Depart to implement fuelbre been identified to sep ts from the rest of t	ment of State aks across all arate most of he PPA The

4-32

- L fuelbreak strategy is to treat annual grasses and reduce junipers to reduce fire 2 intensity and the probability of spotting potential along the main county road.
- 3 This is a high resistance and resilience landscape that may afford the opportunity 4 to use prescribed fire as a fuels management and restoration treatment. Scattered areas in the PPA are under BLM administration and may be large enough to support smaller burns of 300- to 600-acres.
- 7 One small area with dense sagebrush canopy is proposed for experimental 8 sagebrush thinning to reduce the horizontal continuity of the canopy, thus 9 reducing the potential for fire spread. Additionally, opening up the dense canopy 10 will provide opportunities for native grasses and forbs to become reestablished.
- П Shrub densities are at or above the 30 percent canopy cover level in portions of 12 both the Brothers and 12 Mile PPAs. This density of shrubs limits important 13 GRSG forage production. Because of this there is an interest to conduct test 14 mowing to modify and improve decadent sagebrush and encourage understory 15 growth.
- 16 Due to the thick shrub canopy cover, small chemical treatments or mowing 17 projects would be researched. These types of treatments would reduce canopy 18 cover and allow native grasses and forbs to become reestablished either 19 naturally or through reseeding and planting. Test locations selected are classified 20 as moderate resistance and resilience (2C) in areas with landscape shrub 21 percentages in the high category (greater than 65 percent). Because there is a 22 risk that this disturbance may lead to additional annual grass expansion these 23 treatments may be accompanied by post-treatment seeding or herbicide 24 application.
 - Habitat Restoration and Recovery
- Most of the PPA has been identified for conifer control. NRCS has been 26 27 working with private landowners in the areas to control juniper, and the BLM 28 has identified treatment blocks on almost all acres it manages. NEPA analysis has 29 been completed for a large portion of the BLM's proposed treatments. The two 30 primary objectives are to treat juniper stands that will immediately be good habitat after treatment and to treat large blocks to reduce juniper fragmentation 32 and predator perch sites.
- 33 Conifer treatments in the southern portion of the project planning area forms a 34 doughnut shape to capture areas with high tree canopy density and existing 35 treatments; it excludes areas with lower tree canopy density, where treatments 36 have already been completed.
- 37 Treatment area boundaries were defined at the landscape level regardless of 38 ownership. Specific treatments by landownership will be coordinated later. A 39 second treatment area in the northern portion of the project planning area 40 captures areas with high tree density (as depicted using tree canopy layer) and

March 2015

5

6

25

Iincorporates existing and planned treatments. A third treatment area is small2and next to the wilderness, with small juniper encroachment areas. There is3likely more phase I juniper present than what is shown on the tree canopy4layer.

There may be an opportunity to coordinate with the Forest Service regarding the Dove Project south of Suplee with juniper treatments in the northeast portion of the 12 Mile PPA.

8 Invasives Treatments

5

6

7

9

10

11

12

A full range of integrated vegetation management techniques will be used to reduce the threat of invasives in the PPA. Two large annual grass treatment areas were identified with the objective of containing the invasives populations by treating along roads and denser stands (see **Table 4-30**).

Table 4-3012 Mile Habitat Restoration Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Total				
Conifer treatment acres	9,057.9	54,312.73	41,531.90	214,902.54				
Percent of PPA	55.95	25.53	19.52	101.00				
Invasives treatment acres	56,590.66	36,261.79	119,926.20	212,778.65				
Percent of PPA	26.60	17.04	56.36	100.00				
	Å · · · · ·							
	Areas in warm-dry soil z	ones will be targe	eted for habitat res	storation, even				
	though there are not sign	nificant annual gras	s issues. These are	as will be less				
	resistant and resilient and	therefore slower	to recover post-fire	e. Areas in the				
	cool-moist zones will be	more resilient and	quicker to recove	r. The priority				
	treatment area is in the western portion of the PPA, with an additional							
	treatment area in the sout	hern portion.						
	A possible treatment cons	deration would b	e to reduce the Wv	oming big sage				
	canopy cover. There are areas where the sagebrush canopy cover is too dense.							
	this precludes a healthy herbaceous component on the landscape, which							
	reduces the overall resistance and resilience. A general description of landscape							
	conditions could be develo	pped to identify wh	ere canopies could b	e reduced.				
	Existing Treatments							
	The 12 Mile PPA is in the	project boundarie	s of the High Deser	t Shrub Steppe				
	Restoration Environmenta	al Assessment (Ap	oril 2011). In fall 2	2014, the BLM				
	Prineville District has bega	in removing 16,053	acres of conifers, a	and the project				
	is planned to be comple	eted in 2016. Thi	s will improve GR	SG habitat by				
	removing conifers in encro	pached and expand	ing areas. Major em	phasis is placed				
	on returning these sites to	sagebrush for GR	SG use. Maintaining	these projects				
	will be essential to keep m	neeting GRSG habi	tat objectives. The N	NRCS has been				
	working with local landow	wners and has bee	en aggressively treat	ting juniper on				
	private lands for the past fe	ew vears						
	Priority Conifer treatment acres Percent of PPA Invasives treatment acres Percent of PPA	PriorityPriority IConifer treatment acres119,057.91Percent of PPA55.95Invasives treatment acres56,590.66Percent of PPA26.60Areas in warm-dry soil zthough there are not signresistant and resilient andcool-moist zones will betreatment area is in thetreatment area is in thetreatment area is in thetreatment area in the soutA possible treatment conscanopy cover. There are athis precludes a healthyreduces the overall resistaconditions could be develowExisting TreatmentsThe 12 Mile PPA is in theRestoration EnvironmentaPrineville District has begais planned to be compleremoving conifers in encreon returning these sites towill be essential to keep nworking with local landowprivate lands for the past for	PriorityPriority 1Priority 2Conifer treatment acres119,057.9154,312.73Percent of PPA55.9525.53Invasives treatment acres56,590.6636,261.79Percent of PPA26.6017.04Areas in warm-dry soil zones will be targe though there are not significant annual grass resistant and resilient and therefore slower cool-moist zones will be more resilient and treatment area is in the western portion treatment area is in the western portion treatment area in the southern portion.A possible treatment consideration would be canopy cover. There are areas where the sag this precludes a healthy herbaceous com reduces the overall resistance and resilience. conditions could be developed to identify whe Existing Treatments The 12 Mile PPA is in the project boundarie Restoration Environmental Assessment (Ap Prineville District has began removing 16,053 is planned to be completed in 2016. Thi removing conifers in encroached and expand 	PriorityPriority 1Priority 2Priority 3Conifer treatment acres119,057.9154,312.7341,531.90Percent of PPA55.9525.5319.52Invasives treatment acres56,590.6636,261.79119,926.20Percent of PPA26.6017.0456.36Areas in warm-dry soil zones will be targeted for habitat reprint though there are not significant annual grass issues. These are resistant and resilient and therefore slower to recover post-fir cool-moist zones will be more resilient and quicker to recover treatment area is in the western portion of the PPA, with treatment area in the southern portion.A possible treatment consideration would be to reduce the Wy canopy cover. There are areas where the sagebrush canopy cover this precludes a healthy herbaceous component on the lar reduces the overall resistance and resilience. A general descriptic conditions could be developed to identify where canopies could be the set of the High Deser Restoration Environmental Assessment (April 2011). In fall 2Prineville District has began removing 16,053 acres of conifers, a is planned to be completed in 2016. This will improve GR removing conifers in encroached and expanding areas. Major em on returning these sites to sagebrush for GRSG use. Maintaining will be essential to keep meeting GRSG habitat objectives. The f working with local landowners and has been aggressively trea private lands for the past for wears				

L Post-Fire Rehabilitation 2 ESR treatments would be considered throughout the PPA, but the southwest 3 portion was identified as a priority area for ESR. This is because the sites are 4 less resilient and likely would require more active management to fully recover, 5 such as seeding. 6 Possible proactive measures can be used so that if or when the area burns it will 7 recover without regime shift; these are spraying the roads (roads are mainly 8 private) and adapting the grazing system to enhance the habitat (CED shows 9 that efforts have been made to adapt grazing in response to GRSG). Pre-fire 10 treatment in the southwest would be a good place to start; this area is mostly 11 cheatgrass, whereas the invasives treatment area in the north includes other 12 species, such as medusahead. ESI is available for subsequent site-specific 13 planning. This will need to be broken out as a treatment in FIAT Step 3. 14 The prevalence of highly desirable, medium resiliency habitat (2B and 2C) 15 elevates the need for prompt fire rehabilitation, with an emphasis on establishing 16 sagebrush cover and limiting cheatgrass establishment post-fire in this emphasis 17 area. Cheatgrass expansion and ecosystem state conversion is a high concern in 18 this focal area. 19 First order treatment priority would be centered on the valley bottoms 20 designated as 2C and any impacted fuels or restoration treatments. Second 21 order treatment priorities would be designating as 2B habitat on the lower third 22 of the slope and alluvial fans around the mountain ranges. 23 High elevation fires in the focal area may become a priority for treatment as 24 erosion potential to impact habitat values appears to be a significant risk (see 25 Table 4-31). Passive restoration treatments will be used where there is less 26 risk of invasives becoming established and native species have a higher likelihood 27 of reestablishing themselves. Integrated vegetation management techniques will 28 be used during all fuels restoration and rehabilitation.

			-	-	
	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	56,590.66	36,261.79	119,926.20	212,778.65
	Percent of PPA	26.60	17.04	56.36	100.00
29					
30		Treatment consideration	as are as follows:		
31		 Targeted se 	eding on north- and	east-facing microcl	imates in the
32		areas desigr	nated 3B and 3C w	ould enhance the	probability of
33		successful es	tablishment.		

 Table 4-3 I

 I 2 Mile Post-Fire Rehabilitation Management Strategies

l	 Use of some form of ground preparation, such as drill seeding and
2	harrowing, is warranted and feasible on valley bottoms designated as
3	2C.
4	 Areas appropriate for drill seeding and equipment use first need to
5	be inventoried to remove archaeological constraints for prompt
6	treatment.
7	 Herbicide treatments to suppress cheatgrass growth and favor
8	seeded species should be considered as a portion of the ESR
9	treatment plan.
10	 Erosion control structures should be placed in areas with high burn
11	severity or high risk for erosion (that is, areas with phase 3 juniper
12	encroachment).
13 14 15	Additionally, significant effort and funding needs to be put toward the development of local seed sources and storing enough of a supply to meet restoration and rehabilitation needs.
16	Proposed Management
17	See Table 4-32 for projects that have been identified presently within the
18	NEPA planning process. See Figures 4-29 through 4-34 for a graphic depiction
19	of the proposed treatments and strategies in the PPA.

Table 4-32

12 Mile Project Planning Area Treatment Summary Table

Treatment Description			riori	ty	Threats Addressed			NEPA			Treatments						
Name/ Type	Acres/ Miles					(I) \$						Tir Fra	me Ime	Certa Effecti	inty of veness ¹	ume	ne
All projects listed are conifer control, unless listed otherwise.	All amounts are acres, unless noted otherwise.	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fra (Years) ²	Completion Time Fraı (0-2, 3-5, 5+ years) ³
2015 BLM	13,323	Х			С			W		С			Ι	I		20+	0-2
2015 BLM	3,087		Х		С			W		С			I	I		20+	0-2
2015 BLM	42			Х	С			W		С			I	I		20+	0-2
2015 NRCS	6,290	Х			С			W		С			Ι	I		20+	0-2
2015 NRCS	4,267		Х		С			W		С			I			20+	0-2
2015 NRCS	4,652			Х	С			W		С			I			20+	0-2
2016 BLM	790	Х			С			W		С		Р				20+	0-2
2016 BLM	1,721		Х		С			W		С		Р		I		20+	0-2
2016 BLM	54			Х	С			W		С		Р		I		20+	0-2
2016 NRCS	771	Х			С			W		С		Р		I		20+	0-2
2016 NRCS	1,111		Х		Ċ			Ŵ		Ċ		P		I		20+	0-2
2016 NRCS	1,564			Х	С			W		С		Ρ		Ι		20+	0-2
2017 BLM	13,062	Х			С			W		С		Ρ		Ι		20+	0-2

Treatment Description		Priority Threats Addresse			eats essed		I	NEPA	1	Treatments							
Name/ Type	Acres/ Miles					s (I)						Tiı Fra	me Ime	Certai Effectiv	nty of reness ¹	tme	ne
All projects listed are conifer control, unless listed otherwise.	All amounts are acres, unless noted otherwise.	lst	2nd	3rd	Conifer (C)	Invasive annual grasses	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fra (Years) ²	Completion Time Frar (0-2, 3-5, 5+ years) ³
2017 BLM	4,978		Х		С			W		С		Р		I		20+	0-2
2017 BLM	67			Х	С			W		С		Р		I		20+	0-2
2017 NRCS	4,442		Х		С			W		С		Р		I		20+	0-2
2018 BLM	2,182	Х			С			W		С		Р		I		20+	3-5
2018 BLM	153		Х		С			W		С		Р		I		20+	3-5
2018 BLM	472			Х	С			W		С		Р		I		20+	3-5
2020 BLM	18,046	Х			С			W			Ν	Р		I		20+	3-5
2020 BLM	6,539		Х		С			W			Ν	Р		I		20+	3-5
2020 BLM	318			Х	С			W			Ν	Р				20+	3-5
2016 Invasive	175	Х				I		W	I			Р		I		5+	0-2
2016	58		Х					W	1			Р		I		5+	0-2
Invasive																	
2016	87			Х				W	Ι			Р		I		5+	0-2
Invasive																	
2019	3822		Х			Ι		W	Ι			Р		I		5+	3-5
Invasive																	
2023	175	Х				I		W				P		I		5+	5+
Invasive														-			
2023	2618		Х			I		W	I			P		I		5+	5+
Invasive														-		_	
2023	3959			Х		1		W				P				5+	5+
Invasive												_					
2016 Fuelbreak*	16 miles	X						W			Ν	Р				5+	0-2
2017 Sage	141	Х						W			Ν	Р		2		30+	0-2
Brush																	
thinning		1															

Table 4-32I 2 Mile Project Planning Area Treatment Summary Table

¹States that if treatment, once completed, is likely or unlikely to be effective and provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = based on professional opinion, treatment is likely to be effective

²This describes the frequency of maintenance necessary to continue effectiveness (years).

³This identifies the potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors.

This page intentionally left blank.

I

SECTION 5 LOOKING AHEAD: IMPLEMENTATION, NEPA, AND MONITORING

4 5.1 IMPLEMENTATION STRATEGY

5

6

7

8

9

10

11

12

13

14

Management strategies identified in this assessment are consistent with broader land use plan direction. FIAT Assessments are referenced in the appendices of each sub-regional environmental impact statement. As such, the potential implementation of all FIAT management strategies are fully subject to all direction and constraints in the overarching land use plans and treatment level NEPA analysis. Topics such as noxious weed control and native seed use for habitat restoration projects are included in this section. These assessments are to assist land managers in selecting appropriate treatments (Step 2) and subsequently develop site-specific treatments and conduct the appropriate NEPA analyses (Step 3).

- 15 The planning, implementation, and monitoring cycle for FIAT strategies are a 16 multi-year process. In or near the focal habitats in the FIAT assessment areas, 17 the identified management strategies occur across the spectrum of the planning 18 process. Planning is completed for some FIAT management strategies; they are 19 NEPA compliant and are ready for implementation. Others are beyond the 20 NEPA scoping phase, but planning is not yet complete. Finally, many potential 21 treatments identified in this assessment were conceptualized in FIAT 22 workshops; in these cases planning has not begun.
- 23Prioritizing the sequence of project/treatment implementation is an important24process. NEPA compliance, budgeting, unit capacity, and other factors may be25considered, such as immediacy of the threat to GRSG. Furthermore, this26prioritization is a necessary step in order to produce an out-year program of27work.
- 28This program of work is scheduled to follow the completion of FIAT Step 229assessments. The program of work will portray the years for implementation,

March 2015

- the scale of treatment, and the type of treatment for each program/management strategy area.
- The graphic below illustrates the sequence of FIAT steps, project implementation, and monitoring.
- 5 FIAT assessments were not designed to address project area practices; 6 examples are specific changes in management to promote habitat recovery, the 7 types of seed mixtures to use, or whether to address invasive species other 8 than the invasive annual grasses. These activities are fully subject to all direction 9 and constraints in the overarching land use plans and treatment level NEPA; 10 however, the following suggestions are provided to assist in the transition from 11 FIAT Step 2 to the project planning and NEPA stage (See Figure 5-I and 12 Table 5-1).

Figure 5-1: FIAT Process

13

Т

2

3

4

Table 5-1Central Oregon Assessment Area Treatment Summary

		Асн	res		Miles					
Treatment Type	l st	2nd	3rd	Total	lst	2nd	3rd	Total		
	Priority	Priority	Priority	TOLAT	Priority	Priority	Priority			
Habitat restoration	523,016	222,965	332,854	1,078,835	0	0	0	0		
Fuels treatments	571	0	0	571	51	32	14	97		
Fire operations	333,951	559,692	0	893,643	0	0	0	0		
Post-fire treatments (ESR)	301,957	70,634	131,169	503,760	0	0	0	0		

14

15 16

17

18

19

20

5.1.1 Fuels Management

A proactive strategy is fuels management, which is designed to reduce wildfire behavior by changing the size, arrangement, and loading (amount) of live and dead vegetation. Its purpose is to aid fire suppression and to reduce fire expansion. The focus of the FIAT Step 2 process was very specific to the identified habitats and the associated buffers of these areas (See **Table 5-2**).
	l able 5-2
Fuels Management Potential	Treatment Areas in Project Planning Areas in
	Central Oregon

- -

. .

PPA	Total Acres of Fuels Management Treatments	Total Miles of Potential Fuelbreaks
12 Mile	141	16
Brothers	431	67
Paulina	0	0
Hay Creek	0	14
Total	571	97

In the vegetation types being addressed, fire growth can cross large tracts of ground in very short time frames. Due to the focus on the habitats and buffers, many types of treatments, existing or planned, were not addressed in this process.

Areas outside of the PPAs will need to be addressed in the future. This is because they are often the only option available to minimize fires entering the planning areas and the identified leks. Future efforts should also include fuels and restoration types of treatments outside of the areas identified. That is because these areas will be critical for increasing habitat and for connecting the identified areas.

5.1.2 Habitat Restoration and Recovery

All natural systems vary in space and time; in many cases, restoring a range of target vegetative conditions may be desirable. Where historic processes are not likely to become reestablished, full restoration may not be possible. However, site resilience can be leveraged to increase ecological function over time, assuming proper post-disturbance management does not continue to bring a site back to a ruderal successional state.

19 Habitat restoration and recovery are two approaches to rebuilding or 20 maintaining GRSG habitats. Active habitat restoration treatments are on-the-21 ground activities (e.g., seeding and controlling invasive annual grasses and conifer 22 expansion), whereas passive habitat recovery involves changing management 23 practices. Opportunities for passive restoration include changing livestock 24 grazing management to improve GRSG habitat, applying appropriate wild horse 25 and burro management, spot-treating weed infestations in treatment areas, and 26 limiting or mitigating soil-disturbing activities, such as off-road vehicle use. These 27 types of management changes were not specifically identified nor prioritized in 28 the FIAT Step 2 stage.

29Habitat restoration is expensive and requires time for plant establishment and30recovery. Livestock grazing exclusion is a common practice to promote31vegetation recovery or establishment after a surface-disturbing treatment or32disturbance. Appropriate exclusion periods after habitat restoration should be33considered and incorporated into the project planning/NEPA process. Similar

March 2015

1 2

3

4

5

6

7

8

9

10

Ш

12

13

14

15

16

17

18

- Iconsideration also should be given to such resources and uses as wild horses2and burros and recreation.
- 3It is also important to institute appropriate long-term management strategies4that will maintain habitat restoration projects into the future. For example,5livestock grazing management should be evaluated and changes implemented to6ensure that species diversity in a successful restoration seeding is maintained7over time.
- 8 Habitat restoration (also includes post-fire rehabilitation treatments) may need 9 to be repeated if projects initially fail to meet restoration objectives. Therefore, 10 retreatment options should be considered in all proposed actions and 11 implemented if needed. This is especially true in warm-dry soil 12 temperature/moisture regimes where climatic conditions are often problematic 13 for new plant establishment or recovery.
- 14By further defining the restoration continuum, treatments can in turn be further15defined and prioritized at finer local scales (see Table 5-3 for treatment area16acres in each PPA for conifer encroachment, invasive annual grasses, and habitat17restoration).

	РРА	Total Acres of Potential Conifer Encroachment Potential Treatments	Percent of PPA	Total Acres of Invasive Annual Grasses Potential Treatments	Percent of PPA	Total Acres of Other Potential Habitat Restoration and Recovery Potential Treatments	Percent of PPA
	12 Mile	214,902	100	214,902	100	0	0
	Brothers	217,423	100	217,423	100	0	0
	Paulina	86,721	92.5	93,784	100	0	0
	Hay Creek	35,778	100	0	0	0	0
	Total	554,824	99.1	526,109	94.0	0	0
9 0 1		Habitat restoration is a proactive strategy that includes several types of treatments. The following are considerations for habitat restoration and recovery project planning, project implementation, and NEPA analysis:					
2 .3		 Reduce phase I and phase 2 conifer vegetation generally through mechanical treatment 					
4 .5		•	Manage ir herbicide	nvasive annual g	rasses, gen	erally through th	e use of
6		•	Seed and p	olant sagebrush			

 Table 5-3

 Habitat Restoration and Recovery Potential Treatment Areas in Central Oregon

Other types of treatments can be used, with the primary goal of restoring or enhancing native plant species and vegetation structure in the native sagebrush steppe ecosystem; this may include removing undesirable plant species.

Invasive Species other than Invasive Annual Grasses

FIAT assessments address two categories of invasive species: invasive annual grasses and conifer species expanding into sagebrush habitats. This does not negate the importance of controlling other noxious plants in sagebrush habitat, but the FIAT assessment was not designed to address other invasive plants, including noxious plants. Therefore, locating infestations, decreasing propagule² pressure (especially along roadside areas), treating satellite infestations, and preventing future infestations in focal habitats have not been addressed nor prioritized in these assessments.

- 13 Noxious weed risk is especially high in areas undergoing FIAT treatments that 14 may disturb the soil or remove competitive vegetation. Accordingly, noxious 15 weed management is an important consideration for all land treatments 16 originating from the FIAT assessment. Weed management in these treatment 17 areas can be funded to include noxious weed inventories during the planning 18 process, subsequent weed treatments (preferably before project 19 implementation), and subsequent monitoring and follow-up weed treatments 20 following project implementation.
- 21 Use of Native Species for Habitat Restoration and Post-Fire Rehabilitation

The use of adapted, native plant seed in restoration and post-fire rehabilitation projects is addressed in land use plans. To the extent practical and in concert with the appropriate land use plans, the use of locally adapted seeds and native plant materials appropriate to the location is recommended, along with conditions and management objectives for managing and restoring vegetation, including strategic sourcing for acquiring, storing, and using genetically appropriate seeds and other plant materials.

- 29 Under certain circumstances nonnative species may be needed to achieve site 30 stabilization, fire breaks, and weed control and as transitional species for sequential restoration and to meet restoration objectives (2015 Draft of the 32 National Seed Strategy and Implementation Plan: 2015-2020).
 - 5.1.3 **Fire Operations**
 - Fire operations include preparedness, prevention, and suppression activities. As opposed to proactive, site-specific planned treatments, fire operations and postfire rehabilitation treatments are reactive responses to random wildfires. See Table 5-4 for areas of first and second priority suppression areas in each PPA.

L

2

3

4

5

6

7

8

9

10

11

12

22

23

24

25

26

27

28

31

33

34

35

36

37

²Part of a plant that can become detached to form a new plant, e.g. a bud or spore

РРА	Total Acres of 1st Priority Fire Suppression Areas	Percent of 1st Priority in PPA	Total Acres of 2nd Priority Fire Suppression Areas	Percent of 2nd Priority in PPA
12 Mile	135,897	63.9	76,879	36.1
Brothers	144,068	66.3	73,285	33.7
Paulina	36,780	39.2	50,004	57.6
Hay Creek	35,778	100	18,572	52.0
Total	352,523	63.8	68,740	12.3

Table 5-4Fire Operations Potential Treatment Areas In Project Planning Areas in Central Oregon

| 2 3

4

5

5.1.4 Post-Fire Rehabilitation

Post-fire rehabilitation (**Table 5-5**) includes the BLM's ESR Program and the Forest Service's Burned Area Emergency Response Program. Program policies limit available funding from one to three years.

Table 5-5 Post-Fire Rehabilitation Potential Treatment Areas in Project Planning Areas in Central Oregon

РРА	Total Acres of Ist Priority Post-Fire Rehabilitation Areas	Percent of Ist Priority in each PPA	Total Acres of 2nd Priority Post-Fire Rehabilitation Areas	Percent of 2nd Priority in each PPA	Total acres of Ist and 2nd Priority Post- Fire Rehabilitation Areas	Total Percent of Ist and 2nd Priority Post- Fire Rehabilitation Areas
12 Mile	56,591	26.6	36,262	17	92,853	43.6
Brothers	l 78,076	81.9	28,124	12.9	206,200	94.8
Paulina	31,514	33.6	6,249	6.7	37,763	40.3
Hay	35,778	100	0	0	35,778	100
Creek						
Total	301,959	53.9	70,635	12.6	372,594	66.6

6 7

8

9

10

Ш

12

13

5.2

MONITORING AND ADAPTIVE MANAGEMENT

Once implemented, projects and treatments identified in this assessment will follow the same monitoring protocols as non-FIAT management actions, in accordance with overarching guidance in land use plans. Specifically, monitoring that evaluates the implementation and effectiveness of FIAT management strategies will follow The Greater Sage-Grouse Monitoring Framework (BLM/USFS 2014).

14 In this framework, monitoring and evaluating the individual FIAT actions, as with 15 all projects designed to enhance or restore GRSG habitats, will use the 16 approved fine- and site-scale monitoring methods of the BLM Core Terrestrial 17 Indicators and Methods (from the AIM-Monitoring: A component of the 18 Assessment, Inventory, and Monitoring [AIM] Strategy), Interpreting Indicators 19 of Rangeland Health (BLM Technical Reference 1734-6) and the Sage-Grouse 20 Habitat Assessment Framework (HAF-BLM Technical Reference 6710-1, in 21 press).

5-6

During the annual broad- and mid-scale monitoring of GRSG habitats, the FIAT actions will be assessed as they relate to GRSG habitat measures of sagebrush availability, human disturbance levels, and sagebrush conditions. Monitoring results from the implemented FIAT actions can provide information to adapt future actions if necessary to enhance and restore GRSG habitats.

Wildfires will be evaluated at the end of the fire season to determine if they have occurred in FIAT focal habitats and if so, if they have affected the prioritization or potential implementation of previously identified management strategies. For example, fuelbreak locations may need to be adjusted if a wildfire were to occur in an area previously identified as high priority for sagebrush maintenance. Surrounding areas with intact sagebrush stands may now be a higher priority for fuelbreaks than the burned area.

13

Т

2

3

4

5

6

7

8

9

10

11

12

This page intentionally left blank.

I

SECTION 6

2 LIST OF PREPARERS

BUREAU OF LAND MANAGEMENT			
Name Title/Role			
Guy Chamness Prineville District Fuels Staff			
Andrew Daniels Burns District Wildlife Biologist			
Craig Goodell	Central Oregon FIAT Project Lead, BLM Oregon		
	State Office		
Barbara Haney Oregon State Office GIS Specialist			
Doug Kile	Burns District GIS Specialist		
Monte Kuk	Prineville District Wildlife Biologist		
Jarod Lemo Burns District Natural Resource Specialist			
Casey O'Conner	Burns District Fire Planner		
Dan Ridenour	Prineville District Fire Staff		
Michael Tripp	Prineville District GIS Specialist		

3

CONTRACTOR

ENVIRONMENTAL MANAGEMENT AND PLANNING SOLUTIONS, INC. WWW.EMPSI.COM

Name	Role
Jordan Adams	Meeting Support
David Batts	Principal
Amy Cordle	Technical Editor/QA
Sean Cottle	Environmental Specialist
Peter Gower	FIAT Deputy Project Manager
Mario Murillo	Formatting
Holly Prohaska	FIAT Project Manager
Cindy Schad	Word Processor
Morgan Trieger	Meeting Support
Randy Varney	Technical Editor

March 2015

This page intentionally left blank

I

CHAPTER 7

2 **REFERENCES**

- BLM. 2011. High Desert Shrub Steppe Restoration Environmental Assessment. BLM Prineville District.
 Prineville, Oregon. April 2011.
- 5 Chambers, J. C., R. F. Miller, J. B. Grace, D. A. Pyke, B. Bradley, S. Hardegree, and C. D'Antonio. 2014.
 6 "Resilience to stress and disturbance, and resistance to *Bromus tectorum* L. invasion in the cold
 7 desert shrublands of western North America." *Ecosystems* 17:360-375.
- 8 Chambers, Jeanne C., David A. Pyke, Jeremy D. Maestas, Mike Pellant, Chad S. Boyd, Steven B.
 9 Campbell, and Shawn Espinosa et al. 2014. "Using resistance and resilience concepts to reduce
 10 impacts of invasive annual grasses and altered fire regimes on the sagebrush ecosystem and
 11 greater sage-grouse: A strategic multi-scale approach." Gen. Tech. Rep. RMRS-GTR-326. Fort
 12 Collins, Colorado. US Department of Agriculture, Forest Service, Rocky Mountain Research
 13 Station.
- Connelly, J. W., S. T. Knick, M. A. Schroeder, and S. J. Stiver. 2004. Conservation Assessment of Greater
 Sage-grouse and Sagebrush Habitats. Western Association of Fish and Wildlife Agencies.
 Unpublished report. Cheyenne, Wyoming.
- Doherty, K. E., J. D. Tack, J. S. Evans, and D. E. Naugle. 2010. Mapping Breeding Densities of Greater
 Sage-Grouse: A Tool for Range-Wide Conservation Planning. BLM completion report:
 Agreement #L10PG00911.
- Fire and Invasive Assessment Team. June 2014. Greater Sage-Grouse Wildfire, Invasive Annual Grasses
 and Conifer Expansion Assessment (Fire and Invasive Assessment Tool [FIAT]).
- FPA (Fire Program Analysis) System and US Forest Service Missoula Fire Sciences Laboratory. 2014.
 Burn Probabilities for the Conterminous US (270-m GRID) from Calibrated FSim Runs for the
 2014 FPA Submissions [bp_20140307]. Fire Program Analysis System, National Interagency Fire
 Center, Boise, Idaho.

- Knick, S. T., and J. W. Connelly (editors). 2011. "Greater sage-grouse: Ecology and conservation of a landscape species and its habitats." *Studies in Avian Biology* 38:646. University of California Press.
- Knick, S. T., S. E. Hanser, and K. L. Preston. 2013. "Modeling ecological minimum requirements for
 distribution of greater GRSG leks: Implications for population connectivity across their western
 range, USA." *Ecology and Evolution* 3(6):1539-1551.
- Manier, D. J., D. J. A. Wood, Z. H. Bowen, R. M. Donovan, M. J. Holloran, L. M. Juliusson, and K. S.
 Mayne et al. 2013. Summary of Science, Activities, Programs, and Policies That Influence the
 Range-Wide Conservation of Greater Sage-Grouse (*Centrocercus urophasianus*). US Geological
 Survey Open-File Report 2013-1098. Internet website: http://pubs.usgs.gov/of/2013/1098/.
- Martin, R.E. 1982. Fire History and its role in succession. Forest succession and stand development
 research in the Northwest; symposium proceedings. Corvallis, OR: Oregon State University: 92 99.
- US Department of Interior Bureau of Land Management and US Department of Agriculture Forest
 Service. 2014. The Greater Sage-Grouse Monitoring Framework. Developed by the Interagency
 Greater Sage-Grouse Disturbance and Monitoring Subteam.
- USFWS (US Fish and Wildlife Service). 2013. Greater Sage-Grouse (Centrocercus urophasianus)
 Conservation Objectives: Final Report. US Fish and Wildlife Service, Denver, Colorado.
 February 2013.

Appendix A Maps

When viewed electronically, hyperlinks embedded throughout this document allow readers to navigate directly to the maps below.

Project Planning Areas - Brothers PPA

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Sage-Grouse Habitat Matrix Categories - Brothers PPA

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Fuels Management Potential Treatments - Brothers PPA

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Habitat Restoration Potential Treatments: Conifer - Brothers PPA Central Oregon Assessment Area Bureau of Land Management Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

U.S. Department of the Interior

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual \mathbf{B} use or aggregate use with other data.

N Priority 1

FIAT Project Planning Area Cities

Highways

Bureau of Land Mana U.S. Forest Service

State Private/Unknown

March 2015 Local Government Date Saved: 3/14/2015 Data Sources: BLM 1:275,000

Hampton

Habitat Restoration Potential Treatments: Invasives - Brothers PPA **Central Oregon Assessment Area** Greater Sage-Grouse Wildfire, Invasive Annual Bureau of Land Management Grasses, and Conifer Expansion Assessments U.S. Department of the Interior 27 Millican Brothers 20 Hampton **Brothers PPA** Habitat Restoration Potential Treatment Invasives No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, March 2015 Administered Lands State \mathbf{B} Bureau of Land Mana Local Government Date Saved: 3/16/2015 Priority 1 FIAT Project Planning Area or completeness of these data for individual U.S. Forest Service Private/Unknown Data Sources: BLM Priority 2 Cities use or aggregate use with other data. Oregon Highways 1:275,000 Priority 3

Fire Operations Management Strategies - Brothers PPA Greater Sage-Grouse Wildfire, Invasive Annual

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Post-Fire Rehabilitation Management Strategies - Brothers PPA

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Project Planning Areas - Hay Creek PPA

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Central Oregon Assessment Area Bureau of Land Management U.S. Department of the Interior

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

Cities
 Highways

dministered Lands
Bureau of Land Management
U.S. Forest Service

nent State

March 2015 Date Saved: 3/16/2015 Data Sources: BLM 1:200,000

Sage-Grouse Habitat Matrix Categories - Hay Creek PPA

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Fuels Management Potential Treatments - Hay Creek PPA

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

or completeness of these data for individual use or aggregate use with other data.

Priority 1 Priority 2

Priority 3

Cities
 Highways

U.S. Forest Service

Local Government Date Saved: 3/16/2015 Private/Unknown Data Sources: BLM 1:200,000

Fire Operations Management Strategies - Hay Creek PPA Central Oregon Assessment Area Bureau of Land Management Bureau of Land Management Grasses, and Conifer Expansion Assessments

U.S. Department of the Interior

Post-Fire Rehabilitation Management Strategies - Hay Creek PPA

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Project Planning Areas - Paulina PPA

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Sage-Grouse Habitat Matrix Categories - Paulina PPA

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Fuels Management Potential Treatments - Paulina PPA

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Habitat Restoration Potential Treatments: Conifer - Paulina PPA

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Habitat Restoration Potential Treatments: Invasives - Paulina PPA

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Fire Operations Management Strategies - Paulina PPA

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Post-Fire Rehabilitation Management Strategies- Paulina PPA

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Appendix B GIS Data

Data Sources for Maps

Dataset	Description	Link
Geomac fire perimeters	Walters, S.P.; Schneider, N.J.; Guthrie, J.D. 2011. Geospatial Multi-Agency Coordination (GeoMAC) wildland fire perimeters, 2008. Data Series 612. Washington, DC: U.S.	http://pubs.er.usgs.gov/public ation/ds612
WFDSS fire perimeters	Butler, B. B.; Bailey, A. 2013. Disturbance history (Historical wildland fires). Updated 8/9/2013. Wildland Fire Decision Support System. Online: <u>https://wfdss.usgs.gov/wfdss/WFDSS_Home</u> . shtml [Accessed 5 March 2014].	https://wfdss.usgs.gov/wf dss/WFDSS_ Home.shtml or https://wfdss.usgs.gov/wf WFDSSData_Downloads.sht
Piñon and juniper land cover	U.S. Geological Survery (USGS) National Gap Analysis Program. 2004. Provisional digital land cover map for the southwestern United States. Version 1.0. Logan, UT: Utah State University, College of Natural Resources, RS/ GIS Laboratory.	<u>http://earth.gis.usu.edu/swg</u> ap/landcover. html
Piñon and juniper land cover	U.S. Geological Survey (USGS). 2013: LANDFIRE 1.2.0 Existing Vegetation Type layer. Updated 3/13/2013. Washington, DC: U.S. Department of the Interior, Geological Survey. Online: <u>http://landfire.cr.usgs.gov/viewer/</u> . [Accessed 13 March, 2015]	<u>http://www.landfire.gov/Nati</u> onal ProductDescriptions21.php
Soil data (SSURGO)	Soil Survey Staff. 2014a. Soil Survey Geographic (SSURGO) Database. United States Department of Agriculture, Natural Resources Conservation Service. Online: http://sdmdataaccess.nrcs.usda. gov/. [Accessed 3 March 2014a].	http://www.nrcs.u sda.gov/wps/ portal/nrcs/detail/ soils/survey/? cid=nrcs142p2_0 53627
Soil data (STATSGO)	Soil Survey Staff. 2014b. U.S. General Soil Map (STATSGO2) Database. United States Department of Agriculture, Natural Resources Conservation Service.	http://sdmdataac <u>c</u> ess.nrcs.usda.gov / . [Accessed 3
GeoMac Fire Perimeters	Extracted from GeoMAC for the years 2000-2013. For each assessment area, extracted all fire perimeters that intersect the 15mile buffer. Note for FIAT teams: the data is not clip the data to the assessment area, any multi-part polygon associated with a given fire may include a feature outside the AOI, so assessment teams can decide to clip or use entire polygons.	fire_perim2000-2013_sgb.zip
SW-ReGAP	Geological Survey, Gap Analysis Program (GAP). May 2011. National Land Cover, Version 2US	http://gapanalysis.usgs.gov/ga plandcover/data/
Fuel_Breaks	Step 2 priority areas for fuels breaks based upon resistance and resilience and roads	

BLM WFMI Fire	Used in step 2 for years 2013 and 2014. This data was	https://www.nifc.
Occurrence data	merged with FPA FOD.	blm.gov/cgi/Wfm
		<u>i</u> Home.cgi
Fuels Management	Stop 2 priority areas for fuels management actions based	
	upon resistance and resilience	
	upon resistance and resincince	
Habitat_Restoration	Step 2 priority areas for habitat restoration and fuels	
_Recovery	management actions based upon resistance and	
	resilience	
Post Fire Rehabilita	Step 2 priority areas for post fire actions based upon	
tion	resistance and resilience	
Breeding Bird	25%, 50%(buffered to 6.4km) and 75% and 100% population	
Density /5 pct	kernel based on the Donerty model, buffered to 8.5km. Male	
	a population percentage for the Subregion and the	
	Population/Sub-population areas	
Contours	This dataset is maintained by the NOC for all BLM	
100_Focal_Habitat	usage.	
Fire Perimeters	Data collected from the MTBS (monitoring Trends	
11130 170410 2014	http://www.mths.gov/pationalregional/intro.html	
Interface Int Dis	Sage-grouse Planning effort west-wide (baseline) cumulative	
	effects analysis (CEA). Source datasets were acquired from	
	numerous sources	
	BLM State Offices responding to the WO 300 data call from	
	November 2011 through May 2012, BLM and USFS data	
	stewards, various state and federal agencies, and other sources	
	outside the BLM.	
	National Ocampiana Canton Dunany of Land	
	National Operations Center, Bureau of Land	
	Soil_Sage is Temperature and Moisture and Sage brush	
	cover combined for Resilience/resistance IA- 3C	
	These data are intended to portray soil moisture and	
	temperature regimes across the greater sage-grouse	
	distribution. The data was derived from NRCS SSURGO data	
	and where gaps NRCS STATSGO –	
	Credits	
	Chambers et al. 2014	

Vegetation_Treatme	Summary	
nt_/ tel es completed	The boundaries of vegetation treatments performed by the	
	RIM are important to the fire community land health	
	BLI'i, are important to the fire continuity, fand health,	
	range improvements, forest management, invasive species	
	control, emergency stabilization, and to the BLM as a whole.	
	They provide the locations of actions that have been taken	
	to meet land health objectives whether through fuels	
	reduction, emergency stabilization, and burned area	
	rehabilitation, changing vegetation composition or	
	controlling weeds. This data will provide the standard	
	template for storage of treatment polygons representing	
	the tract of land where a unique treatment is completed.	
	Description This data set will be a warehouse of completed	
	vegetation treatment areas and associated attributes.	
Vegetation_Treatme	NFPORS and other local perimeter data	
nt Acres Proposed	developed from other programs	
National SMA	SurfaceManagementAgency: The Surface	
	Management Agency (SMA) Geographic	
	information System (GIS) dataset depicts Federal land for the	
	United States and classifies this land by its active Federal	
	surface managing agency. The	
	SMA feature class covers the continental United	
	States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa	
	and the Virgin Islands. A Federal	
	SMA agency refers to a Federal agency with	
	administrative jurisdiction over the surface of	
	Federal lands. Jurisdiction over the land is defined when the	
	and is either: Withdrawn by some administrative or legislative	
	action, or Acquired or	
	Exchanged by a Federal Agency. This laver is a dynamic	
	assembly of spatial data layers maintained at various federal	
	and local government offices	
	The CIS date contained in this detects represents the self-	
	Fine GIS data contained in this dataset represents the polygon	
	reatures that show the boundaries for	
	purface Management Agency and the surface extent of each	
	Federal agency's surface administrative jurisdiction. SMA data	
	depicts current withdrawn areas for a particular agency and	
	(when appropriate) includes land that was acquired or	
	exchanged and is located outside of a withdrawal area for	
	that agency. The SMA data do not illustrate land status	
	ownership pattern	

Appendix C

Soil Temperature and Moisture Regime Attribute Table

Soil temperature and	Common Name	Original	Revised
moisture regime with		FIAT R&R	FIAT R&R
moisture subclass		Categories	Categories
Cryic/Aridic-Typic	Cold/dry		2
Cryic/Aridic bordering on Xeric	Cold/dry bordering on moist		I
Cryic/Ustic-Typic	Cold/summer moist		I
Cryic/Xeric	Cold/moist	1	1
Cryic/Xeric-Typic	Cold/moist		1
Cryic/Xeric bordering on Aridic	Cold/moist bordering on dry		1
Frigid/Aridic	Cool/dry	3	2
Frigid/Aridic-Typic	Cool/dry		2
Frigid/Aridic bordering on Ustic	Cool/dry bordering on summer moist		2
Frigid/Aridic bordering on Xeric	Cool/dry bordering on moist		2
Frigid/Xeric	Cool/moist	1	1
Frigid/Xeric-Typic	Cool/moist		1
Frigid/Xeric bordering on Aridic	Cool/moist bordering on dry		2
Frigid/Ustic bordering on aridic	Cool/summer moist bordering on dry		2
Frigid/Ustic-Typic	Cool/summer moist	1	I
Mesic/Aridic	Warm/dry	3	3
Mesic/Aridic-Typic	Warm/dry		3
Mesic/Aridic bordering on Ustic	Warm/dry bordering on summer moist		3
Mesic/Aridic bordering on Xeric	Warm/dry bordering on moist		3
Mesic/Ustic bordering on Aridic	Warm/summer moist bordering on dry		3
Mesic/Xeric	Warm/moist	2	2
Mesic/Xeric-Typic	Warm/moist		2
Mesic/Xeric bordering on Aridic	Warm/moist bordering on dry		3

The above table of soil attributes (soil temperature/moisture regimes) and Resistance/Resilience assignments were used in the original and revised FIAT reports. Soil survey spatial and tabular data were for the from obtained Project Planning Areas the Geospatial Data Gateway (http://datagateway.nrcs.usda.gov/). Gridded Soil Survey Geographic (gSSURGO) file geodatabases were used to display a 10-meter raster dataset. Where SSURGO data were unavailable, gaps were filled in using the State Soil Geographic database (STATSGO2). The attributes of the soil component with the highest component percentage (dominant component) were used to characterize the temperature and moisture regime. Only temperature and moisture regimes applicable to sagebrush ecosystems were displayed. For additional details, see Chambers et al. 2014, and Maestas and Campbell 2014.

Sage Grouse Initiative

Fact Sheet Mapping Potential Ecosystem Resilience and Resistance across Sage-Grouse Range using Soil Temperature and Moisture Regimes

A cool and moist (frigid/xeric) mountain big sagebrush site in Nevada (left) compared to a warm and dry (mesic/aridic) Wyoming big sagebrush site in Oregon (right) illustrates the natural variability in site potential across sagebrush ecosystems. Mapping soil temperature and moisture regimes can help depict this gradient and indicate potential ecosystem resilience and resistance. Photos: Jeremy Maestas

Background

ur ability to address threats to sage-grouse and the sagebrush steppe can be greatly enhanced by understanding ecosystem resilience to disturbance and resistance to invasive species (Chambers et al. 2014a,b). A recent breakthrough in the practical application of resilience and resistance concepts has been linking *soil temperature and moisture regimes* to sagebrush ecosystem responses to disturbance and annual grass invasion.

Potential resilience and resistance to invasive annual grasses reflect the biophysical conditions of an area, and soil temperature and moisture regimes provide a useful indicator of these conditions at multiple scales. Resilience to disturbance typically increases with higher resource availability and more favorable environmental conditions for plant growth and reproduction. Thus areas with warm (mesic) soil temperature and dry (aridic) soil moisture regimes typically have low potential resilience, while those with cool (frigid) to moderately cold (cryic) soil temperature and relatively moist (xeric to ustic) soil moisture regimes have high potential resilience. Resistance to exotic annual grasses, like cheatgrass, is strongly influenced by climate suitability for establishment and persistence. Cheatgrass germination, growth and reproduction appear to be optimal under relatively warm and dry to moist regimes (mesic/aridic or xeric), limited by low and sporadic precipitation under dry regimes (aridic), and generally constrained by colder regimes (frigid to cryic). These relationships are modified by effects of: (1) elevation, landform, slope, aspect, soil characteristics, and resulting vegetation composition and structure, and (2) the ecological condition of an area (Figure 1. Chambers et al. 2014a,b)

Soil climate data (temperature and moisture) are fundamentally important in classifying and mapping soils, and as such, are widely collected as part of the National Cooperative Soil Survey program. This provides us with the ability to map temperature and moisture regimes across the range of sage-grouse to better understand potential resilience and resistance along a diverse environmental gradient.

Figure 1. Example of resilience to disturbance (A) and resistance to cheatgrass (B) over a soil temperature and moisture regime gradient in the western portion of the sagebrush ecosystem. Dominant ecological types occur along a continuum from Wyoming big sagebrush communities on warm and dry sites to mountain big sagebrush/mountain brush communities on cold and moist sites (modified from Chambers et al. 2014a,b).

Resilience is the capacity of an ecosystem to regain its fundamental structure, processes and functioning when altered by stressors like drought, and disturbances like altered fire regimes. It is a measure of the ability of an ecosystem to *recover* after stress or disturbance.

Resistance is the capacity of an ecosystem to retain its fundamental structure, processes and functioning despite stresses, disturbances or invasive species, or to remain largely unchanged.

Resistance to invasion is the capacity of an ecosystem to limit the establishment and population growth of an invading species.

New product assembles available data for rangewide use

hile soil temperature and moisture regimes can be found in published soil surveys, a single dataset aggregating all available data was compiled to facilitate broad scale analyses and to provide a simple decision support tool for field practitioners. Available soils data from across Sage-Grouse Management Zones (Stiver et al. 2006) were compiled from two primary sources: 1) completed and interim soil surveys (SSURGO), and 2) state soils geographic databases (STATSGO2).

SSURGO - Soil Survey Geographic Database

SSURGO is the most detailed soil survey product produced by the National Cooperative Soil Survey. Information was collected through field inventory and interpretation at scales ranging from 1:12,000 to 1:63,360, with 1:24,000 being the most common. SSURGO datasets consist of spatial data, tabular data, and information about how the data were created. Soil survey maps are linked in the database to information about the component soils and properties for each soil map unit.

For this rangewide product, Gridded Soil Survey Geographic (gSSURGO) file geodatabases were used to display a 10-meter raster dataset. State gSSURGO datasets were then clipped to the extent of the Sage-Grouse Management Zones and merged.

STATSG02 – State Soil Geographic Database

The Digital General Soil Map of the United States or STATSGO2 is a broad-based inventory of soils and non-soil areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at a scale of 1:250,000. The dataset was created by generalizing more detailed soil survey maps. Where more detailed soil survey maps were not available, data on geology, topography, vegetation, and climate were assembled and related to Land Remote Sensing Satellite (LANDSAT) images. Soils of similar areas were studied, and the probable classification and extent of the soils were determined. STATSGO2 was used in areas of the Sage-Grouse Management Zones where more detailed SSURGO was currently not available.

Where can I access the product?

The aggregated soils data product can be downloaded freeof-charge on the Landscape Conservation Management and Analysis Portal (LCMAP):

https://www.sciencebase.gov/catalog/ folder/538e5aa9e4b09202b547e56c

How to work with the files in a Geographic Information System (GIS)

Rangewide layer for rapid application

The data product includes a file geodatabase named SoilMoistureTemperatureRegimes.gdb that contains a single raster dataset merging best available SSURGO and STATSGO2 across Sage-Grouse Management Zones. The attribute table includes the temperature and moisture regime for the map unit dominant condition. A layer file named SoilMoistTempLayer.lyr can be used to quickly create a fully symbolized map with a legend of the predominant temperature and moisture regimes across sagebrush ecosystems (Figure 2).

Detailed data for more in-depth analyses

Separate geodatabases providing more detailed information are also available for both SSURGO and STATSGO2 data. These products allow users to explore the data in more depth at finer scales. An example of how to work with one of the geodatabases is provided here.

Figure 2. New soils product provides ability to depict potential ecosystem resilience and resistance across the range of sagegrouse using soil temperature and moisture regimes. For more information on interpretation, see Chambers et al. 2014b.

The file geodatabase named SGMZ_SSURGO_temp_moist_ regimes_v2.gdb contains a raster dataset with all the SSURGO spatial data that is currently available in the Sage-Grouse Management Zones. There are two tables in this file geodatabase that can be joined to the raster dataset using the common mukey field. The table named SSURGO SGMZ_temp_moist_dom_cond_v2 contains the temperature and moisture regime and moisture subclass for the dominant condition in each map unit. The table named SSURGO SGMZ_temp_moist_components_v2 has data for each major component, including things like soil type, precipitation range, temperature-moisture regimes and subclasses, and ecological sites. When this table is joined to the raster dataset, the data for the dominant component will be in the attribute table. The Identify tool in ArcGIS can be used to display many attributes of the dominant component.

For an even finer grain look, the SSURGO_SGMZ_temp_ moist_components_v2 table can be opened to determine the ecological site and temperature and moisture regimes that are associated with each component in a map unit, rather than just the dominant component.

For More Information

Data Contact

Steve Campbell, USDA-NRCS Soil Scientist, 503-273-2421, steve.campbell@por.usda.gov

Background on SSURGO and STATSGO data: http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/geo/

Access to soil surveys: http://websoilsurvey.sc.egov.usda.gov/App/ HomePage.htm

Acknowledgements

We thank the Western Association of Fish and Wildlife Agencies, Fire and Invasives Working Group, for laying the foundation for development of this product. Special thanks to Amarina Wuenschel and Jeanne Chambers for their contributions to this product and to the many USDA Natural Resources Conservation Service specialists who contributed soil survey program data.

Suggested Citation

Maestas, J. D., and S. B. Campbell. Mapping Potential Ecosystem Resilience and Resistance across Sage-Grouse Range using Soil Temperature and Moisture Regimes. Fact Sheet. Sage Grouse Initiative, www.sagegrouseinitiative.com.

References

Chambers, J. C.; Bradley, B.A.; Brown, C.A.; D'Antonio, C.; Germino, M. J.; Hardegree, S. P; Grace, J. B.; Miller, R. F.; Pyke, D. A. 2014a. Resilience to stress and disturbance, and resistance to Bromus tectorum L. invasion in the cold desert shrublands of western North America. Ecosystems 17: 360-375

Chambers, J. C.; Pyke, D. A.; Maestas, J. D.; Pellant, M.; Boyd, C. S.; Campbell, S. B.; Espinosa, S.; Havlina, D. W.; Mayer, K. E.; Wuenschel, A. 2014b. Using resistance and resilience concepts to reduce impacts of invasive annual grasses and altered fire regimes on the sagebrush ecosystem and greater sage-grouse: A strategic multi-scale approach. Gen. Tech. Rep. RMRS-GTR-326. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 73 p.

Stiver, S. J.; Apa, A. D.; Bohne, J. R.; Bunnell, S. D.; Deibert, P. A.; Gardner, S. C.; Hilliard, M. A.; McCarthy, C. W.; Schroeder, M. A. 2006. Greater Sage-grouse Comprehensive Conservation Strategy. Unpublished report on file at: Western Association of Fish and Wildlife Agencies, Cheyenne, WY.

Displaying Dominant Condition Vs. Dominant Component

It is important to understand some fundamental concepts in how soils are mapped in order to properly interpret information provided. Soils and their properties change over a continuous gradient but soils are described in map units. Soil map units commonly contain more than one "component" (soil types or miscellaneous areas such as rock outcrops) with unique data associated with each component. When spatially displaying soil survey information, a decision has to be made as to how to aggregate the component data to the map unit. The two most common aggregation methods are to display either *dominant component* or *dominant condition*. The example below illustrates the difference between these two methods:

Component Name	% of Map unit	Temperature/ Moisture Regime	Aggregation Method	
Alpha	45	Warm and Dry (Mesic/Aridic)	Dominant Component	
Beta	30	Cool and Dry (Frigid/Aridic)	Dominant	
Gamma	25	Cool and Dry (Frigid/Aridic)	Condition	

Soil map unit: Alpha-Beta-Gamma complex, 8 to 30 percent slopes

This map unit is on highly dissected hill slopes with a complex pattern of northerly and southerly aspects. The Alpha component is on southerly aspects and the Beta and Gamma components are on cooler northerly aspects. The temperature and moisture regime for the dominant component is Warm and Dry (mesic/aridic) since the Alpha component comprises the highest percentage of the map unit. The dominant condition is Cool and Dry (frigid/aridic) since the Beta and Gamma components cumulatively comprise 55 percent of the map unit, exceeding the 45 percent of the Alpha component. For the majority of soil map units, but not all, the dominant component and dominant condition results are identical. This product provides aggregated data in both dominant condition and component tables to allow users access to advantages of each approach.

Appendix D Meeting Locations and Participants

Meeting Place	Date	Attendees	Agency
	9/29/2014 through 9/30/2014 and 12/02/2014 and 12/04/2014		
Prineville, OR	and 1/06/2015		
		Sean Cottle	EMPSi
		Peter Gower	EMPSi
		Craig Goodell	BLM
		Ken Collum	BLM
		Guy Chamness	BLM
		Bob Crumrine	BLM
		David Probasco	BLM
		Andy Daniels	BLM
		Bill Dragt	BLM
		John Owens	BLM
		Grace Haskins	BLM
		Michael Tripp	BLM
		Jenni Moffitt	BLM
		Al Crouch	BLM
		Bill Lutjens	BLM
		Douglas Kile	BLM
		Ralph Falsetto	BLM
		Molly Galbraith	BLM
		Monte Kuk	BLM
		Dan Ridenour	BLM
		Casey O'Connor	BLM
		Jeremy Maestas	BLM
		Chad Rott	BLM
		Brian Watts	BLM
		Corey Heath	ODFW
		Matt Keenan	ODFW
		Greg Jackle	ODFW
		Jackie Couples	ODFW
		Gordon Foster	ODF EOA
		Jay Kerby	TNC
		Angela Sitz	USFWS

	Dawn Davis	USFWS
	Theresa Burcsu	INR/Sagecon
	Chris Mundy	NRCS
	Jeremy Maestas	NRCS