

US Department of the Interior Bureau of Land Management

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessment

WESTERN GREAT BASIN - WARM SPRINGS VALLEY/WESTERN GREAT BASIN

MARCH 2015

ΤΑ	BLE O	OF CONTENTS	
Secti	on		Page
١.	INTR	ODUCTION AND ASSESSMENT OBJECTIVES	I-
	1.1	Executive Overview	
	1.2	Background	
	1.3	Statement of Objectives	l-
	1.4	Collaboration	İ-4
		I.4.1 Meetings	I-!
2.	DAT	A MANAGEMENT AND STEP-DOWN PROCESS	2-
	2.1	Examination of FIAT Step 1 Findings	2-
	2.2	Incorporation of Local Data	2-2
		2.2.1 Data Description	2-3
		2.2.2 Rationale for Selection	2-3
	2.3	National Data Layers	2-4
		2.3.1 Breeding Bird Density	2-4
		2.3.2 Conifer Expansion	2-4
		2.3.3 Wildfire Threats	2-4
		2.3.4 Soil Moisture/Temperature Regime	2-4
		2.3.5 Other Data Layers	2-!
	2.4	Data Gaps Identified	2-5
3.	Asse	ESSMENT AREA CHARACTERIZATION	3-
	3.1	Western Great Basin/Warm Springs Valley Assessment Area	3-
		3.1.1 Vegetation	3-3
		3.1.2 Invasive Annual Grasses	3-4
		3.1.3 Conifer Encroachment	3-!
		3.1.4 Fire Regime and History	3-5
		3.1.5 Soil/Moisture Regime (Resistance and Resilience)	3-6
4.	Foc	AL HABITAT AND PROJECT PLANNING AREAS	4-
	4.I	Focal Habitat and Project Planning Areas	4-
		4.1.1 Focal Habitat Areas Overview	4-
		4.1.2 Project Planning Areas Overview	4-2
	4.2	Western Great Basin/Warm Spring Valley Project Planning Areas	4-4
		4.2.1 Frenchglen	4-4
		4.2.2 Orejana East	4-13
		4.2.3 Roaring Springs	4-22
		4.2.4 Pueblo	4-30
		4.2.5 Trout Creek East	4-38
		4.2.6 Trout Creek West	4-4
		4.2.7 Beaty Butte	4-50
		4.2.8 Clover Flat	4-59
		4.2.9 Gravelly	4-68
		4.2.10 North Warner	4-74
		4.2.11 Orejana West	4-82
		4.2.12 South Warner	4-88
		4.2.13 Vya	4-96

Ι			4.2.14	Bull Creek	
2			4.2.15	Wall Canyon	
3			4.2.16	Duck Flat	
4			4.2.17	High Rock	
5			4.2.18	Massacre	
6			4.2.19	Shinn	
7			4.2.20	Horse Lake	
8			4.2.21	Shafer Mountain Connectivity	
9			4.2.22	Madeline Plains	
10			4.2.23	Madeline Plains Connectivity	
11			4.2.24	Cold Springs	
12			4.2.25	Hart Mountain NWR	
13			4.2.26	Sheldon NWR	
14			4.2.27	Virginia Ranges	
15			4.2.28	Black Rock	
16			4.2.29	Lone Willow	
17	5.	Loo		EAD: IMPLEMENTATION, NEPA, AND MONITORING	5-1
18		5.1	Implem	nentation Strategy	5-1
19			5.1.1	Fuels Management	5-2
20			5.1.2	Habitat Restoration/Recovery	5-3
21			5.1.3	Fire Operations	5-5
22			5.1.4	Post-Fire Rehabilitation	5-6
23		5.2	Monito	oring and Adaptive Management	5-7
24	6.	LIST	OF PREP	ARERS	6-1
25	7.	Refe	RENCES.		
26					
27					

28 **APPENDICES**

29 30 A Maps

31 B GIS Data

- 32 C Soil Temperature and Moisture Regime Attribute Table
- 33 D Meeting Locations and Participants

TABLES I Page 2 3 1-1 Focal Habitat Acreage within Project Planning Areas (PPAs) in the Western Great 4 Basin/Warm Springs Valley Landscape......I-2 5 List of MeetingsI-5 1-2 6 4-1 Frenchglen Sage-Grouse Habitat Matrix Categories......4-4 7 4-2 8 4-3 9 4-4 Summary of Burn Probability......4-7 10 Fuels Management Potential Treatments......4-9 4-5 Habitat Restoration Potential Treatments4-10 11 4-6 12 4-7 Fire Operations Management Strategies......4-11 13 4-8 Post-Fire Rehabilitation Management Strategies4-12 14 4-9 Project Planning Area Treatment Summary Table4-12 15 4-10 Orejana East Sage-Grouse Habitat Matrix Categories......4-14 16 4-11 4-12 General Plant Associations based upon ESI Soil types for Trout Creek East PPA......4-15 17 18 4-13 Summary of Burn Probability......4-17 19 4-14 Fuels Management Potential Treatments......4-19 20 4-15 Habitat Restoration Potential Treatments4-20 21 4-16 Fire Operations Management Strategies......4-21 Post-Fire Rehabilitation Management Strategies4-21 22 4-17 23 4-18 Project Planning Area Treatment Summary Table4-22 24 4-19 Roaring Springs Sage-Grouse Habitat Matrix Categories......4-23 25 4-20 Greater Sage-Grouse Leks found within the Roaring Springs Project Planning Area......4-24 26 General Plant Associations based upon ESI Soil types for Roaring Springs PPA......4-24 4-21 27 4-22 Summary of Burn Probability......4-25 28 4-23 Fuels Management Potential Treatments......4-26 29 Habitat Restoration Potential Treatments4-27 4-24 30 4-25 Fire Operations Management Strategies......4-28 31 4-26 32 4-27 Project Planning Area Treatment Summary Table4-29 33 4-28 Pueblos Sage-Grouse Habitat Matrix Categories4-31 34 4-29 Greater Sage-Grouse Leks found within the Pueblo Project Planning Area......4-31 35 4-30 General Plant Associations based upon ESI Soil types for Pueblo PPA......4-32 4-31 Summary of Burn Probability......4-33 36 Fuels Management Potential Treatments......4-34 37 4-32 38 4-33 Fire Operations Management Strategies......4-35 39 4-34 Habitat Restoration Potential Treatments4-36 40 4-35 Post-Fire Rehabilitation Management Strategies4-37 41 4-36 Project Planning Area Treatment Summary Table4-37 42 4-37 Trout Creek East Sage-Grouse Habitat Matrix Categories4-38 43 4-38 Summary of Burn Probability......4-39 44 4-39 Fuels Management Potential Treatments......4-40 4-40 45 Habitat Restoration Potential Treatments4-40 46 4-41 Fire Operations Management Strategies......4-42 Post-Fire Rehabilitation Management Strategies4-42 47 4-42 48 4-43 Project Planning Area Treatment Summary Table4-42 49 4-44 50 4-45 Greater Sage-Grouse Leks found within the Trout Creek West Project Planning Area4-44

T	4-46	General Plant Associations based upon ESI Soil types for Trout Creek East PPA	4-45
2	4-47	Summary of Burn Probability	4-47
3	4-48	Fuels Management Potential Treatments	4-48
4	4-49	Habitat Restoration Potential Treatments	4-48
5	4-50	Fire Operations Management Strategies	4-49
6	4-5 I	Post-Fire Rehabilitation Management Strategies	4-50
7	4-52	Project Planning Area Treatment Summary Table	4-50
8	4-53	Beaty Butte Sage-Grouse Habitat Matrix Categories	4-51
9	4-54	Beaty Butte Lek Status	4-51
10	4-55	Summary of Burn Probability	4-55
11	4-56	Fuels Management Potential Treatments	4-57
12	4-57	Habitat Restoration Potential Treatments	4-57
13	4-58	Fire Operations Management Strategies	4-58
14	4-59	Post-Fire Rehabilitation Management Strategies	4-58
15	4-60	Project Planning Area Treatment Summary Table	
16	4-61	Clover Flat Sage-Grouse Habitat Matrix Categories	
17	4-62	Clover Flat Lek Status	
18	4-63	Summary of Burn Probability	
19	4-64	Fuels Management Potential Treatments	4-63
20	4-65	Habitat Restoration Potential Treatments	4-65
21	4-66	Fire Operations Management Strategies	4-65
22	4-67	Post-Fire Rehabilitation Management Strategies	4_67
23	4-68	Project Planning Area Treatment Summary Table	4-68
23	4-69	Gravelly Sage-Grouse Habitat Matrix Categories	4_69
27	4_70	l ale Status	<u>4_69</u>
25	4-70	Gravelly PPA Vegetation Types	
20	4_72	Summary of Burn Probability	
27 28	4 73	Fuels Management Potential Treatments	
20	4-75 4 74	Habitat Postoration Potontial Treatments	
20	4 75	Fire Operations Management Strategies	7-73 172
21	л-75 Л 76	Post Eiro Pohabilitation Management Strategies	
27	4-70 4 77	Project Planning Area Treatment Summary Table	
32 22	4-// 1 70	North Warner Sage Crouse Habitat Matrix Categories	
ככ סג	4-/0	North Warner Sage-Grouse Habitat Matrix Categories	
24	4-/7	Dispring Area	1 76
22	1 00	Fighting Area	4-70
סנ דר	4-00	Summary of burn Probability	4-70
37 20	4-01	Fuels Management Folential Treatments	4-/7
30	4-82	Habitat Restoration Potential Treatments	4-81
37	4-83	Fire Operations Management Strategies	4-01
40	4-84	Post-Fire Renabilitation Management Strategies	4-82
41	4-85	Project Planning Area Treatment Summary Table	
42	4-86	Orejana West Sage-Grouse Habitat Matrix Categories	
43	4-8/	Lek Status	
44	4-88	Summary of Burn Probability	
45	4-89	Fuels Management Potential Treatments	
46	4-90	Habitat Restoration Potential Treatments	
47	4-91	Fire Operations Management Strategies	
48	4-92	Post-Fire Rehabilitation Management Strategies	4-88
49	4-93	Project Planning Area Treatment Summary Table	4-88
50	4-94	South Warner Sage-Grouse Habitat Matrix Categories	4-89

I	4-95	Lek Status	4-	-90
2	4-96	Summary of Burn Probability	4-	-92
3	4-97	Fuels Management Potential Treatments	4-	-93
4	4-98	Habitat Restoration Potential Treatments	4-	-95
5	4-99	Fire Operations Management Strategies	4-	-95
6	4-100	Post-Fire Rehabilitation Management Strategies	4-	-96
7	4-101	Project Planning Area Treatment Summary Table	4-	-97
8	4-102	Vya Sage-Grouse Habitat Matrix Categories	4-	-98
9	4-103	Summary of Burn Probability	4-1	00
10	4-104	Fuels Management Potential Treatments	4-1	01
11	4-105	Habitat Restoration Potential Treatments	4-1	03
12	4-106	Fire Operations Priority Areas	4-1	03
13	4-107	Fire Operations Management Strategies	4-1	04
14	4-108	Post-Fire Rehabilitation Management Strategies	4-1	04
15	4-109	Fire Rehabilitation Priority Areas	4-1	05
16	4-110	Project Planning Area Treatment Summary Table	4-1	05
17	4-111	Bull Creek Sage-Grouse Habitat Matrix Categories	4-1	06
18	4-112	Summary of Burn Probability	4-1	07
19	4-113	Fuels Management Potential Treatments	4-1	08
20	4-114	Habitat Restoration Potential Treatments	4-1	09
21	4-115	Fire Operations Management Strategies	4-1	09
22	4-116	Fire Operations Priority Areas	4-1	10
23	4-117	Post-Fire Rehabilitation Priority Areas	4-1	10
24	4-118	Post-Fire Rehabilitation Management Strategies	4-1	10
25	4-119	Project Planning Area Treatment Summary Table	4-1	
26	4-120	Wall Canyon Sage-Grouse Habitat Matrix Categories	4-1	12
27	4-121	Summary of Burn Probability		14
28	4-122	Fuels Management Potential Treatments	4-1	15
29	4-123	Habitat Restoration Potential Treatments	4-1	16
30	4-124	Fire Operations Management Strategies	4-1	17
31	4-125	Fire Operations Priority Areas	4-1	17
32	4-126	Post-Fire Rehabilitation Management Strategies	4-1	18
33	4-127	Post-Fire Rehabilitation Priority Areas	4-1	18
34	4-128	Project Planning Area Treatment Summary Table	4-1	19
35	4-129	Duck Flat Sage-Grouse Habitat Matrix Categories	4-1	20
36	4-130	Summary of Burn Probability	4-1	21
37	4-131	Fuels Management Potential Treatments	4-1	23
38	4-132	Habitat Restoration Potential Treatments		24
39	4-133	Fire Operations Priority Areas	4-1	24
40	4-134	Fire Operations Management Strategies	4-1	25
41	4-135	Post-Fire Rehabilitation Priority Areas	4-1	25
42	4-136	Post-Fire Rehabilitation Management Strategies	4-1	25
43	4-137	Project Planning Area Treatment Summary Table		26
44	4-138	High Rock Sage-Grouse Habitat Matrix Categories		27
45	4-139	High Rock Vegetation Categories		28
46	4-140	Summary of Burn Probability	4-1	29
47	4-141	Fuels Management Potential Treatments	4-1	30
48	4-142	Habitat Restoration Potential Treatments	4-1	30
49	4-143	Fire Operations Management Strategies		31
50	4-144	Post-Fire Rehabilitation Management Strategies	4-1	31
		U -0	-	

I	4-145	Project Planning Area Treatment Summary Table	4- I	32
2	4-146	Massacre Sage-Grouse Habitat Matrix Categories	4- I	33
3	4-147	Summary of Burn Probability	4- I	34
4	4-148	Fuels Management Potential Treatments	4-	35
5	4-149	Habitat Restoration Potential Treatments	4- I	36
6	4-150	Fire Operation Priority Areas	4- I	37
7	4-151	Fire Operations Management Strategies	4-1	37
8	4-152	Post-Fire Rehabilitation Management Strategies	4-1	38
9	4-153	Post-fire Rehabilitation Priority Areas	4-1	38
10	4-154	Project Planning Area Treatment Summary Table	4-1	38
11	4-155	Shinn Sage-Grouse Habitat Matrix Categories	4-1	39
12	4-156	Summary of Burn Probability	4-1	42
13	4-157	Fuels Management Potential Treatments	4-1	43
14	4-158	Habitat Restoration Potential Treatments	4-1	44
15	4-159	Fire Operations Management Strategies	4-1	45
16	4-160	Post-Fire Rehabilitation Management Strategies	4-1	46
17	4-161	Project Planning Area Treatment Summary Table	4-1	47
18	4-162	Horse Lake Sage-Grouse Habitat Matrix Categories	4-1	48
19	4-163	Summary of Burn Probability	4-1	50
20	4-164	Fuels Management Potential Treatments	4-1	51
21	4-165	Habitat Restoration Potential Treatments	4-1	51
22	4-166	Fire Operations Management Strategies	4-1	52
23	4-167	Post-Fire Rehabilitation Management Strategies	4-1	53
 24	4-168	Project Planning Area Treatment Summary Table	4-1	53
25	4-169	Shafer Connectivity Corridor Sage-Grouse Habitat Matrix Categories	4-I	54
26	4-170	Summary of Burn Probability	4-1	55
27	4-171	Euels Management Potential Treatments	4-I	56
28	4-172	Habitat Restoration Potential Treatments	4-1	57
29	4-173	Fire Operations Priority Areas	4-1	58
30	4-174	Fire Operations Management Strategies	4-1	58
31	4-175	Post-Fire Rehabilitation Management Strategies	4_I	59
32	4-176	Post-fire Rehabilitation Priority Areas	4_I	59
33	4-177	Project Planning Area Treatment Summary Table	4-1	59
34	4-178	Madeline Plains Sage-Grouse Habitat Matrix Categories	4_I	60
35	4-179	Summary of Burn Probability	4_1	61
36	4-180	Fuels Management Potential Treatments	4_1	62
37	4-181	Habitat Restoration Potential Treatments	4_1	62
38	4-182	Fire Operations Priority Areas	4_1	63
39	4-183	Fire Operations Management Strategies	۱-۱ ا _4	63
40	4_184	Post-Fire Rehabilitation Management Strategies	۱−۱ ا_ل	64
4U 41	4-185	Project Planning Area Treatment Summary Table	ו-ד 1_1	64
רד ⊿ר	4 186	Madeline Plains Connectivity Corrider Sage Grouse Habitat Matrix Categories	ו-ד ע 1	45
42 42	4 197	Summary of Burn Probability	ו-ד ע 1	66
4J 44	4 199	Fuels Management Potential Treatments	ו-ד ע 1	66
45	4_100	Habitat Restoration Potential Treatments	ו-ד ו 1	64
45 46	4_107	Fire Operations Priority Areas	ו-ד ו ג	60
-10 ⊿7	4 IQI	Fire Operations Management Strategies	ו-די ו ג	67
יד 10	רסן ג רסן ג	Post Fire Dehabilitation Management Strategies	ו-די ו ג	20
-10 ∕0	1-172 102	Project Planning Area Treatment Summary Table	ا-++ ۱ ۸	20
77 50	-173 101	Cold Springe Sage Crouse Habitat Matrix Catagorian	ا -++	
50	4-174	Cold springs sage-Grouse maditat Matrix Categories	4 -1	70

I	4-195	Summary of Burn Probability	4-171
2	4-196	Fuels Management Potential Treatments	
3	4-197	Fire Operations Priority Areas	
4	4-198	Fire Operations Management Strategies	
5	4-199	Habitat Restoration Potential Treatments	
6	4-200	Post-fire Rehabilitation Priority Areas	
7	4-201	Post-Fire Rehabilitation Management Strategies	
8	4-202	Project Planning Area Treatment Summary Table	
9	4-203	Hart NWR Sage-Grouse Habitat Matrix Categories	
10	4-204	Classified Vegetation Cover Types and Estimated Percentage of Total Area	
11	4-205	Summary of Burn Probability	
12	4-206	Fuels Management Potential Treatments	
13	4-207	Habitat Restoration Potential Treatments	
14	4-208	Fire Operations Management Strategies	
15	4-209	Post-Fire Rehabilitation Management Strategies	
16	4-210	Project Planning Area Treatment Summary Table	
17	4-211	Sheldon NWR Sage-Grouse Habitat Matrix Categories	
18	4-212	Classified Vegetation Cover Types and Estimated Percentage of Total Area	
19	4-213	Summary of Burn Probability	
20	4-214	Fuels Management Potential Treatments	
21	4-215	Habitat Restoration Potential Treatments	4-195
22	4-216	Fire Operations Management Strategies	
23	4-217	Post-Fire Rehabilitation Management Strategies	4-197
24	4-218	Project Planning Area Treatment Summary Table	
25	4-219	Virginia Range Sage-Grouse Habitat Matrix Categories	
26	4-220	Virginia Range Vegetation Categories	4-200
27	4-221	Summary of Burn Probability	4-201
28	4-222	Fuels Management Potential Treatments	4-202
29	4-223	Habitat Restoration Potential Treatments	4-202
30	4-224	Fire Operations Management Strategies	4-203
31	4-225	Post-Fire Rehabilitation Management Strategies	4-204
32	4-226	Project Planning Area Treatment Summary Table	4-204
33	4-227	Black Rock Sage-Grouse Habitat Matrix Categories	4-205
34	4-228	Black Rock Vegetation Categories	4-206
35	4-229	Summary of Burn Probability	4-207
36	4-230	Fuels Management Potential Treatments	4-208
37	4-23 I	Habitat Restoration Potential Treatments	4-208
38	4-232	Fire Operations Management Strategies	4-209
39	4-233	Post-Fire Rehabilitation Management Strategies	4-209
40	4-234	Project Planning Area Treatment Summary Table	
41	4-235	Lone Willow Sage-Grouse Habitat Matrix Categories	
42	4-236	Lone Willow Vegetation Categories	
43	4-237	Summary of Burn Probability	
44	4-238	Fuels Management Potential Treatments	
45	4-239	Habitat Restoration Potential Treatments	
46	4-240	Fire Operations Management Strategies	
47	4-241	Post-Fire Rehabilitation Management Strategies	
48	4-242	Project Planning Area Treatment Summary Table	
49	5-1	Assessment Area Treatment Summary	5-2

I	5-2	Fuels Management in Project Planning Areas in the Western Great Basin/Warm	
2		Springs Valley Landscape	5-3
3	5-3	Habitat Restoration and Recovery Potential Treatment Areas in the Western Great	
4		Basin/Warm Springs Valley Landscape	5-4
5	5-4	Fire Operations Potential Treatment Areas in Project Planning Areas in the Western	
6		Great Basin/ Warm Springs Valley Landscape	5-5
7	5-5	Post-Fire Rehabilitation Potential Treatment Areas In Project Planning Areas in the	
8		Western Great Basin/ Warm Springs Valley Landscape	5-6
9			
10			

FIGURES 11 Page 12 13 1-1 14 3-1 15 3-2 16 3-3 17 3-4 18 3-5 19 3-6 20 3-7 21 3-8 22 3-9 2

		F	
23	3-10	Post Fire Rehabilitation	3-16
24	4-I	Map of Western Great Basin/Warm Springs Valley Focal Habitat Areas and Project	
25		Planning Areas	4-3
26	5-I	FIAT Process	5-1

ACRONYMS AND ABBREVIATIONS

L

2		
3 4	AML	appropriate management level
5	BBD	breeding bird density
6	BLM	United States Department of the Interior, Bureau of Land Management
7	°C	degrees Celsius
8	CAD	computer-aided dispatch
9	CDFW	California Department of Fish and Wildlife
10	СОТ	Conservation Objectives Team
П		
12	EIS	environmental impact statement
13	ESR	emergency stabilization and rehabilitation
14		
15	°F	degrees Fahrenheit
16	FIAT	Fire and Invasives Assessment Tool
17	Forest Service	United States Department of Agriculture, National Forest Service
18	FRG	fire regime group
19		
20	GRSG	greater sage-grouse
21	1 15 4 4	
22	HMA	herd management area
23		Niscience Associations have some Deserver
24		National Agriculture Imagery Program
25		Nevada Department of Wildlife
26		INational Environmental Policy Act of 1969
27	INRCS	Inatural Resources and Conservation Services
20 20		Oragon Department of Fish and Wildlife
20		Oregon Department of Fish and Wildine
30	PAC	priority areas for conservation
37	PFC	proper functioning condition
32	PMLI	proper functioning condition
34	PPA	population management une
35	PPH	project planning al ca
36		
37	RR	restoration and resilience
38		
39	SEAT	single engine air tanker
40	•=	
41	USFWS	United States Fish and Wildlife Service
42		
43	WAFWA	Western Association of Fish and Wildlife Agencies
44	WGB	Western Great Basin
45	WSA	wilderness study area
46		

Full Phrase

This page intentionally left blank.

I

SECTION I INTRODUCTION AND ASSESSMENT OBJECTIVES

3 I.I EXECUTIVE OVERVIEW

4	The Western Great Basin/Warm Springs Valley assessment was developed using
5	methods described in the FIAT Report (Greater Sage-Grouse Wildfire, Invasive
6	Annual Grasses, and Conifer Expansion Assessment 2014). The developed
7	implementable assessment is designed to identify strategies that ameliorate
8	threats to Greater Sage-Grouse (GRSG; Centrocercus urophasianus) and their life
9	cycle habitat. It incorporates emerging science, regional findings, and local
10	knowledge and data.

11This assessment area is a combination of two large Priority Areas for12Conservation (PACs) from the United States Fish and Wildlife (USFWS)13Conservation Objectives Team (COT) report (2013). These PACs are: (1)14Western Great Basin, and (2) Warm Springs Valley/Western Great Basin. For15ease of reading, this assessment name will be abbreviated hereafter as Western16Great Basin or WGB.

- 17 The assessment authors have identified management opportunities that counter
 18 detrimental ecological trends in wildfire, invasive annual grasses, and conifer
 19 expansion. The Western Great Basin/Warm Springs Valley Fire and Invasives
 20 Assessment Tool (FIAT) identified the following:
- 21 2,745 miles of linear fuels treatments • 22 875.126 acres of conifer treatment • 23 979,024 acres of invasive plant treatment 24 1,342,314 acres of other treatments, including seedings 25 4,531,100 acres of 1st and 2nd priority post-fire rehabilitation, in 26 addition to site-appropriate management strategies for fire 27 operations and post-fire decisions

1 2 The Western Great Basin/Warm Springs Valley assessment is designed to be fully implementable at the local and regional level (see **Table I-I**).

Table I-IFocal Habitat Acreage within Project Planning Areas (PPAs) in the Western Great Basin/Warm Springs Valley Landscape

PPA	Acres of Focal	Percentage of Focal	Total Acres in the
	Habitat within PPA	Habitat within PPA	
Beaty Butte	401,940	100	402,110
Black Rock	191,518	100	191,758
Bull Creek	66,155	100	66,250
Clover Flat	31,531	100	31,531
Cold Springs	71,973	100	71,973
Duck Flat	129,089	100	129,089
Frenchglen	128,222	69	185,568
Gravelly	29,384	91	32,297
Hart Mountain	241,664	100	241,678
High Rock	237,884	100	237,912
Horse Lake	93,351	100	93,351
Lone Willow	268,807	97	277,485
Madeline Plains	72,992	100	72,992
Madeline Plains Connectivity	0	0	140,589
Massacre	6, 9	100	116,234
North Warner	245,202	84	293,401
Orejana West	124,781	100	124,781
Orejana East	123,603	41	299,670
Pueblo	72,027	54	134,261
Roaring Springs	62,800	83	75,810
Shaffer Mountain Connectivity	0	0	19,217
Sheldon	422,651	100	422,651
Shinn	412,492	100	412,692
South Warner	37,520	100	37,520
Trout Creek East	306,188	91	335,481
Trout Creek West	42,746	51	83,431
Virginia Ranges	98,117	99	98,675
Vya	234,786	100	234,890
Wall Canyon	227,838	89	255,948
Total for all WGB PPAs	4,491,379	88	5,119,244

4 I.2 BACKGROUND

The purpose of this assessment is to identify potential PPAs and management strategies within highly valued GRSG habitats. If implemented, the strategies would reduce the threats to GRSG. The COT report (USFWS 2013) and other scientific publications identify two primary threats to the sustainability of GRSG in the western portion of the species range: wildfire and conversion of sagebrush habitat to invasive annual grass-dominated vegetative communities. For this assessment, invasive species are limited to, and are hereafter referred to, as invasive annual grasses. Additionally, conifer expansion (also called

3

5

6

7

8

9

10

11

- encroachment) was identified as a threat and is also addressed in this assessment.
- To address these concerns, the Bureau of Land Management (BLM) and United States Forest Service (Forest Service) have committed to completing GRSG wildfire, invasive annual grasses, and conifer expansion assessments (see Greater Sage-Grouse Land Use Plan Amendments, BLM Instruction Memorandum WO-2014-134).
- 8 The objective of FIAT assessments is to identify priority habitat areas and 9 management strategies to reduce the impacts on GRSG from invasive annual 10 grasses, wildfires, and conifer expansion. In addition, these assessments are 11 designed to provide the USFWS with regulatory certainty on the extent, 12 location, and rationale for management opportunities that address significant 13 threats to GRSG.
- In early 2013, an interagency team of wildlife, vegetation, fire, and fuels
 managers developed the FIAT assessment protocols. The FIAT process designed
 by this team involves two steps.
 - Step 1: Establish the regional context for priority GRSG habitats and threat factors
- 19Step 2: Incorporate local data with Step 1 findings to identify potential20project areas, treatment opportunities, and management strategies that21ameliorate threats to GRSG
- 22FIAT Step I development ran from February 2013 to August 2014. Step 2 of the23FIAT process began in September 2014 and concludes at the end of March242015. This assessment represents the final product and signals completion of25FIAT Step 2.
- 26FIAT assessment areas roughly correspond to select PACs, which the COT27identified in its report (USFWS 2013). In FIAT Step I, the following assessment28areas were identified:
- 29 I. Central Oregon
 - 2. Northern Great Basin
 - 3. Snake/Salmon/Beaverhead
 - 4. Southern Great Basin
 - 5. Western Great Basin/Warm Springs Valley
- 34 These were identified at a regional scale using the following criteria:
 - PACs identified in the 2013 USFWS COT report (USFWS 2013)

L

2

3

4

5

6

7

17

18

30

31

32

33

Ι		State-scale breeding bir	d density (BBD; (Doherty 2010)
2		Sagebrush landscape co	ver (after Knick 2011)
3 4		 Patterns of resistance following disturbance (a) 	e to annual grass invasion and resilience after Chambers et al. 2014)
5		Relative risk of wildfire	occurrence (FOREST SERVICE 2013)
6		Degree of conifer expa	nsion (as modeled by Manier et al. 2013)
7	13	STATEMENT OF ODJECTIVES	
8	1.5	Objectives originally stated in the F	IAT report are as follows:
9 10		 Identify important GRS important in defining ar 	G-occupied habitats and baseline data layers nd prioritizing GRSG habitats
 2 3		 Assess the resistance to disturbance and prior restoration 	o invasive annual grasses and resilience after ritize focal habitats for conservation and
14 15		 Identify geospatially e GRSG habitats 	xplicit management strategies to conserve
 16 17 18 19 20 21 22 23 24 25 26 27 28 29 	1.4	COLLABORATION The FIAT process requires partner involved in land or wildlife mana; Western Great Basin/Warm Sprin BLM district teams, the USFWS, th the California Department of Department of Fish and Wildlife (C Eastern Oregon Area, Institute for Conservancy (Oregon), and the (NRCS). The team held twelve workshop Cedarville, California; one in Winn one each in Burns, Prineville, and 1-2).	rship with cooperators, agencies, and others gement in the FIAT assessment areas. The logs Valley FIAT team collaborated with the ne Nevada Department of Wildlife (NDOW), Fish and Wildlife (CDFW), the Oregon DDFW), the Oregon Department of Forestry for Natural Resources/Sagecon, The Nature Natural Resources Conservation Service ps: three in Susanville, California; two in nemucca, Nevada; two in Lakeview, Oregon; Vale Oregon; and one in Reno (see Table
30		Meeting attendees participated in the	ne following:
31		Reviewed FIAT Step 1	data for accuracy and applicability
32		Incorporated refined le	ocal information, such as lek location, BBD,
33 34		telemetry, vegetation, Step I findings	fire occurrence, and other data, to augment
35		 Identified and descri 	bed the extent of the PPAs, potential
36 37		treatments, and appro program areas	opriate management strategies in the four

• Documented the rationale and local factors influencing the identification of management strategies

Team Leader Ken Collum (BLM California, Eagle Lake Field Office Manager) conducted outreach for participation via phone calls, e-mails, and direct conversations. From this outreach, more than 65 interagency participants contributed to the Western Great Basin/ Warm Springs Valley FIAT. During workshops, participants shared local data, such as lek information, seasonal habitat maps, and potential treatments already planned through partnerships outside of the FIAT. Collectively, multiple sources of data were combined to provide the basis for an integrated program of work in the Western Great Basin/Warm Springs Valley FIAT assessment area.

- In addition to local data sets the largest contributor to the assessment was how the local team members used the data sets and their extensive knowledge of the PPAs.
 - A complete list of names and affiliations of meeting participants and contributors is in Appendix D.
 - I.4.1 Meetings

List of Freedings		
Date	Location	
August 29	Susanville, California	
September 16 to 18	Reno, Nevada	
September 26	Cedarville, California	
September 29	Prineville, Oregon	
October 23	Lakeview, Oregon	
October 16	Cedarville, California	
November 12	Susanville, California	
November 3	Burns, Oregon	
November 4	Vale, Oregon	
December 4	Winnemucca, Nevada	
December 8	Susanville, California	
December 9	Lakeview, Oregon	
March 3	Burns, Oregon	
March 4	Winnemucca, NV	
March 9	Lakeview, OR	
March II	Susanville, CA	

Table 1-2 List of Meetings

19

Т

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

March 2015 Snake, Salmon, and Beaverhead Warm Springs Valley NV/Western Great Basin Date Saved: 3/24/2015 Data Sources: Bureau of Land Management, ESRI Basedata

SECTION 2

2 DATA MANAGEMENT AND STEP-DOWN

PROCESS

4 5		This section describes the data management method and process used for stepping down from Step I to Step 2.
6	2.1	EXAMINATION OF FIAT STEP FINDINGS
7		FIAT Step I focal habitat identification was based on the compilation of existing
8		state-level breeding bird density (BBD) data sets. BBD is a spatially dependent
9		measure; for this reason, these initial data sets were plagued by a strong spatial
10		bias of focal habitat, with limited representation of the extents of the five
11		identified USFWS PACs.
12		The Step I data sets for PAC and BBD capture and mimic the established
13		perimeters from local data sets. With minor adjustments from new data and
14		geographic refining, these Step I data sets provide adequate parameters for Step
15		2 analyses.
16		The conifer data model is coarse and the amount of expansion is
17		overrepresented. Initial evaluation shows that there is no local
18		underrepresentation, which is as important. The conifer expansion data layer is
19		easily refined at the local level, especially within focal habitat perimeters. The
20		locally refined conifer data layers are critical to prioritizing conifer projects in or
21		next to focal habitat and further incorporation of connectivity data.
22		Soil moisture temperature data is adequate to qualify priorities and treatments
23		within the PPAs.
24		The assessment had the following limitations:

 2 3		 Focal habitat was created with incomplete data because lek survey intensity, consistency, and repeatability do not conform to high statistical rigor.
4 5 6		 In more migratory GRSG populations, BBD-based focal habitat may not adequately capture winter habitat areas or other critical habitat areas.
7 8		• Telemetry data to better inform how GRSG use the landscape was limited
9 10 11		 Focal habitat represents a mid-scale characterization of habitat importance to only inform, not define, fine-scale management areas and treatments.
12 13 14 15		 Focal habitat typically captures the highest quality intact GRSG habitat; therefore, it would have improved the Step 2 assessment process if the potential of habitat restoration and fuels management activities outside of focal habitat had been assessed more.
16 17 18 19		 Focal habitat was the main focus for treatments in PPAs. Future efforts need to consider further habitat recovery/restoration and fuel treatments outside of focal habitats, which will be completely analyzed in the future.
20	22	INCORPORATION OF LOCAL DATA
21		The Western Great Basin/Warm Springs Valley assessment team identified
22		individual PPAs using the focal habitat boundaries developed as part of the FIAT
		•
23		Step I analysis. Conifer expansion, wildfire threat, sagebrush landscape cover,
23 24 25		Step I analysis. Conifer expansion, wildfire threat, sagebrush landscape cover, BBD, and additional local data were also used to define the PPA boundaries and inform each PPA assessment.
23 24 25 26		Step I analysis. Conifer expansion, wildfire threat, sagebrush landscape cover, BBD, and additional local data were also used to define the PPA boundaries and inform each PPA assessment. The local layers used GIS data from local, state, and federal partners, as follows:
23 24 25 26 27		 Step I analysis. Conifer expansion, wildfire threat, sagebrush landscape cover, BBD, and additional local data were also used to define the PPA boundaries and inform each PPA assessment. The local layers used GIS data from local, state, and federal partners, as follows: Forest Service
23 24 25 26 27 28		 Step I analysis. Conifer expansion, wildfire threat, sagebrush landscape cover, BBD, and additional local data were also used to define the PPA boundaries and inform each PPA assessment. The local layers used GIS data from local, state, and federal partners, as follows: Forest Service USFWS
23 24 25 26 27 28 29		 Step I analysis. Conifer expansion, wildfire threat, sagebrush landscape cover, BBD, and additional local data were also used to define the PPA boundaries and inform each PPA assessment. The local layers used GIS data from local, state, and federal partners, as follows: Forest Service USFVVS BLM district offices
23 24 25 26 27 28 29 30		 Step I analysis. Conifer expansion, wildfire threat, sagebrush landscape cover, BBD, and additional local data were also used to define the PPA boundaries and inform each PPA assessment. The local layers used GIS data from local, state, and federal partners, as follows: Forest Service USFWS BLM district offices Oregon Department of Fish and Wildlife
23 24 25 26 27 28 29 30 31		 Step I analysis. Conifer expansion, wildfire threat, sagebrush landscape cover, BBD, and additional local data were also used to define the PPA boundaries and inform each PPA assessment. The local layers used GIS data from local, state, and federal partners, as follows: Forest Service USFVVS BLM district offices Oregon Department of Fish and Wildlife NDOW
23 24 25 26 27 28 29 30 31 32		 Step I analysis. Conifer expansion, wildfire threat, sagebrush landscape cover, BBD, and additional local data were also used to define the PPA boundaries and inform each PPA assessment. The local layers used GIS data from local, state, and federal partners, as follows: Forest Service USFWS BLM district offices Oregon Department of Fish and Wildlife NDOW California Department of Fish and Wildlife
23 24 25 26 27 28 29 30 31 32 33		 Step I analysis. Conifer expansion, wildfire threat, sagebrush landscape cover, BBD, and additional local data were also used to define the PPA boundaries and inform each PPA assessment. The local layers used GIS data from local, state, and federal partners, as follows: Forest Service USFWS BLM district offices Oregon Department of Fish and Wildlife NDOW California Department of Fish and Wildlife US Geological Survey
23 24 25 26 27 28 29 30 31 32 33 34		 Step I analysis. Conifer expansion, wildfire threat, sagebrush landscape cover, BBD, and additional local data were also used to define the PPA boundaries and inform each PPA assessment. The local layers used GIS data from local, state, and federal partners, as follows: Forest Service USFWS BLM district offices Oregon Department of Fish and Wildlife NDOW California Department of Fish and Wildlife US Geological Survey NRCS
 23 24 25 26 27 28 29 30 31 32 33 34 35 		 Step I analysis. Conifer expansion, wildfire threat, sagebrush landscape cover, BBD, and additional local data were also used to define the PPA boundaries and inform each PPA assessment. The local layers used GIS data from local, state, and federal partners, as follows: Forest Service USFWS BLM district offices Oregon Department of Fish and Wildlife NDOW California Department of Fish and Wildlife US Geological Survey NRCS The Nature Conservancy
 23 24 25 26 27 28 29 30 31 32 33 34 35 36 		 Step I analysis. Conifer expansion, wildfire threat, sagebrush landscape cover, BBD, and additional local data were also used to define the PPA boundaries and inform each PPA assessment. The local layers used GIS data from local, state, and federal partners, as follows: Forest Service USFWS BLM district offices Oregon Department of Fish and Wildlife NDOW California Department of Fish and Wildlife US Geological Survey NRCS The Nature Conservancy INR/Sagecon

L 2.2.1 **Data Description** 2 The types of local data used in this report were breeding and winter habitat and 3 telemetry. Also used were data on the following: 4 Fire history and occurrence • 5 Fire behavior, suppression, and threat modeling • 6 Fuel modeling 7 LANDFIRE 8 Vegetation occurrence, especially cheatgrass, and other GRSG 9 biologically significant unit data 10 Road layer and slope/aspect П **Elevation models** 12 Conifer expansion model 13 Soil temperature and moisture data 14 Land status (wilderness, wilderness study area) 15 Weed location and type 16 Ecological site inventories 17 Satellite and National Agriculture Imagery Program (NAIP) imagery 18 **Rationale for Selection** 2.2.2 19 Data selection was based on quantity and quality of local data sets. All relevant 20 data were analyzed to determine usefulness and robustness within each FIAT 21 assessment. 22 The data availability and quality varied throughout the BLM and partner districts 23 (regions). Quality vegetation data were highly variable but were critical to the 24 assessments. Where actual vegetation data were sparse, local knowledge was 25 critical to filling in the gaps. The local and regional data sets were only as good 26 as the local expert's interpretation and use of them. The core data sets 27 common and critical to quality assessments were as follows: 28 Soil temperature and moisture 29 Vegetation/conifer 30 Slope/aspect (e.g., north slope, south slope) 31 **BBD**/core habitat 32 Telemetry 33 Road, structure layer

I			Previous and ongoing treatments
2			Fire occurrence and history
3 4 5 6 7 8	2.3	NATIONAL D	National data sets defining PACs and Western Association of Fish and Wildlife Agencies (WAFWA) management zones were initial data products used to define FIAT assessment areas. In addition, the following national data layers provided the initial, broad-scale characterization of conditions in the WGB assessment area. These data sources are fully described in the FIAT report.
9 10 11 12 13		2.3.1	Breeding Bird Density The spatial depiction of breeding bird density (BBD) for the WGB FIAT assessment area comes from State-level analysis done by Doherty (2010). Because updated BBD data were not available for all three States, the Doherty (2010) 75percent BBD data from FIAT step I were utilized.
4 5 6 7 8 9		2.3.2	Conifer Expansion The common conifer expansion layer used in WGB FIAT workshops to identify management opportunities was a product developed by Manier et al (2013), and the same layer used in FIAT step 1. In addition, the Oregon portions of the WGB utilized a SageCon layer which more accurately reflected conifer expansion in Idaho
20 21 22 23 24 25 26 27 28 29		2.3.3	Wildfire Threats The primary data set used to characterize wildfire threat or probability was the large fire simulator (FSIM) burn probability layer. Based upon past trends in fire occurrence and size, the FSIM layer displays the relative likelihood for fire occurrence and large fire growth in the future. The data were classified into five classes, and the highest two burn probability classes (i.e., high and very high) were combined. The proportion of each PPA containing high and very high burn probability was used in identifying potential treatment opportunities and fire operations priorities. In addition, wildfire perimeters from GEOMAC were utilized in portraying past disturbance history and patterns.
30 31 32 33 34 35		2.3.4	Soil Moisture/Temperature Regime A coarse layer characterizing soil temperature and moisture regimes was developed through the Chambers et al (2014) general technical report. Using soil subclasses and the most refined soil survey data available, a layer depicting the sage-grouse habitat matrix was developed. This layer intersected resilience categories with sagebrush landscape cover Sagebrush Landscape Cover
36 37 38 39			The sagebrush landscape cover layer used was developed by the BLM National Operations Center. It replaced the layer used in FIAT step I by utilizing a sagebrush data set which will be updated annually as part of the BLM's Disturbance and Monitoring project.

 2 3		2.3.5	Other Data Layers Additional data layers used in workshops and analysis for the WBG FIAT assessment include:
4 5 6			• The spatial depiction of the sage-grouse habitat matrix, which was a nine category geospatial product depicting both resilience class and percent sagebrush landscape cover;
7			 Lek data provided by ODFW and NDOW;
8			 Seasonal habitat data provided by ODFW, NDOW, and CDFW.
9			 Local monitoring and inventory data related to habitat use
10			Telemetry data
 2 3 4 5 6 7	2.4	Data Gaps	IDENTIFIED This report is based on the best information available at the time of publication. The BLM recognizes there are areas where additional information would enhance the value of this report and further support implementation of FIAT objectives and overall GRSG conservation efforts. Following are data gaps identified during the completion of the WGB FIAT assessment:
18 19			 Updated 75 percent BBD for California, Nevada, and Oregon, which reflects recent bird surveys and trends in habitat use;
20 21			 Higher definition conifer expansion layer, which makes distinction between true woodlands versus areas experiencing expansion;
22 23			• Comprehensive spatial layer of invasive annual grass distribution and cover.
24			

This page intentionally left blank.

I

SECTION 3 ASSESSMENT AREA CHARACTERIZATION

3 3.1 WESTERN GREAT BASIN/WARM SPRINGS VALLEY ASSESSMENT AREA

The Western Great Basin/Warm Springs Valley assessment area consists of three populations or subpopulations in south-central Oregon, northeastern California, and northwestern Nevada. It represents the westernmost extent of the GRSG and contains a mix of habitat issues that have had long-term effects on GRSG populations. The range of GRSG in this region has continued to shrink over the last three decades, while some populations within the zone are relatively stable. When considered in its entirety, population changes from 1965 to 2004 are statistically undetectable (Connelly et al. 2004). The Western Great Basin/Warm Springs Valley assessment area is characterized as one of those supporting the highest densities of GRSG.

- 14 The northeast California/northwest Nevada/south-central Oregon 15 subpopulation includes portions of west Humboldt and north Washoe Counties 16 in Nevada, east Lassen and southeast Modoc Counties in California, and south 17 Lake and Harney Counties in Oregon. This area also encompasses the Sheldon 18 National Wildlife Refuge. The subpopulation includes a mix of extirpated, highly 19 threatened, and relatively stable population management units (PMUs). In the 20 COT Report (USFWS 2013), the USFWS generalizes threats to this 21 subpopulation as isolation and small size, conifers, fire, weeds, annual grasses, 22 livestock, and wild horses.
- 23Overall, modeling for the northeast California/northwest Nevada/south-central24Oregon subpopulation indicates that 56 percent of sagebrush habitats support2510 to 30 percent sagebrush cover, which is considered suitable habitat. Habitat26condition trends, which include habitat treatments under current management,27are projected to bring sagebrush habitats supporting 10 to 30 percent cover up28to 45 percent in 50 years. The trend is down due to increasing annual grasses29and conifer encroachment.

4

5

6

7

8

9

10

П

12

- The south-central Oregon/north-central Nevada subpopulation of GRSG habitat 2 is in Humboldt County, Nevada, north of Highway 140 and west of Highway 95; 3 it also encompasses south Harney and Malheur Counties, Oregon, to the north. 4 The subpopulation is continuous into Oregon and also includes the Trout Creek Mountains and the Hart Mountain National Antelope Refuge.
- 6 The subpopulation is considered a stronghold in the Western Great 7 Basin/Warm Springs Valley. It contains one of the most densely populated 8 winter ranges in Nevada. Fire activity is high, with total burned acreage of nearly 9 25 percent. In 2012, the Holloway Fire burned approximately 214,000 acres in 10 the Nevada portion and another 245,000 acres in Oregon.
- 11 Modeling indicates that 30 percent of the assessment area contains 10 to 30 12 percent sagebrush cover, which is considered suitable habitat. Habitat condition 13 trends, which include continued implementation of habitat treatments under 14 current management, are projected to bring sagebrush habitats supporting 10 to 15 30 percent cover up to 35 percent in 50 years. Current vegetation treatments 16 are an improving trend, though greatly impacted by recent fire activity. The 17 COT Report (USFWS 2013) characterizes fire and annual grasses as substantial 18 and imminent threats in this portion of the subpopulation; the report 19 characterizes mining and infrastructure as substantial and not imminent.
- 20 The Warm Springs Population (Pah Rah and Virginia PMUs) habitat is entirely in 21 southern Washoe County, Nevada. This area is bounded on the west by 22 Highway 395, on the south by Long Valley, Interstate Highway 80, and the cities 23 of Reno and Sparks, and on the east and the north by State Highway 446.
- 24 Wildfires have burned approximately 35 percent of this PMU, converting 25 sagebrush-dominated shrublands into annual grasses and weeds. Wildfires that 26 occurred from 1999 through 2001 were particularly devastating, burning some 27 of the last strongholds of GRSG habitat left in both the Pah Rah and Virginia 28 Mountain Ranges. GRSG in these two mountain ranges occur in small isolated 29 pockets of suitable habitat in the northern Virginia Mountains. GRSG currently 30 use an estimated 54,000 acres (15 percent) of the 356,034 acres in this PMU. 31 Only 65 percent is under BLM administration, 24 percent is under private 32 ownership, and nine percent belongs to the Pyramid Lake Indian Tribe.
- 33 Urbanization particularly in the Pah Rah Range threatens existing GRSG habitat. 34 Modeling indicates that 60 percent of the remaining sagebrush habitats support 35 10 to 30 percent sagebrush cover, which is considered suitable habitat. Habitat 36 condition trends, which include continued implementation of habitat treatments 37 under current management, are projected to bring sagebrush habitats 38 supporting 10 to 30 percent cover up to 56 percent in 50 years. Downward 39 trends are slight and are due to treatment rates not keeping pace with annual 40 grass expansion.

L

NDOW analyzed factors in these mountain ranges and found a high probability of extirpation within the next 20 years; only three active leks are known. Current population estimates based on these leks indicate declining numbers, with a spring breeding population of 150 to 200 GRSG. The COT Report (USFWS 2013) notes only two leks and characterizes the population at less than 200 males. It does not provide estimates for persistence.

The report highlights a myriad of threats, including fire infrastructure, weeds and annual grasses, conifer, energy, free-roaming horses and burros, recreation, and urbanization. The report identifies the population as "at risk" overall.

L

2

3

4

5

6

7

8

9

10

11

12

13

3.1.1 Vegetation

Sagebrush generally occurs throughout the Western Great Basin/Warm Springs Valley. Because it is a dominant vegetation type in the planning area, a high number of species have evolved specifically to thrive in sagebrush habitat.

- 14Sagebrush types are generally found in a mosaic with other habitat types but can15occur as large monotypic expanses. Sagebrush habitats generally occur between164,500 and 10,000 feet and are widespread throughout the valley, foothill, and17mountain environments (NDOW 2012b).
- 18Annual precipitation ranges from eight to 30 inches, mostly in the form of snow.19Temperatures range from -30 to 110 degrees Fahrenheit (°F). Sagebrush20overstory structure can range from less than six inches on exposed, rocky21slopes up to nine feet in drainages where basin big sagebrush has extended its22roots into the water table. Sagebrush canopy, however, is generally between23two and three feet high. Crown cover varies from one to 70 percent but24commonly is between 20 and 40 percent (NDOW 2012b).
- 25 There are 27 recognized species and distinct subspecies of sagebrush in the 26 planning area. Dominant species are: basin big sagebrush, (Artemisia tridentata 27 ssp. tridentata) mountain big sagebrush, (Artemisia tridentata ssp. vaseyana) 28 Wyoming big sagebrush, (Artemisia tridentata ssp. wyomingensis) low sagebrush, 29 (Artemisia arbuscula) black sagebrush, (Artemisia nova). Codominant plant 30 species are: bitterbrush, (Prushia tridentata) snowberry, (Amelanchier ssp.) yellow 31 rabbitbrush, (Chrysothamnus ssp.) rubber rabbit brush, (Ericameria ssp.) 32 snakeweed, (Gutierrezia ssp.) white sage, (Artemisia ludoviciana ssp.) spiny 33 hopsage, (Grayia spinosa) bluebunch wheatgrass, (Pseudoroegneria spicata) 34 bluegrass, (Poa ssp.) needle and thread, (Hesperostipa comata) Idaho fescue, 35 (Festuca idahoensis) Indian ricegrass, (Achnatherum hymenoides) Great Basin 36 wildrye, (Leymus cinereus) Indian paintbrush, (Castilleja ssp.) lupine, (Lupinus ssp.) 37 buckwheat, (Eriogonum ssp.) globemallow, (Sidalcea ssp.) penstemon, (Penstemon 38 ssp.)
- 39The altitudinal distribution of sagebrush generally follows a pattern of basin big40sagebrush in the valley floors or lower alluvial fans, Wyoming big sagebrush at41mid-elevations, and mountain big sagebrush above 6,500 feet. Low and black

sagebrush are both low-growing shrubs that rarely exceed heights of 15 inches. It grows primarily on shallow or poorly drained soils with a root restricting layer, interspersed throughout the greater sagebrush expanse in many elevation bands.

Commonly occurring trees in the planning area are Utah juniper, western juniper, mountain mahogany, ponderosa pine, and Douglas-fir. Aspen communities are dispersed throughout the planning area, and conifer forests dominate the higher elevations.

- The planning area has a diverse aquatic environment from wetland, spring, meadow, seep, vernal pool, stream/river, and riparian communities. These provide invaluable water sources across the arid, cool desert landscape.
- 12Sagebrush range in good condition supports an abundant understory of protein-13rich bunchgrasses and forbs. The presence of this understory is critical to the14needs of other wildlife species, including the sagebrush vole. The various shrew15species that live in sagebrush depend on the productivity of the herbaceous16component for the abundant production of their prey, as well as for cover.

3.1.2 Invasive Annual Grasses

Much of the planning area has been substantially altered or degraded since the nineteenth century by a combination of change agents. Despite being in one of the least developed regions of the country, the Western Great Basin sage steppe is one the most threatened ecosystems in the country. Major change agents that negatively affect GRSG are increases in both the frequency and intensity of wildfire, invasive annual grasses, the expansion of native juniper species, development, and livestock and wild ungulate grazing that exceeds land health standards. The aggregate effects of these change agents have altered the planning area's sagebrush, riparian, and forest habitats (Miller et al. 1994).

- 27In the southern and lower elevations of the Western Great Basin much of the28basin big sagebrush and Wyoming big sagebrush range lacks understory of native29bunchgrasses and forbs that were historically present. Shrub cover has increased30from what are generally regarded as the conditions before Euro-American31contact. Nonnative annual grasses, most notably cheatgrass, have invaded big32sagebrush range, bringing with them an accelerated fire interval for which33sagebrush regeneration cannot compensate.
- Low and black sagebrush are being similarly invaded by cheatgrass throughout the area. Medusahead in northern Nevada is an aggressive exotic grass that can tolerate the shallow clay soils of these ecological sites. It can have a similar negative impact through altered fire regime and is threatening the low sagebrush landscape. Over time, shrubland with high species diversity is being converted to annual grassland, with drastically reduced wildlife value (NDOW 2012b).

L

2

3

4

5

6

7

8

9

10

11

17

18

19

20

21

22

23

24

25

3.1.3 Conifer Encroachment

L

2

3

4

5

6

7

8

18

19

20

21

22

23

24

25

26

27

28

Pinyon and juniper species have expanded into the Western Great Basin due to range overgrazing in the nineteenth century and the first half of the twentieth century (Young and Sparks 2002) and fire suppression after the 1920s (Pyne 2004). Many true woodlands within a few miles of mines were harvested or thinned during the historic mining era of the late nineteenth century; however, many woodlands have repopulated the soils that supported them and continue to aggressively contribute to the expansion of trees into sagebrush range.

9Pinyon and juniper expansion into sagebrush habitats drastically alters range10structure and creates conditions difficult to restore. Pinyon and juniper11expansion is also generally facilitated by regional warming (Grayson 1993;12Tausch and Nowak 1999).

13Currently there is considerable discussion about the need to manipulate the14balance between woodland expansion and healthy sagebrush communities. This15is because of the recent efforts to conserve GRSG and the habitat needs of16pinyon and juniper obligates. One example is the pinyon jay, which is currently17experiencing a four to six percent decline in population per year (GBBO 2010).

3.1.4 Fire Regime and History

Currently wildfire and invasive annual grasses are by far the greatest management concerns.

An overwhelming proportion of the Western Great Basin is predicted by this model to support annual grasses at 45 percent cover. Although disturbance drives the competitive success of these invasive annual grasses, future disturbances will continue in the present patterns. This is undoubtedly the most severe circumstance on an eco-regional scale in the western United States. Indicators suggest overall that substantial fire regime departure has occurred throughout the montane uplands (montane forest and shrubland vegetation) of the Western Great Basin.

29 The current landscapes of the Western Great Basin/Warm Springs Valley FIAT 30 assessment area are highly altered from reference conditions, and face 31 enormous challenges related to altered fire regimes and conversion to stable 32 state ecological conditions. Altered fire regimes are most often reflected by 33 changes in vegetation composition, vegetation structure, fire frequency, and fire 34 severity when compared with reference conditions. Many factors interact to 35 change fire regimes, including patterns of herbivory, annual grass establishment, 36 disturbance frequency/severity, and human land management. The expansion of 37 conifers described in the previous section is in part a consequence of the 38 removal of fire during successional advancement. Conversely, the large-scale 39 conversion to invasive annual grass communities has been largely driven by the 40 interplay of soil disturbance and frequent wildfires. The current annual grass 41 communities have a contagion effect on future wildfires, where the size and 42 spread of future wildfires expands from existing annual grass "footprints". Many

Imature western juniper trees have attained a high degree of fire tolerance, due2to the thick bark they attain as they mature. Collectively, these consequences of3altered fire regimes require unique management strategies to restore the4desired vegetation communities and ecological function.

- 5 Known as fire regime departure in the fire analysis discussions, it reflects a
 6 similar spatial pattern to that provided by the invasive annual grass indicator.
- 7 While annual grasses and fire regime departure are linked processes on the landscape, invasive species are not yet fully coupled with fire regime departure.
 9 For example, fire frequency remains very low in some desert scrub types, while they appear to be accumulating invasive plant abundances.
- IIFire regime departure models for 2025 to 2060 indicate relative minorI2differences; thus, management priorities guided primarily by the analysis ofI3current conditions should hold for the upcoming decades. Where currentI4conditions suggest needs for habitat restoration and management focus,I5forecasts for upcoming decades for landscape condition and fire regimeI6departure suggest those same management directions.

3.1.5 Soil/Moisture Regime (Resistance and Resilience)

- Resistance and resilience regimes in the Western Great Basin/Warm Springs Valley vary dramatically depending on latitude and elevation. Typically the southern areas are predominantly warm, dry soil types that are at greatest risk for conversion to invasive annual grasses. The northern Western Great Basin tends to be higher elevation and exhibits more cool dry to moist soil types. This area is more resistant to invasive species (see **Tables 3-1 and 3-2**).
- 24The resistance and resilience regimes where consolidated in Table 2 of the25Chambers, et. al. (2014) General Technical Report. The table presents the26resistance and resilience regimes in a nine cell matrix which corresponds to the27equivalent GIS layer used during Step 2 analysis. The sage-grouse habitat matrix28(Table 2) was a critical tool in evaluating management strategies and a focal29point for collective understanding of the concepts during Step 2 workshops and30presentations.
- 31The key factors considered within the soil moisture regimes are elevation, slope32aspect, and present day habitat conditions. Recent fire history (Table 3-3) has33followed the resistance and resilience model, in which there is conversion to34invasives in warm/dry soil type where invasives existed in the understory before35disturbance. At higher elevations and on north slopes, invasives in the36understory tend to be less, and after a disturbance they are manageable by an37aggressive treatment strategy (See Tables 3-4 through 3-10).

17

18

19

20

21

22

Sage-Grouse Habitat Matrix Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Date Saved: 3/26/2015

1:148,636

Data Sources: BLM, ESRI Basedata

Moderate and <25% sagebrush cover

Moderate and >65% sagebrush cover

Moderate and 25-65% sagebrush cover

use or aggregate use with other data.

FIAT Project Planning Areas

Sheldon NWR unavailable.

Data Sources: BLM, ESRI Basedata 1:148,636

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

National Forest

> Fire History 1 - 5 Years old 6 - 10 Years old 11 - 15 Years old

N

 16 - 20 Years old
 State Boundaries

 21 - 25 Years old
 BLM District Boundary

 26 - 30 Years old
 FIAT Project Planning Areas

95

March 2015 Date Saved: 3/25/2015 Data Sources: BLM, ESRI Basedata 1:148,636

Western Great Basin Bureau of Land Management U.S. Department of the Interior

SECTION 4

2 FOCAL HABITAT AND PROJECT PLANNING

3 **AREAS**

4
5

6

7

8

9

10

П

12

13

14

15

16 17

4.1 FOCAL HABITAT AND PROJECT PLANNING AREAS

4.1.1 Focal Habitat Areas Overview

Chambers et al. (2014) illustrates a step-down approach for identifying and assessing priority GRSG habitats across large landscapes and provides guidelines to identify effective management strategies/actions and habitat restoration needs across four primary federal agency program areas: fuels management, fire operations, habitat restoration/recovery, and post-fire-rehabilitation. The approach is based on widely available data, described in Section 2.3, to provide consistency across millions of acres and includes: (one) PACs, (two) BBDs, (three) habitat suitability as indicated by the landscape cover of sagebrush (not foliar cover), (four) resilience and resistance and dominant ecological types as indicated by soil temperature and moisture regimes, and (five) habitat threats as indicated by cover of cheatgrass, cover of piñon and juniper, and by fire history.

Using this approach, development and review teams were identified and tasked 18 19 with initiating the FIAT process in an effort to reduce threats to GRSG resulting 20 from impacts from invasive annual grasses, wildfires, and conifer expansion. Step 21 I FIAT team members included individuals from federal agencies that administer 22 the four federal program areas that are the focus of the assessment. They used 23 this approach to identify priority habitat areas, further referred to as "focal 24 habitats." Focal habitats are the portions of a PAC with important habitat 25 characteristics and bird populations that are most impacted by the previously 26 identified threats. See Greater Sage-Grouse Wildlife, Invasive Annual Grasses & 27 Conifer Expansion Assessment (2014) for further Step I details. The results of 28 Step I of the FIAT process, including geospatial data, were made available as the 29 starting point for the assessment teams identified for Step 2 of the FIAT 30 process.

4.1.2 Project Planning Areas Overview

As part of the FIAT Step 2 process, the Western Great Basin/Warm Springs Valley team assessed and identified broad PPAs and associated proactive and reactive management strategies and vegetation treatments focused on the four program areas (fuels management, fire operations, habitat restoration and recovery, and post-fire rehabilitation management). The team used focal habitats as the spatial starting point and through the Step 2 process. In Oregon, the "Core Habitat" layer that had been previously developed was used in the PPA assessments. In Nevada, NDOW developed a core habitat layer that was used. In California and NW Nevada connectivity corridors were analyzed based on local knowledge and telemetry data. All data layers extending the original focal habitat boundaries to include new data and/or was more inclusive of all seasonal GRSG habitat requirements.

- 14Each PPA contains at least one focal habitat, and in many cases, several. For most15PPAs, management strategies/actions and treatments were identified outside of16focal habitats based on local knowledge that these areas are crucial to the long-17term viability of GRSG populations within the PPA.
- 18 The team subsequently used a series of worksheet templates prepared for each 19 program area to identify treatment opportunities for the four program areas 20 within each PPA. For each District Office in the assessment area, team members 21 participated in one or more in-person workshops to discuss and complete the 22 assessment for each PPA. In order to consider the broadest spectrum of possible 23 treatment opportunities, the team did not consider landownership when 24 conducting these assessments. Additionally, the team restricted potential fuel 25 breaks to existing roads in order to minimize further disturbance, fragmentation, 26 and reduce the likelihood of increasing invasive annual grass abundance.
- 27 The local teams combined regional datasets, local datasets and local knowledge 28 when developing management actions within the PPAs. The resilience and 29 resistance data (matrix) and modelling was the underlying dataset on which the 30 management strategies and actions were developed. Where detailed local data 31 and knowledge was available it was incorporated into the assessments and further 32 refined management priorities. In some PPAs the local habitat (vegetation) data 33 and on ground knowledge was robust and drove the final strategies as a priority 34 over the resilience and resistance data.
- 35The other local datasets which drove habitat treatment decisions was elevation36modelling, generally between 5,000 and 6,000 feet and aspect data for predictive37treatment success.
 - See **Figure 4-1**, FIAT Assessment Teams (in relation to WAFWA Management Zones)

38

39

I

2

3

4

5

6

7

8

9

10

Ш

12

Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

March 2015 Snake, Salmon, and Beaverhead Warm Springs Valley NV/Western Great Basin Date Saved: 3/24/2015 Data Sources: Bureau of Land Management, ESRI Basedata

4.2 WESTERN GREAT BASIN/WARM SPRING VALLEY PROJECT PLANNING AREAS Т

Below, are descriptions of each of the PPAs within the Western Great Basin/Warm Springs Valley Assessment Area. Each PPA description includes a 1) characterization of the PPA landscape, 2) examination of the proposed management strategies within the PPA, and 3) spatial depiction of the proposed treatments/management strategies. Additional supporting information is included in the appendix.

4.2.1 Frenchglen

Project Planning Area Description

General Site Description

13 The Frenchglen PPA is centrally located within the Burns District BLM and lies 14 within the Andrews Resource Area near Frenchglen, OR. The Frenchglen PPA 15 takes in the entirety of the Steens PAC and adjacent core GRSG habitat. The 16 total size of the Frenchglen PPA is 185,397 acres and is comprised of: 151,182 acres of BLM, 30,578 acres of private, 2,979 acres of USFWS, and 658 acres of 18 State ownership. Prominent land features found within this PPA boundary 19 include: the Donner and Blitzen Wild and Scenic River, portions of the Steens 20 Mountain Wilderness, and portions of the Steens Mountain Loop Road. The Malheur National Wildlife Refuge was not considered as part of the analysis area 22 for active treatments, but was considered for protection through treatments 23 established on BLM administered lands. Some identified treatments extend 24 outside of the PPA boundary and are deemed necessary to protect the 25 Frenchglen PPA and improve GRSG habitat connectivity. Primarily this pertains 26 to fuel break treatments and improvement/maintenance of roadways to support 27 fire operation activities, but also addresses conifer encroachment threats.

28 The general aspect of Steens Mountain is a gradual incline, rising in elevation 29 from west to east on this lifted fault block geologic feature. Elevation within the 30 Frenchglen PPA ranges from 4,500 ft. to nearly 7,000 ft and is predominantly 31 characterized as having moderate resistance/resilience (see **Table 4-1**).

		0	0				0			
Matrix Category	No Data	IA	IB	IC	2 A	2B	2C	3 A	3B	3C
Acres	4,541	16,883	6,028	41	13,461	104,607	20,364	0	16,310	3,332
Percent of PPA	2	9	3	0	7	56	11	0	9	2
	Sage	e-grouse								
	The	general	trend i	n GRS	G popul	lation sho	ows a slo	ow dec	line with	in the
	Fre	nchglen F	PA, base	ed upor	n annual	lek count	data dati	ing bacl	k to 200	6. This
	dow	/nward t	rend coul	Id be at	tributed	to a num	ber of fac	tors, w	hich inclu	ide but

Table 4-1 Frenchglen Sage-Grouse Habitat Matrix Categories

2

3

4

5

6

7

8

9 10

11 12

17

l 2	are not limited to; drought, wildfire, sagebrush die off (Aroga moth infestation), predation.
3 4	There are 10 active leks, five inactive leks, and one historic lek known to exist within the Frenchglen PPA (see Table 4-2).

Table 4-2Greater Sage-Grouse Leks found within the Frenchglen Project Planning Area

Lek Name/ ODFW Site ID	Conservation Status	
Bald Headed (HA0003-01)	Occupied (Active)	
South Bridge Creek (HA0004-01)	Occupied (Active)	
Indian Creek (HA0016-01)	Occupied Pending	
Butler Hill (HA0044-01)	Occupied Pending	
North Bridge Creek #1 (HA0098-01)	Unoccupied Pending	
Ham Brown Lake #1 (HA0077-01)	Occupied (Active)	
Ham Brown Lake #2 (HA0077-02)	Occupied (Active)	
Ham Brown Lake #3 (HA0077-03)	Unoccupied Pending	
Steens South Loop (HA0050-01)	Unoccupied Pending (Inactive)	
P Hill Historic (HA0001-02)	Historic	
Long Dam (HA0002-01)	Unoccupied Pending (Inactive)	
Dry Creek Flat #2 (HA0002-02)	Occupied (Active)	
Dry Creek Steens (HA0002-03)	Unoccupied Pending	
North Bridge Creek #2 (HA0098-02)	Occupied Pending	
Tombstone (HA0124-01)	Occupied Pending	
Kueny Canyon (HA0126-01)	Occupied (Active)	

5 6 7

Vegetation
Due to the elevation range within the Frenchglen PPA, from 4,500 ft. to nearly
7,000 ft., there are a large diversity of plant communities present. Generally
speaking, this PPA is dominated by mountain big sagebrush plant communities,
however, across this wide elevation range, which is further influenced by a
substantial topographical/aspect, a diversity of other sagebrush communities can
be found, including: Wyoming big sagebrush, basin big sagebrush, silver sagebrush, and low sagebrush (see Table 4-3).

Table 4-3General Plant Associations based upon ESI Soil Types for Frenchglen PPA

Ecological Site Identification (ESI) Number	ESI Soil Type	General Plant Associations	Acres
023XY213OR	Sandy Loam 10-12	Basin Big Sage; Needleandthread;	494
024XY016OR	Loamy 8-10	Ricegrass	7536
024XY018OR;	Sandy Loam 8-10; Loamy	-	1853
023XY212OR	10-12		
024XY018OR;	Sandy Loam 8-10; Loamy 8-	_	5
024XY016OR	10		
		Total	9888

Ecological Site			
Identification (ESI)	ESI Soil Type	General Plant Associations	Acres
	Acres 16.25	Man Dig Sagar Law Sagar Eastrong	(2)
023X1418OR	Aspen 16-35	_ Mith Big Sage; Low Sage; rescues;	021
023X1301OK	Type	Aspen	2770
023XY418OR;	Aspen 16-35; Subalpine		610
023XY509OR	Slopes 16-35		
	· · · ·	Total	4000
023XY216OR	Claypan 12-16	Mtn Big Sage; Low Sage; Idaho Fescue;	42971
023XY408OR	Rocky Ridges 12-16	Needlegrass	315
023XY302OR	South Slopes 12-16; Misc		5119
	Land Type		
023XY310OR	North Slopes 12-16		5327
023XY310OR	North Slopes 12-16; Misc	- –	764
	Land Type		
023XY318OR	Loamy 12-16		3495
023XY216OR;	Claypan 12-16; Juniper	- –	53300
023XY217OR	Tableland 12-16		
023XY216OR;	Claypan 12-16; Loamy 12-		844
023XY318OR	16		
023XY318OR;	Loamy 12-16; Claypan 12-		6606
023XY216OR	16		
023XY318OR;	Loamy 12-16; Rocky Ridges		3489
023XY408OR	12-16		
		Total	122229
024XY004OR	Dry Floodplain	_ Silver Sage; Big Sage; Wildrye; Nevada	3386
024XY008OR	Clayey Playette	Bluegrass	4410
023XY200OR;	Ponded Clay; Clayey		1671
024XY008OR	Playette		
		Total	9467
023XY202OR	Swale 10-14	_ Wyoming Big Sage; Low Sage;	18
023XY212OR	Loamy 10-12	Needlegrass; Bluebunch	5592
023XY214OR	Claypan 10-12	- –	/4/8
023XY220OR	Clayey 10-12	- –	10851
023XY300OR	South Slopes 8-12; Misc		2036
	Land Type; South Slopes 8-		
023XY2120B	$\frac{12}{10000000000000000000000000000000000$	- –	9970
023X1212OR,	Loaniy 10-12, Clayey 10-12		///0
025/122001		Total	35945
023XY416OR	Basin Wet Meadow	Bulrush: Cattail: Creeping Wildrye:	803
025/141001	Dasin Wet Headow	Basin Wildrye	005
023XY200OR	023XY200OR	Seasonal Floodplains, Dry Basins &	702
		Playas	
Unknown	Rock Outcrop and Rubble	N/A	377
			1004
Unknown	Unknown	Unknown	1984

Table 4-3General Plant Associations based upon ESI Soil Types for Frenchglen PPA

I

 2	The primary annual grass within this PPA is cheatgrass, however there are some small isolated populations of medusahead rive, which have been identified along
3	the southern edge of the Malbeur National Wildlife Refuge and along lower
4	portions of the Donner and Blitzen River near Page Springs Campground.
5	Juniper encroachment can be seen throughout the PPA and has been identified
6	as the priority habitat restoration treatment for this PPA and will be further
7	addressed in the Habitat Restoration section.
8	Fire
9	Fire history within the Frenchglen PPA has been fairly active with 24 fire starts
10	and a total of 67,190 acres burned from wildfires since 1980, which illustrates its
11	propensity to burn. The majority of acres burned in the northern portion of the
12	PPA (north of the Steens Mountain Loop Road). The most notable of these fires
13	was the Grandad fire that burned over 36,000 acres in 2006. Although these
14	fires have resulted in annual grass issues on some of the lower elevations, they
15	have also resulted in the benefit of pushing back conifer encroachment in some
16	locations. Mortality of juniper trees has been disproportionate between
17	wildfires, primarily attributed to the presence or absence of understory (ladder
18	fuels) at the occurrence of the fire (see Table 4-4).
19	The eastern area of the PPA, in the IA zone, is higher in elevation and as such
20	currently has greater sagebrush cover and recovers more quickly than the rest
21	of the PAC. A portion near the South Steens Loop Road burned in 2014;
22	however, conditions there make it likely for good recovery without additional
23	restoration activities.

Table 4-4			
Summary	of	Burn	Probability

	High and Very High Burn Probability in PPA (acres)174,213High and Very High Burn Probability in PPA (percent)94.3
24 25 26	Management Strategies
27	Treatments
28	The majority of treatments associated with the Frenchglen PPA were either ESR
29	projects tied to the numerous wildfires that have occurred in this area, or fuels
30	treatments targeting conifer encroachment.
31	There are approximately 13,500 acres of this PPA in which fuels treatments
32	have occurred. The majority of these acres came from the Moon Hill
33	prescription, which was completed in the fall of 2014. This was a landscape scale
34	broadcast burn targeting western juniper expansion. Much of this area is
35	expected recover quickly to native perennial species; however there are some
36	locations that received higher fire severity that will be seeded with perennial
37	species. The overall goal of this project now that junipers have largely been

removed from the landscape is succession back to a sage-steppe site. Returning this site to a sagebrush dominated system will likely take some time (10-20 years), and follow up actions such as seeding of sagebrush plugs may need to occur to augment succession.

The largest ESR project to occur within this PPA was following the Grandad Fire in 2006, however there have been other numerous other large (~1,000 acre) fires within this PPA that had follow up ESR projects. ESR projects account for the majority of the seeding (~23,800 acres) and weed treatments (32,200 acres) identified in the Burns District GIS Data.

- 10Besides the completed fuels treatments within this PPA, there are a variety of11planned fuels treatments to address conifer encroachment. Many of these12planned treatments are cut/jackpot burn or cut/pile/burn type treatments that13will largely leave the sagebrush component in-tact, and should have relatively14quick recovery times in comparison to some of the broadcast burns in the area.15These projects are part of the North Steens Ecosystem Restoration and have16NEPA completed.
- 17 Other Relevant Management Activities
 - The regulatory environment within the Frenchglen PPA has effects on habitat management. Wilderness and WSA designations limit potential treatments and other programs that could enhance or protect GRSG habitat. Also, the South Steens Herd Management Area (HMA) is over Appropriate Management Level (AML) and has impacts on habitat and water sources within the PPA.
- 23The South Steens HMA is located almost entirely within the Frenchglen PPA.24The estimated population of free-roaming horses within this HMA is 572 and25the AML High is 304 total horses. This data was collected during the 6/21/201226census.
- 27 The Burns BLM District grazing management strategy is based upon a target 28 utilization of <50 percent for native bunchgrass communities and <60 percent 29 for nonnative seeding's using a modified Landscape Appearance method. This 30 allows management to account for both site specific environmental variables 31 (soil type, soil depth, slope, aspect, and elevation) and climatic variations 32 (precipitation, and temperature), which influence annual production rates. Cattle 33 are permitted to graze allotments during specified periods, but are removed 34 early if target utilization is reached. Typically utilization doesn't exceed 35-40 35 percent on most allotments.
- 36 Fuels Management

Utilizing the existing road systems within and outside the perimeter of the Frenchglen PPA, a network of fuel breaks has been identified to: compartmentalize and establish anchor points for fire fighters to safely engage wildfires that may occur in this area in the future. Site specific treatment methods will be determined at the time of implementation and will utilize all

37

38

39

40

41

Т

2

3

4

5

6

7

8

9

18

19

20

21

available tools, such as mowing woody species, chemically treating herbaceous fuels (specifically annual grasses), and seeding desirable species, which could include nonnatives. These fuel breaks will be edge matched to any nearby fuel break treatments. The treatment purpose and need would include controlling invasive annuals and protecting sagebrush communities from large scale habitat conversion due to wildfire. Multiple roads have been identified and prioritized for treatment (see **Table 4-5**).

Priority I roads identified for establishing fuel breaks adjacent to are the Moon Hill road system and Lauserica Road. Priority 2 roads include: Tombstone Burnt Car Road, Steens Mtn Road, Burnt Car Road, Dust Bowl Road, West River Road, East Fish Creek Road, Dry Creek Road, Knox Spring Road, Dust Bowl Willow Spring Road, Waterhole P Hill Road, Savor Lake Road, and the Baily Waterhole Road.

Table 4-5Fuels Management Potential Treatments

	Priority	Priority I	Priority 2	Priority 3	Total		
	Miles	127.19	40.03	0	167.22		
14							
15		Habitat Restoration and	Recovery				
16		All treatments would	occur in areas deter	mined appropriate by an	IDT. Actions		
17		may include cutting, l	may include cutting, limbing, brush beating, machine piling or hand piling, pile				
18		burning, and/or presc	ribed fire, dependir	ng on site specific condit	tions and the		
19		ability to conduct fu	el removal treatme	ents in a safe and effec	tive manner.		
20		Chemical treatments	will continue to be ι	used to reduce fine fuels,	specifically in		
21		the treatment of annu	al grasses. Other tre	eatments may be used as	they become		
22		available or meet th	e needs of specifi	c sites. Using combinat	ions of these		
23		treatments and having	the ability to utilize	the best tool for the are	a and time on		
24		specific sites should	improve the ov	erall effectiveness of f	fuel reduction		
25		techniques (see Table	e 4-6).				
26		Changes in the histor	ical fire regime are	observed throughout Fre	enchglen PPA.		
27		A reduction in fire	frequency has alte	ered the dominant veg	etation from		
28		Mountain Big Sagebr	ush/Perennial Grass	communities to Junipe	er woodland.		
29		Currently there are 4	3,672 acres of juni	per encroachment obser	ved from the		
30		juniper encroachment	data layer. Future p	priorities have been ident	ified, focusing		
31		initially on areas of hig	h GRSG abundance	and expanding into histo	rical/potential		
32		habitat once the co	re areas have bee	n addressed. Priority	l for habitat		
33		restoration treatment	s is all juniper encro	achment within the PPA	boundary and		
34		priority 2 is defined as	all junipers surrour	iding the PPA as you mov	ve east up the		
35		elevation gradient of	Steens Mountain. It	is well documented that	GRSG move		
36		up elevation gradient	s as vegetation at	lower elevations sene	sces and the		
37		secondary priority w	as established to o	enhance and connect G	RSG to this		
38		essential brood-rearin	g habitats that exist	on Steens Mountain.			

Т

2

3

4

5

6

7

8

9

10

11

12

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	103,669	108,956	0	212,624
	Percent of PPA	55.87	58.71	0	114.58
	*Acreage percentages that same ground.	are greater than 100 ar	e due to different treatment	types (ex; Conifer and Invasives) the	at share the
Ι	0				
2		Local IDT will e	valuate each treatment	location to select a removal	l technique
2		that is appropria	to for the offected area	Continued management w	
5		that is appropria		a. Continued management w	iii be done
4		post-treatment t	o help maintain desirable	e vegetation and historical fire	e regimes
5		Several fuels trea	atment projects have be	en ongoing in the Frenchgler	ו PPA over
6		the last eight ye	ars. To date, 16,625 ad	cres have been prescribed b	urned, 148
7		acres of fuel bre	eaks. 779 acres of junic	per have been cut and hand	piled. 372
8		acres have been	, cut and machine pile	d under the Blitzen Stewa	rdship and
å		another 440 acr	a have been out and me	sching pilod Euturg projects	usinp, and
7		another 440 acre	es nave been cut and ma	chine plied. Future projects a	ire planned
10		to expand upon	these recent project are	as.	
П		Due to the po	sitive effects landscape	e burns can have at reduc	ing conifer
12		expansion, comb	pined with the much lo	wer cost/acre in compariso	n to other
13		treatments, seve	ral prescribed "broadcas	st" fires have been conducted	l within the
14		Erenchalen PPA	The most recent pres	scribed burn that occurred	within this
15		PPA was the Me	on Hill By Burn which t	reated 10 E00 acres of prima	
1.5				reated 10,500 acres of prima	ily phase i
16		and 2 juniper en	croachment on the nor	thern portion of the PPA dui	ring the fall
17		of 2014. The Bu	irns District BLM seede	ed within the fire perimeter	during the
18		winter and conti	nued monitoring will tak	e place to evaluate success.	
19		Restoration and	recovery within the Fre	nchglen PPA for annual grass	invasion is
20		not the major p	riority. Treatments will	focus on stopping the sprea	d with the ،
21		use of herbicide	and biological thinning	at times when perennial ve	egetation is
22		dormant. Seedin	g of perennial grasses w	vill take place in areas where	the annual
23		grass invasion ha	s diminished the natural	community and impaired the	
23		grass invasion na		community and impaired the	ecological
24		function of the si	te.		
25		During the summ	ner of 2006 the Grandd	ad fire burned over 32,000 a	cres within
26		the Frenchglen P	PA. It has left a large po	ortion, primarily at the lower	elevations,
27		without adequat	e sagebrush cover. Add	ditional treatment options fo	or this area
28		may include see	ling or planting sagebru	sh plugs in order to develor	sagebrush
29		islands from wh	hich soodling rocruitmor	t can occur overtually con	nocting the
20		islands, nonn wi		it can occur, eventually com	lecting the
30		islands and creat	ing a larger conesive nac	ntat area.	
31		Seeding will take	e place on the areas a	ffected by juniper removal 1	creatments.
32		Total area seed	ed will depend on the	treatment method used (e.g. pile vs
33		broadcast burn).	It can potentially be use	d in areas where fire is not a	n aspect of
34		the treatment in	f there is not an adec	juate amount of desirable l	herbaceous
35		vegetation proce	nt due to junipor oncros	schment	
55		vegetation prese	in due to juniper entroa		

Table 4-6Habitat Restoration Potential Treatments

I	Targeted broadcast burn areas will be rested from grazing prior to treatment.
2	This is so the site can accumulate sufficient fine fuels necessary to carry fire and
3	to meet established burn objectives. Following any broadcast burn treatment,
4	grazing would be suspended until established recovery metrics have been
5	reached (i.e. 3 perennial grasses/m2).
6	Forage availability will be an issue when identifying areas for habitat restoration
7	due to the required rest periods to achieve success. Range improvement
8	projects will be contingent on allocation of alternative forage for designated
9	permittees.
10	Fire Operations
11	Objectives of fire operations are to prevent areas in good condition from
12	burning. Areas that have not burned are considered a higher priority than areas
13	that have burned before. Dependent on location, wildfires within this PPA may
14	be able to be managed for resource objectives (i.e. conifer reduction). Fire
15	history within the Frenchglen PPA shows an elevated risk of catastrophic fire.
16	For this purpose we have decided to list the entire area as priority I for fire
17	operations (see Table 4-7).

Table 4-7Fire Operations Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	189,155	0	0	189,155
	Percent of PPA	101.9	0	0	101.9
18					
19		All roads identified	for establishment	of linear fuel	breaks will be
20		maintained/improved to	o facilitate faster	response times	for initial attack
21		resources to aid in mini	mizing size of any wi	Idfire occurrence	within or near the
22		PPA. Roads identified fo	or maintenance/ impr	ovement include:	Tombstone Burnt
23		Car Road, Steens Moun	itain Road, Burnt Ca	r Road, Lauserica	Road, Dust Bowl
24		Road, West River Road	l, East Fish Creek R	oad, Dry Creek F	Road, Knox Spring
25		Road, Dust Bowl Willo	w Spring Road, Moc	onhill Road, Wate	rhole P Hill Road,
26		Savor Lake Road, and th	e Baily Waterhole R	oad.	
27		A BLM guard station is	located in the town	of Frenchglen, OR	and works as the
28		initial attack resource w	ithin the PPA.		
29		Post-Fire Rehabilitation Mo	anagement		
30		Some long term post-fi	re rehabilitation trea	atments are need	ed within some of
31		the old burned areas	within this PPA (i.e	. Grandad Fire)	(see Table 4-8).
32		Treatment opportunitie	s include chemically	treating invasive a	annual grasses and
33		seeding those areas	with desirable pere	ennial vegetation.	Long term fire
34		rehabilitation opportuni	ties exist within int	erior portions of	this burned area
35		that are currently isol	ated from sagebrus	sh seed sources.	Establishment of
36			-		

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	46,05	39,515	0	185,566
	Percent of PPA	78.7	21.3	0	100
I					
2		"islands" of sagebrush	n by planting small pa	atches (one-10 acres)	of sagebrush
3		plugs (which have bee	n found to be much m	nore successful than se	eeding), would
4		accelerate succession	back towards a sagebr	ush steppe system.	
5		Future fires in this are	a would be able to util	lize knowledge gained [.]	from past ESR
6		projects in the area	to develop treatmer	nts and prioritize tre	atment areas.
7		Seeding efforts (assoc	iated with application	of herbicides) would	be focused in
8		areas that already hav	e a degree of annual	grasses present. Priori	ity I for post-
9		fire rehabilitation with	in the Frenchglen PPA	will be given to areas	that have not
0		recently burned, since	vegetative response	will be unknown. Pric	ority 2 will be
I		the acres that have p	previously burned as	part of the Granddad	Fire in 2006
2		because of the stable	perennial grass comi	munity present from	previous ESR,
3		which will likely return	n post-fire.		
4		Proposed Manageme	ent		
5		See Table 4-9 for pro	ojects that have been i	dentified presently wit	thin the NEPA
6		planning process. See	Figures 4-2 through	4-5 for a graphic de	piction of the
7		proposed treatments a	and strategies in the Pl	PA.	

Table 4-8Post-Fire Rehabilitation Management Strategies

Treatme Descript	ent ion	F	Priorit	y		Thr Addr	eats esse	d	١	NEPA				Trea	atments		
						s (I)						Time Frame		Certa Effecti	inty of veness ¹	ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fra (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Blitzen Stew 4 Seeding	147		Х			Х				Х				Ι			3-5
Frenchglen Conifer Reduction Seeding	106,679	X				X					Х			Ι			3-5
ODF I HP Seeding	790	Х				Х				Х				Ι			3-5
Blitzen Stew 3 Seeding	615		Х			Х				Х				Ι			3-5

Table 4-9Project Planning Area Treatment Summary Table

Treatme Descript	Treatment Priority Description			y	Threats Addressed			NEPA			Treatments						
						s (I)						Tir Fra	ne me	Certa Effectiv	inty of veness ¹	ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
ODF I CHP	321	Х				Х				Х				I			3-5
Seeding Moon Hill Juniper	130,050	х			x					Х				I		10- 15	3-5
Frenchglen Conifer Reduction Cutting	101,209	Х			×					Х				Ι		10- 15	3-5
Blitzen Stew 5 Cutting	228	Х			Х					Х				I		10- 15	3-5
ODF I CHP Cutting	4,904	Х			Х					Х				I		10- 15	3-5
Frazier HP I	27	Х			Х					Х				I		10- 15	3-5
Ruby Springs Private	126,958	Х			Х						Х			I		10- 15	3-5
Green Stripping EA	2,236	Х	Х					Х	Х					Ι		10	5+

Table 4-9Project Planning Area Treatment Summary Table

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

4.2.2 Orejana East

Project Planning Area Description

General Site Description

The Orejana East PPA addresses portions of the Dry Valley/Jack Mountain PAC administered by the Burns District BLM, and is approximately 45 miles south of Burns, OR. The Dry Valley/Jack Mountain PAC is extensive, crossing between Burns and Lakeview districts. The portions of this PAC administered by the Burns District are addressed under the "Orejana East PPA," while on the Lakeview District it is addressed under the "Orejana West PPA." Within the Burns BLM District, the Orejana East PPA is divided between two Resource Areas; the Andrews Resource Area administers roughly the southern two thirds

1 2

3 4

5 6

7

8

9

10

|| |2

13

of this PPA, while the Three Rivers Resource Area administers the northern third of this PPA.

3 The Orejana East PPA is roughly bounded by Rock Creek Road to the south, 4 Hwy 205 to the east, the southern foothills to Harney Lake to the north, and 5 the Lakeview/Burns BLM District boundary to the west. Keg Springs Valley is a 6 central location to the Orejana East PPA, with major road systems that traverse 7 this PPA being: Foster Flat Road, Jack Mountain Road, and Matties Arc Road. 8 Like most of the other PPA's identified within the Burns District, the Orejana 9 East PPA is a relatively remote location, with a very limited road system within. 10 This PPA was extended slightly from the PAC boundaries to incorporate all 11 Core/Preliminary Priority Habitat (PPH) GRSG habitat. This is the largest PPA 12 within the Western Great Basin/Warm Springs Valley Assessment Area on the 13 Burns District with a total acreage of 299,684 acres, which is dominantly BLM 14 land (281,250 acres) with small inclusions of private land (totaling 18,434 acres) 15 that are typically tied to water sources (see **Table 4-10**).

Table 4-10
Orejana East Sage-Grouse Habitat Matrix Categories

	Matrix Category	No Data	IA	I B	IC	2 A	2B	2C	3A	3B	3C
	Acres	12,656	3,295	481	408	96,992	49,420	, 63	5,243	14,778	5,233
	Percent of PPA	4	I	0	0	32	16	37	2	5	2
16											
17		Sage-Gr	ouse								
18		The ger	neral tre	end in	GRSG	opopulati	on is slov	vly declini	ng in the	e Orejanı	na East
19		PPA bas	sed upo	n annı	ial lek	counts si	nce 2008-	2010. The	e Miller	Homeste	ad Fire
20		burned	over I	47,145	acre	s within	the PPA	boundary	during	the sum	mer of
21		2012. A	lthough	sageb	rush c	over has	not had a	dequate ti	me to re	ecover, a	robust
22		herbace	eous co	mmuni	ity has	respond	ed post-f	ire, conve	rting int	act habit	at into
23		seasona	l habita	t. The	re has	also beer	n a die off	^r of sagebr	ush due	to Aroga	a moth
24		infestati	ion; the	extar	nt of t	his die o	ff is unkr	nown at t	his time	, in place	es it is
25		extensiv	ve along	the so	outher	n portion	of the PF	PA.			
26		The O	rejana l	East P	PA su	pports a	large ex	panse of	habitat	that is (utilized
27		through	out th	e GR	SG lif	fecycle. A	Although	overall t	his hab	itat has	lower
28		product	tivity in	compa	arison	to the ot	her PPA's	s on the B	urns Di	strict, the	ere are
29		I2 activ	e, and s	ix inac	tive Le	eks within	this PPA	(see Tab	le 4-11)		

Table 4-11
Greater Sage-Grouse Leks found within the Orejana Project Planning Area

Lek Name/ ODFW Site ID	Conservation Status	
Trainer Playa (HA0005-01)	Occupied (Active)	
Jack Mountain #3 (HA0013-01)	Unoccupied Pending (Inactive)	
Keg Springs (HA0040-01)	Occupied Pending	
E. Duhaime Flat (HA0043-01)	Occupied Pending	
Lavoy Tables (HA0045-01)	Occupied Pending	
Buzzard Reservoir (HA0112-01)	Occupied (Active)	

	Lek Name/ ODFW Site	e ID	Conservation Status
	North Twin Lakes (HA003	31-01)	Occupied (Active)
	Tucke #1 (HA0039-01)		Occupied Pending
	Tucke #2 (HA0039-02)		Occupied Pending
	Irish Lake (HA0052-01)		Unoccupied Pending
	Antelope Reservoir Hines	(HA0006-01)	Unoccupied (Inactive)
	Mammoth (HA0009-01)		Unoccupied (Inactive)
	Larry's (HA0010-01)		Occupied (Active)
	On The Rim (HA0010-02))	Unoccupied (Inactive)
	Jack Mountain #1 (HA001	1-02)	Unoccupied Pending (Inactive)
	Jack Mountain #2 (HA001	1-01)	Occupied Pending
	Jack Mountain #4 (HA001	4-01)	Occupied Pending
	Trainer Playa #2 (HA0005	-02)	Occupied Pending(Active)
Ι			
2		Vegetation	
3		Overall, the Orejana East	PPA is a mid-elevation (4,500-5,500 ft.) and
4		precipitation (eight-14 inch	es annually) landscape that has moderate
5		resistance/resilience. The habi	tat within this PPA is dominated by Wyoming and
6		hasin hig sagebrush plant com	munities with only six percent of the general plant
7		communities folling in prod	uctive enough sites to support mountain hig
, 0		communities failing in prod	active enough sites to support mountain big
8		sagebrush (see Table 4-12).	
9		Annual grasses are present	across this PPA in varying densities. Typically
10		invasion of annual grasses i	nto the understory are associated with travel
10		corridors and water develop	monts Other disturbed areas (primarily old fire
11		corridors and water develop	of the PBA) also exhibit more developed arrund
12		scars in the southern portions	s of the PPA) also exhibit more developed annual
13		grass communities.	
14		The majority of the Oreiana E	ast PPA outside the Miller Homestead Fire burned
15		area is a sagebrush stoppe syst	com with varying influence of annual grasses in the
		area is a sageor usir-sceppe syst	a the equilibrium edge of this DDA has the life
16		understory. Generally speakin	g, the southern edge of this PPA has the highest
17		risk for conversion to an annu	al grass system.

Table 4-11Greater Sage-Grouse Leks found within the Orejana Project Planning Area

Table 4-12General Plant Associations based upon ESI Soil types for Trout Creek East PPA

Ecological Site Identification Number	ESI Soil Type	General Plant Associations	Acres
023XY213OR	Sandy Loam 10-12	Basin Big Sage; Needleandthread;	10556
024XY016OR	Loamy 8-10	Ricegrass	2855
024XY018OR	Sandy Loam 8-10		1247
024XY018OR;	Sandy Loam 8-10; Loamy 10-12		3356
023XY212OR			
024XY018OR;	Sandy Loam 8-10; Loamy 8-10		4857
024XY016OR			
		Total	22871

Ecological Site			
Identification	FSI Soil Type	General Plant Associations	Acres
Number		Ceneral Flanc Associations	Acres
023XY216OR	Clavpan 12-17	Mtn Big Sage: Low Sage: Idaho Fescue:	1627
023XY302OR	South Slopes 12-16	Needlegrass	1285
023XY316OR	Droughty Loam 11-13		432
023XY318OR	Loamy 12-16		6523
023XY310OR;	North Slopes 12-16; South Slopes 8-12		4454
023XY300OR			
023XY216OR;	Claypan 12-16; Juniper Tableland 12-16		5466
023XY217OR			
		Total	19788
023XY100OR	Lakebed	Silver Sage; Big Sage; Wildrye; Nevada	713
023XY200OR	Ponded Clay	Bluegrass	7744
024XY004OR	Dry Floodplain		87
024XY008OR	Clayey Playette		488
024XY008OR;	Clayey Playette; Loamy 8-10		1793
024XY018OR			
		Total	10825
023XY202OR	Swale 10-14	Wyoming Big Sage; Low Sage;	1734
023XY212OR	Loamy 10-12	Needlegrass; Bluebunch	71003
023XY324OR	Shallow Swale 10-14		4172
023XY300OR	South Slopes 8-12		13442
023XY220OR	Loamy 10-12		27636
023XY214OR	Claypan 10-12		32397
023XY212OR;	Loamy 10-12; Clayey 10-12		2170
023XY220OR			
023XY214OR;	Claypan 10-12; Loamy 10-12		104160
023XY212OR			
023XY214OR;	Claypan 10-12; South Slopes 8-12		2752
023XY300OR			
023XY215OR;	Shallow Gr-L 10-12; Loamy 10-12		6334
023XY212OR			
023XY220OR;	Clayey 10-12; South Slopes 8-12		10
023X1300OR			2705
023X1300OR;	South Slopes 8-12; North Slopes 10-12		2705
023X1308OR		Tatal	240514
0227710400	Leanny Dettern	Pulmusha Cattaila Craasing Mildrag	200314
023X1104OK	Loamy Bottom	Basin Wildrye	1045
024XY003OR	Sodic Bottom	Greasewood; Saltgrass; Basin Wildrye	20
024XY017OR	Shallow Loam 8-10	Shadscale; Wyoming Big Sage; Budsage; Spiny Hopsage	101
Unknown			1670

Table 4-12
General Plant Associations based upon ESI Soil types for Trout Creek East PPA

Fire

Prior to 2012, fire history within this extensive area was limited to smaller fires, predominately occurring in the southern portions of the PPA. Since 1980, fire records indicate that within the PPA 19 fire starts have occurred, burning a total of 171,695 acres. Although there were a couple of fairly large fires in the mid-

4-16

1980s that burned ~15,000 combined acres, the 2012 Miller Homestead Fire
(which burned 147,145 acres within this PPA) is by far the biggest disturbance
that has occurred in this area in recent history (see Table 4-13).

Table 4-13 Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres) 294,852
4	High and Very High Burn Probability in PPA (percent) 98.8
4 5 6 7 8 9 10 11 12 13 14	Changes in the historical fire regime are observed throughout the Orejanna PPA, primarily with the occurrence of the Miller Homestead fire in 2012. Large scale wildfires are occurring on the Burns District BLM at an accelerated pace, causing the vegetation at lower elevations to change from Wyoming big sagebrush/perennial grass communities to annual grass dominated communities. This issue will be addressed further in the Fuels Management section (e.g. fuel breaks, bio-thinning) and the Habitat Restoration and Recovery section (e.g. herbicide, seeding, bio-thinning). The primary goal for the Orejana East PPA is to keep the area from re-burning, which will lead to a monoculture of annual grass.
15	This area was burned in 2012 by the Miller Homestead fire, which burned
16	160.800 acres of predominately PPH/core GRSG habitat, of which 147.145 acres
17	were located in the southeastern portion of the PPA. The southern portions of
18	the PPA by Rock Creek Lane have high levels of cheatgrass and a high
19	probability of cheatgrass establishment and spread following disturbance. The
20	northern end of the fire was seeded under ESR and showing signs of success.
21	The area is on a successional pathway back to a sage-steppe system. The 2013
22	moisture year was beneficial to ESR operations and there are some sagebrush
23	seedlings emerging. GRSG are still using the area, although numbers have
24	dropped from those observed prior to the Miller Homestead Fire. The northern
25	portion of the PPA has not burned in recent history. Much of the sagebrush in
26	this area has become decedent with a limited understory. Generally speaking,
27	repeated fires within the PPA would result in conversion to invasive grasses.
28 29	Management Strategies
30	Treatments
31	To inhibit spread of annual grasses found between the Rock Creek Ranch Road
32	and the southern edge of the PPA, projects have been identified to utilize
33	herbicides (imazapic) and seeding (natives and nonnatives) to help develop a
34	resilient plant community. Northern portions of the PPA have been identified
35	for some mosaic sagebrush mowing to develop a multi-age class stand of
36	sagebrush. Currently much of this area is covered by decedent sagebrush with
37	an understory that ranges from healthy native grasses to a dominantly annual
38	grass understory. Under the West Warm Springs Allotment CCA treatments
39	are planned to break up a primarily contiguous decedent sagebrush stand, and

| 2 3

develop a multiple age class stand with a higher proportion of herbaceous grasses and small forbs available to GRSG during the brood-rearing stage. Treatments planned to accomplish this may include: sagebrush mowing, herbicide application and seeding.

5 Other Relevant Management Activities

The Warm Springs HMA is located almost entirely within the Orejana East PPA. The estimated population of horses and burros within the HMA is 253 and 27 respectively. The AML high is 202 animals. This data was recorded during the 9/08/2014 census.

The Burns BLM District grazing management strategy is based upon a target utilization of <50 percent for native bunchgrass communities and <60 percent for nonnative seeding's using a modified Landscape Appearance method. This allows management to account for both site specific environmental variables (soil type, soil depth, slope, aspect, and elevation) and climatic variations (precipitation, and temperature), which influence annual production rates. Cattle are permitted to graze allotments during specified periods, but are removed early if target utilization is reached. Typically utilization doesn't exceed 35-40 percent on most allotments.

Fuels Management

Utilizing the existing road systems within and outside the perimeter of the Orejana East PPA, a network of fuel breaks has been identified to: compartmentalize and establish anchor points for fire fighters to safely engage wildfires that may occur in this area in the future. Site specific treatment methods will be determined at the time of implementation and will utilize all available tools, such as mowing woody species, chemically treating herbaceous fuels (specifically annual grasses), and seeding desirable species, which could include nonnatives. These fuel breaks will be edge matched to any nearby fuel break treatments. The treatment purpose and need would include controlling invasive annuals and protecting sagebrush communities from large scale habitat conversion due to wildfire. Multiple roads have been identified and prioritized for treatment, (See Map).Roads identified for establishing fuel breaks include: N Mater Lake Road, Smoke Hollow Road, Upper Smokey Flat Road, Flybee Moon Lake Road, North loop Road, Buzzard Road, Foster Lake Road, Matties Ark Foster Road, Taylor Cabin Road, Jerry Lake Road, Keg Springs Valley Road, West Rock Ford Lane, Lonetree Lake Road, Dunn Lake Reservoir Road, Boulder Reservoir Road, Bellanbaugh Road, Burnt Bridge Road, West Rockhound Lane Road, Tucky Road, Sand Vally Augustine Road, and the Duhaime Road.

- 39 There is no one fuel reduction technique that will be most effective throughout 40 the area and within the acceptable impact ranges of GRSG populations, 41 however, combinations of techniques such as, biological thinning and prescribed
- 42

Т

2

3

4

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

fire within higher resistant/resilience areas has potential to reduce risk of

I	catastrophic wildfire. Biological thinning (livestock grazing to reduce fine fuels) is
2	a valid option, allowing livestock to be directed to areas in need of fine fuel
3	reduction while preventing overall utilization from exceeding a 50 percent
4	utilization maximum (ocular estimate method) for desirable, perennial species
5	while allowing for maximum consumption of targeted invasive annual grasses.
6	Biological thinning is authorized under 43 CFR 4190.1, which allows a full force
7	and effect decision to be made when BLM determines that vegetation, soil or
8	other resources on the public lands are at substantial risk of wildfire due to
9	drought, fuels buildup, or other reasons. Recent wildfires have been increasing
10	in size and intensity, causing large scale habitat conversion. In the case of the
11	Miller Homestead Fire, the fire started along the southern portion of PPA,
12	which is invaded by annual grasses. This buildup of continuous fine fuels allowed
13	the fire to grow quickly and made it difficult to stop. For example, it may be
14	necessary to develop a fuel break, treat noxious weeds or a monoculture of
15	invasive grasses during these times (see Table 4-14).

Grazing will be used and explored as an overall fuels reduction (productive years) tool and to maintain fuels breaks/greenstrips.

	Fuels Mailagen	ient Potential Tre	auments	
Priority	Priority I	Priority 2	Priority 3	Total
Miles	39.8	52.77	84.47	277.05
	Habitat Restoration and The primary habitat r	l Recovery estoration focus for	the Orejana East PPA is	s to reestablish
	sagebrush within the were identified thro address the 147,145 a	Miller Homestead Fi ugh ESR, but fundi cres of the burn.	ire. Multiple sagebrush i ing was not acquired	sland locations to completely
	The northwest portion sagebrush that has lit beating treatment (fold determined necessary the West Warm Sprit treatment would be a In the first phase brust the project area (ex. landscape). This first few growing seasons. utilized to combat and in phase 1) brush lip providing a "cross-hat	in of the Orejana Ea mited understory v llowed by annual gra due to concerns a ings Allotment Can ccomplished through the beating would occu base of implementa phase of implementa f determined necession ual grasses. In the so beating would occu cched" appearance all	st PPA has large expans regetation. A proposed ass herbicide application bout annual grasses) is didate Conservation Ag n a two phase implemen cur in a generally linear ross a small scale (~five ation would be monitore sary, herbicides and see econd phase (contingen ur perpendicular to the nd creating pockets of o	es of decadent mosaic brush and seeding if planned under greement. This tation process. pattern across percent of the ed for the first dings would be t upon success he first phase, older sagebrush
	(untreated areas), nev and new forb and per is not only to create	w sagebrush growth ennial grasses (phase more habitat diversi	and perennial grasses (2 strips). The intent of ty within this relatively	phase I strips) this treatment "homogenous"

Table 4-14 Fuels Management Potential Treatments

area, but also break up canopy fuel continuities to moderate fire behavior in the occurrence of a wildfire. This project will be coordinated with the Lakeview district which is planning similar projects in the north east portion of the Orejana West PPA.

Habitat restoration at the lower elevations within the Orejana East PPA, along the southern portion, will focus primarily on areas invaded by annual grasses. By using the ILAP data layer we were able to identify 27,795 acres of effected habitat. Treatment will focus on stopping the spread with the use of herbicide and biological thinning at times when perennial vegetation is dormant. Seeding of perennial grasses will take place in areas where the annual grass invasion has diminished the natural community and impaired the ecological function of the site (see **Table 4-15**).

13 Additional habitat restoration treatment areas include the southeast portion of 14 the PPA (west of highway 205, north of Rock Creek Road, and east of Jack 15 Mountain Road). This portion of this PPA is subject to conifer encroachment. 16 Conifer encroachment is not a major priority for this PPA; however, juniper 17 treatments would be prioritized based upon proximity to active lek locations 18 (i.e. greater than one mile). Treatments in this area would include juniper 19 cutting and piling, both machine and hand piling. The piles would be burned and 20 seeded with a native and desirable nonnative seed mix. The use of herbicide 21 treatments would also occur to reduce the risk of nonnative invasive species 22 establishing in the area.

Table 4-15Habitat Restoration Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Total			
Acres	308,936	0	0	308,936			
Percent of PPA	103.09	0	0	103.09			
	Fire Operations						
	All roads associ	ated with linear fuel ti	reatments will be maintai	ned/improved to			
	facilitate faster i	initial attack for fire o	perations. Also to benefit	t fire operations,			
	four water dev	four water developments locations have been identified throughout the PPA.					
	Two are located	d in the southern port	ion of the PPA and woul	d be retrofits to			
	existing wells fo	or fire operations pur	ooses (e.g. helitank instal	lation, additional			
	cisterns). The other two locations are located in the northern portion of the						
	PPA and would need to be fully developed to ensure they have adequate						
	capacity to supp	port fire operation's ne	eeds (see map). Over all,	this area is very			
	water limited, a	and establishing reliabl	e water sites would grea	atly enhance fire			
	suppression res	ources abilities to supp	ress fires at smaller acrea	ges.			
	The first priorit	y for fire operations w	ithin the Orejana East PP	A is the western			
	portion, border	ing the Lakeview distri	ct BLM, where intact sage	brush stands are			
	still present. Als	so under the first prio	rity are areas south of th	e PPA boundary			

L

2

3

4

5

6

7

8

9

10

11

Ithat are invaded by annual grasses and pose a threat to the intact communities2to the north. The secondary priority is located within the previously burned3Miller Homestead Fire, where an existing community of perennial grasses is4present, which should respond positively post-fire (see Table 4-16).

5Over all, this area is very water limited, and establishing reliable water sites6would greatly enhance fire suppression resources abilities to suppress fires at7smaller acreages.

8 The first priority for fire operations within the Orejana East PPA is the western 9 portion, bordering the Lakeview district BLM, where intact sagebrush stands are 10 still present. Also under the first priority are areas south of the PPA boundary 11 that are invaded by annual grasses and pose a threat to the intact communities 12 to the north. The secondary priority is located within the previously burned 13 Miller Homestead Fire, where an existing community of perennial grasses is 14 present, which should respond positively post-fire.

	Priority	Priority I	Priority 2	Priority 3	Total				
	Acres	314,350	44,266	0	358,616				
	Percent of PPA	104.9	14.8	0	119.7				
15									
16		Post-Fire Rehabilitation	Management						
17		Post-fire rehabilitation	n treatments will cor	ntinue within the Mille	r Homestead				
18		Fire boundary. Treatn	Fire boundary. Treatment opportunities include spraying (imazapic) and seeding						
19		areas subject to a	areas subject to annual grass invasion. Long term fire rehabilitation						
20		opportunities exist within interior portions of this burned area that are							
21		currently isolated fro	m sagebrush seed so	urces. Establishment o	f "islands" of				
22		sagebrush by seeding	small patches (one-I	0 acres) of sagebrush	plugs (which				
23		have been found to b	e much more succes	sful than seeding), wou	uld accelerate				
24		succession back towar	ds a sagebrush steppe	e system (see Table 4-	l 7).				

Table 4-16Fire Operations Management Strategies

Table 4-17	
Post-Fire Rehabilitation Management Strategie	s

	Priority	Priority I	Priority 2	Priority 3	Total				
	Acres	149,459	150,211	0	299,670				
	Percent of PPA	49.9	50.1	0	100				
25									
26		Future fires in this are	a would be able to ut	ilize what has been lear	rned from the				
27		Miller Homestead Fire	ESR plan to develop	treatments, and priorit	tize treatment				
28		areas. Seeding efforts (associated with application of herbicides) would be							
29		focused in areas that already have a degree of annual grasses present. Priority I							
30		for post-fire rehabilita	tion within the Oreja	ana East PPA will be g	given to areas				
31		that have not recent	ly burned, since veg	etative response will	be unknown.				
32		Priority 2 will be the a	cres that have previo	usly burned in the Mille	er Homestead				

I	Fire because of the stable perennial grass community present from previous
2	ESR, which will likely return post-fire.
3	Proposed Management
4	See Table 4-18 for projects that have been identified presently within the
5	NEPA planning process. See Figures 4-6 through 4-11 for a graphic depiction
6	of the proposed treatments and strategies in the PPA.

Treatm Descrip	ient tion	P	riori	t y		Thr Addr	eats essed			NEPA	1			Tre	atments		
						(I) si						Tir Fra	me .me	Certa Effecti	inty of veness ¹	ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I)	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Miller Homestead Weed Treatment	706	Х				Х		Х		Х				I			0-2
Orejana East Rehab	28,980		Х			Х		Х			Х			I			3-5
Green Stripping EA	5,798	Х	Х	Х				Х	Х					I		10	5+

Table 4-18Project Planning Area Treatment Summary Table

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

4.2.3 Roaring Springs

Project Planning Area Description

General Site Description

The Roaring Springs PPA is in the northern portion of the "Pueblos/S Steens" PAC, with the division between this PPA and the Pueblos PPA being Hwy 205. The Pueblos/S Steens PAC has been broken into two PPAs due to the much higher proportion of private land within this PAC north of Hwy 205; predominately owned by the Roaring Springs Ranch. There is a total of 74,859 acres within this PPA, with 59,557 acres being held privately and 15,302 acres of land managed by BLM. The Roaring Springs PPA is located on the south end of the Steens Mountain within the Burns District Office, Andrews Resource area,

7 8

9 10

11 12

13

14 15

16

17

18

19

I	and is approximately 85 miles to the south of Burns, OR. The rough physical
2	boundaries to this PPA are: Hwy 205 to the south and west, the East Steens
3	Road to the east, and Skull Creek Drainage to the north.
4	According to the GRSG Habitat Matrix Model, Roaring Springs PPA is identified
5	as having a large percentage of land in high and moderate resistant/resilience
6	habitat types with greater than 25 percent landscape cover of sagebrush habitat
7	(see Table 4-19).

Table 4-19Roaring Springs Sage-Grouse Habitat Matrix Categories

Matrix Category	No Data	IA	IB	IC	2A	2B	2C	3 A	3B	3C
Acres	722	0	28,630	109	0	32,559	9,737	0	2,618	1,434
Percent of PPA	I	0	38	0	0	43	13	0	3	2
	ſ	Due to	the large	amount	of priv	ate land ir	the Ro	aring Sr	orings PF	A. no
	e	extensive	e fuels tr	eatments	s were	identified.	However	. sever	al roads	were
	i	dentified	as being	logical a	reas to i	nvest in est	ablishmer	nt of fue	el breaks	to aid
	f	ire supp	ression re	sources	as ancho	r points/de	fendable	barriers	Out of	all the
	i	dentified	PPA wit	hin the l	Burns dis	strict, this	area is co	onsidere	d to be	a low
	F	oriority	for fire o	perations	s due to	much of t	his PPA	being hi	igher ele	vation,
	r	noderat	e-high res	istant/res	silient sit	es that wo	uld likely	come	back to	GRSG
	ł	nabitat t	hrough nat	tural suce	cession. N	lost of the	PPA on t	he east	side (sou	utheast
	f	ace of t	the Steens	Mounta	in) is wi	thin the St	eens Mou	ıntain V	Vildernes	s. The
	[District	plans to c	oordinat	e with t	he landowr	ner to pla	an out t	reatment	ts that
	١	would co	omplement	t treatme	ents conc	lucted on a	djacent B	LM-adm	inistered	lands.
	(Currentl	y, the land	lowner is	s working	g on the lar	nd, treatir	ng it for	invasive	annual
	Ę	grasses a	and conifer	· encroad	chment. T	The landow	ner has a	lso cono	ducted so	ome of
	t	heir ow	n telemeti	ry and G	RSG stu	dies. The B	urns Dist	rict BLN	1 will loc	ok into
	t	he poss	ibility of be	ecoming	cooperat	ors with Ro	paring Spr	ing ranc	h for trea	atment
	2	activities	within thi	s PPA.						
	9	Sage-Gro	use							
	-	There ha	as not beer	n enough	lek cour	nt data colle	ected in tl	ne Roar	ing Sprinន្	gs PPA
	t	o estab	lish a gene	eral trend	in GRS	G populatio	on. It is as	ssumed	that any	of the
	2	areas tha	at had a fi	re in the	m within	the last te	en years a	ire no l	onger in	usable
	r	nesting h	abitat, the	ough they	' may pro	ovide seaso	nal habita	t. There	has beer	n a die
	C	off of sa	gebrush d	ue to A	roga mo	th infestation	on; the e	xtant of	f this die	off is
	ι	unknowr	n at this tir	ne, in pla	ces it is e	extensive.				
	7	There ar	e eight act	ive leks v	within the	e boundarie	s of this F	PA (see	Table 4	I-20) .

0	
Lek Name/ ODFW Site ID	Conservation Status
Pic Swale (HA0100-01)	Occupied Pending
Skull Creek (HA0114-01)	Occupied Pending
Echart Creek (HA0115-01)	Occupied Pending
Long Hollow (HA0028-01)	Unoccupied Pending
Jims Lek (HA0119-01)	Occupied Pending
V Lake #2 (HA0125-02)	Occupied Pending
V Lake #1 (HA0125-01)	Occupied Pending
Coon Canyon (HA0136-01)	Occupied Pending

Table 4-20Greater Sage-Grouse Leks found within the Roaring Springs Project Planning Area

2	Vegetation
3	The Roaring Springs PPA has a healthy population of GRSG with seven identified
4	active leks within its boundary. The Roaring Springs PPA contains a diverse
5	GRSG habitat, ranging in elevation from ~4,700 ft 7,000 ft. in elevation.
6	Habitat within this PPA spans from low resistant/resilient Wyoming sagebrush
7	dominated plant communities to high resistant/resilient mountain sagebrush
8	communities. Resistance/resilience data clipped to the Roaring Springs PPA
9	indicates that 59 percent of this area is high resistant/resilient, 39 percent is low
10	resistant/resilient, and the remaining six percent is unavailable (see Table 4-21).
11	All of the acres addressed in this PPA are listed as Core/PPH GRSG habitat.

Table 4-21General Plant Associations based upon ESI Soil types for Roaring Springs PPA

Ecological Site			
Identification	ESI Soil Type	General Plant Associations	Acres
Number			
024XY012OR	Sandy 6-10	Basin Big Sage; Needleandthread;	54
024XY110OR	Dunes	Ricegrass	462
024XY018OR;	Sandy Loam 8-10; Loamy 10-12		1944
023XY212OR;			
024XY016OR			
		Total	2460
023XY216OR	Claypan 12-16	Mtn Big Sage; Low Sage; Idaho	4853
023XY416OR	Wet Meadow	Fescue; Needlegrass	247
024XY016OR	Loamy 12-16		63
023XY216OR;	Claypan 12-16; Loamy 12-16		6649
023XY318OR			
023XY316OR;	Droughty Loam 11-13; Claypan 12-16		156
023XY216OR			
023XY318OR;	Loamy 12-16; Claypan 12-16		7306
023XY216OR			
023XY312OR;	North Slopes 12-16; Shallow North		10999
023XY404OR;	12-16; Deep North 12-18; South		
023XY310OR;	Slopes 12-16		
023XY302OR	-		
		Total	30273

I

Ecological Site Identification	ESI Soil Type	General Plant Associations	Acres
Number			
023XY212OR	Loamy 10-12	Wyoming Big Sage; Low Sage;	4662
023XY214OR;	Claypan 10-12; Loamy 10-12	Needlegrass; Bluebunch	1051
023XY212OR			
023XY220OR	Clayey 10-12		9999
023XY300OR	South Slopes 8-12; Misc Land Type		3554
023XY308OR	North Slopes 10-12; Misc Land Type		3623
		Total	22889
	Subalpine Meadow	Mtn Big Sage; Low Sage; Fescues;	14
023XY418OR;	Aspen 16-35; Subalpine Slopes 16-35	Aspen	2137
023XY509OR			
023XY501OR;	Loamy 16-25; Claypan 16-25		15088
023XY507OR			
		Total	17239
024XY113OR	Sodic Fan 6-10	Greasewood;Shadscale;Spiny	598
		Hopsage;Basin Big Sage	
Misc Land Type			474

Table 4-21 General Plant Associations based upon ESI Soil types for Roaring Springs PPA

2	Fire
3	Recent fire history within the Roaring Springs PPA has been quite active with 12
4	starts that have burned a total of 61,518 acres since 1980. Although the
5	majority of the land within this PPA is high resistant/resilient with a low risk for
6	annual grass invasion, the lower elevations of this PPA that have burned
7	(particularly those between the East Steens road and Steens Mountain) have
8	issues with annual grass dominance. This area not only lacks the habitat
9	requirements for GRSG, but also poses the risk for increased probability of
10	additional starts that would likely go up Steens Mountain and impact higher
11	elevation, more productive GRSG habitat (see Table 4-22).

Table 4-22 **Summary of Burn Probability**

	High and Very High Burn Probability in PPA (acres)	73,767
	High and Very High Burn Probability in PPA (percent)	98.1
12		
13	Changes in the historical fire regime are observed thr	oughout the Roaring
14	Springs PPA. In the upper elevations, reduction in fire freq	uency has altered the
15	dominant vegetation from Mountain Big Sagebrush/Perenni	al Grass communities
16	to Juniper. Currently 9,609 acres of juniper encroachmen	t have been identified
17	on the Juniper Encroachment layer. Future treatments	have been identified,
18	focusing initially on areas of high GRSG abundance	and expanding into
19	historical/potential habitat once the core areas have be	een addressed. Local
20	Identification Teams (IDT) will evaluate each treatment	location to select a
21	removal technique that is appropriate for the affect	ed area. Continued
22	management will be done post-treatment to help maintair	n desirable vegetation

I

and historical fire regimes. In the lower elevations, large scale wildfires are occurring at an accelerated pace, causing the vegetation at lower elevations to change from Wyoming big sagebrush and perennial grass communities to annual grass dominated communities. This issue will be addressed further in the Fuels Management section (e.g. fuel breaks, bio-thinning) and the Habitat Restoration and Recovery section (e.g. herbicide, seeding, bio-thinning).

Management Strategies

Other Relevant Management Activities

The Burns BLM District grazing management strategy is based upon a target utilization of <50 percent for native bunchgrass communities and <60 percent for nonnative seeding's using a modified Landscape Appearance method. This allows management to account for both site specific environmental variables (soil type, soil depth, slope, aspect, and elevation) and climatic variations (precipitation, and temperature), which influence annual production rates. Cattle are permitted to graze allotments during specified periods, but are removed early if target utilization is reached. Typically, utilization does not exceed 35-40 percent on most allotments.

Fuels Management

Of the 9,609 acres of juniper encroachment identified, we will focus our treatment areas initially on the areas of high GRSG abundance. Once these areas are properly addressed we will expand our treatments into historical/potential habitat regions. On the lower elevation sites that are experiencing a higher frequency of fire we are planning to implement fuel breaks. This should help maintain the integrity of healthy ecosystems by limiting spread in high risk environments (see **Table 4-23**).

Priority	Priority I	Priority 2	Priority 3	Total				
Miles	45.93	0	0	45.93				
	Fuel breaks will be im	plemented outside c	of the PPA along the eas	st rim down at				
	the base along East St	eens Road and Bone	Creek Road. Disturban	ce to this area				
	will be prevented and	will be prevented and create a fuel/invasive annual grasses break to keep the						
	annual grasses from c	reeping up the rim in	to the GRSG habitat, u	sing herbicides				
	where appropriate. T	he elevation changes	in the area will provide	e good natural				
	breaks. This treatmen	t will be carried out	over one to five years.					
	Roads identified for g	reen striping within 1	the Roaring Springs PPA	A include: Skull				
	Creek Long Hollow R	load, Skull Creek Ro	ad, Three Springs Road,	, Echart Grade				
	Road, Smith Flat Huf	fman Camp Road, C	arlson Creek Road, an	d Bone Creek				
	Road. These roads ha	ve been selected for	full green stripping and	seeding using				
	all of the tools availa	ble- chemical and m	echanical treatments, a	nd leaving the				

Table 4-23Fuels Management Potential Treatments

L

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

potential for nonnative seeding use open. The majority of this area falls within private property. Coordinating with private landowner and NRCS will be required to complete this activity.

4 There is no one fuel reduction technique that will be most effective throughout 5 the area and within the acceptable impact ranges of GRSG populations. 6 Combinations of methods will produce the best results with the smallest impact. 7 Biological thinning (livestock grazing to reduce fine fuels) is a valid 8 option, allowing livestock to be directed to areas needing fine fuel reduction 9 while preventing overall utilization from exceeding a 50 percent utilization 10 maximum (ocular estimate method) for desirable, perennial species while 11 allowing for maximum consumption of targeted invasive annual grasses. 12 Biological thinning is authorized under 43 CFR 4190.1, which allows a full force 13 and effect decision to be made when BLM determines that vegetation, soil or 14 other resources on the public lands are at substantial risk of wildfire due to 15 drought, fuels buildup, or other reasons. Biological thinning will be authorized 16 after seed set when grasses become dormant, putting the site at substantial risk 17 of wildfire. Biological thinning would not be allowed when perennial species 18 enter the boot stage until perennial grasses leave the flowering and seed 19 development stage. There may be exceptions to this on a case by case basis, for 20 example, it may be necessary to develop a fuel break, treat noxious weeds or a 21 monoculture of invasive grasses during these times.

22 All treatments would occur in areas determined appropriate by an IDT, Actions 23 may include cutting, limbing, brush beating, machine piling or hand piling, pile 24 burning, and/or prescribed fire, depending on site specific conditions and the 25 ability to conduct fuel removal treatments in a safe and effective manner. 26 Chemical treatments will continue to be used to reduce fine fuels, specifically in 27 the treatment of annual grasses. Other treatments may be used as they become 28 available or meet the needs of specific sites. Using combinations of these 29 treatments and having the ability to utilize the best tool for the area and time on 30 specific sites should improve the overall effectiveness of fuel reduction 31 techniques.

32 Habitat Restoration and Recovery

Seeding will take place on the areas affected by juniper removal. Total area seeded will depend on the treatment method used (e.g. pile vs broadcast burn). These treatments are an option in areas where fire is not already an aspect of the treatment (see **Table 4-24**).

Priority	Priority I	Priority 2	Priority 3	Total
Acres	22,419	0	0	22,419
Percent of PPA	29.57	0	0	29.57

Table 4-24 Habitat Restoration Potential Treatments

37

33

34

35

36

Т

2

Restoration and recovery at lower elevations will focus primarily on areas invaded by annual grasses. By using the ILAP layer we were able to identify 10,677 acres of effected habitat. Treatment will focus on stopping the spread with the use of herbicide and biological thinning at times when perennial vegetation is dormant. Seeding of perennial grasses will take place in areas where the annual grass invasion has diminished the natural community and impaired the ecological function of the site. In areas where the shrub component has been removed due to wildfire, planting of sagebrush plugs to form habitat islands is a viable option for restoring this component to the landscape. Within this PPA several acres of wildfire have been identified as possible sagebrush planting areas. Forage availability will be an issue when identifying areas for habitat restoration. During seeding treatments the area will need to be rested from grazing for two seasons post-seeding to allow full establishment. Range improvement projects will be contingent on allocation of alternative forage for designated permittees.

- 16 In 2014 Carlson Creek was inventoried by a BLM Hydrologist for restoration 17 purposes. Ten head cuts were identified. Due to fire intensity in the Carlson 18 Creek drainage most of the vegetation holding these headcuts together burned, 19 several of these headcuts are adjacent to riparian areas that provide critical late 20 season brood rearing habitat for GRSG. If funding becomes available these 21 headcuts will be addressed in the spring of 2015 before they are able to spread 22 up stream. If the spread occurs over a few years it would cause the water table 23 to drop, as a result these critical areas could be lost.
- 24 Fire Operations
- 25Due to the large amount of private property in this PPA suppression actions are26largely at the discretion of the landowner.
- 27All roads listed for establishing fuel breaks will require maintenance to facilitate28more rapid response to wildfires. This action will be addressed under the fire29operations management strategy.
- 30This PPA has 44,058 acres of low resistance and resilience, which is 58.8 percent31of the total acres. There is a need to prioritize fire operations for this PPA due to32the high percentage of acres with low resistance and resilience (see Table 4-25).
- 33Prioritization is also contingent on the amount of intact habitat that is present in34the PPA, which makes wildfire in the Roaring Springs PPA a Burns BLM District35concern.

Fire Operations management Strategies									
Priority	Priority I	Priority 2	Priority 3	Total					
Acres	40,240	35,570	0	75,809					
Percent of PPA	53.1	46.9	0	100					

Table 4-25 ire Operations Management Strategie

L

2

3

4

5

6

7

8

9

10

П

12

13

14

Т Roads identified for improvement/maintenance within the Roaring Springs PPA 2 include: Skull Creek Long Hollow Road, Skull Creek Road, Three Springs Road, 3 Echart Grade Road, Smith Flat Huffman Camp Road, Carlson Creek Road, and 4 Bone Creek Road. The majority of this area falls within private property. 5 Coordinating with private landowners and NRCS will be required to complete 6 this activity.

7 Post-Fire Rehabilitation Management 8 In 2014 the Bone Creek Basin Fire burned 14,700 acres along the eastern edge 9 of the Roaring Springs PPA. Approximately 7,300 acres of this fire burned within 10 this PPA. Currently the Bone Creek Basin Fire ESR project will aerially treat 11 approximately 2,671 acres of Preliminary Priority Sage-grouse habitat (PPH) 12 Treatment will concentrate on annual grass invasion post-fire and seeding a 13 mixture of native grass. An additional 1016 acres of Preliminary General Sage-14 grouse Habitat (PGA) located adjacent to this PPA will also be seeded (see 15 Table 4-26).

Table 4-26 Post-Fire Rehabilitation Management Strategies

	Priority	Priority I	Priority 2	Priority	/ 3	Total
	Acres	75,810	0		0	75,810
	Percent of PPA	100	0		0	100
16						
17		Proposed Managemer	nt			
18		See Table 4-27 for p	projects that have	e been identified	presently	within the

See Table 4-27 for projects that have been identified presently within the NEPA planning process. See Figures 4-12 through 4-16 for a graphic depiction of the proposed treatments and strategies in the PPA.

Table 4-27 **Project Planning Area Treatment Summary Table**

Treatr Descri	nent ption	Р	riori	ty	y Thre			Threats NEPA Addressed			Treatments						
				() s				Time Frame		Certainty of Effectiveness ¹		ame	me				
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Roaring Springs Annual Grass	2,360	×				Х					Х			I			3-5

March 2015

19

Treatment Description		Priority		Threats Addressed			NEPA		Treatments								
						(I) s						Tiı Fra	me Ime	Certa Effecti	inty of veness ¹	me	ne
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasses	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fram (Years) ²	Completion Time Fran (0-2, 3-5, 5+ years) ³
Bone Creek Basin Fire Seeding	2,125	X				X		X		X				I			0-2

Table 4-27Project Planning Area Treatment Summary Table

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

4.2.4 Pueblo

Project Planning Area Description

General Site Description

The Pueblos PPA is located in the southwest corner of the Burns District BLM, within the Andrews Resource Area, and is approximately 95 miles south of Burns, OR. A small portion of this PPA (~30 acres) extends in to the Lakeview District BLM, but is land administered by the Burns District BLM. Even though the entirety of the Pueblos/South Steens PAC is within Burns BLM District administered land it has been divided into two PPA due to private ownership north of Hwy 205. The northern PPA was named "Roaring Springs PPA" and is comprised of all acres north of Hwy 205 within the Pueble/South Steens PAC. The southern portion of the PAC is named Peublos PPA and is comprised of all acres south of Hwy 205 within the PAC.

The Pueblos PPA extends south from Hwy 205 and west from the Fields-Denio Highway to the Basque Hills region, encompassing the northern section of the Pueblo Mountains, Lone Mountain, and the Funnel Canyon-Oregon End Road area to the west. The Pueblos PPA was extended to the southeast and southwest to cover all adjacent Core Habitat areas outside the Pueblos/South Steens PAC boundary south of Hwy 205. GRSG habitat within the PPA is intact and in good condition (see **Table 4-28**).

18

19

20

21

22

	Matrix Category	No Data	IA	IB	IC	2 A	2B	2 C	3A	3B	3C
	Acres	548	0	10,002	6,737	0	26,163	56,230	0	5,880	28,701
	Percent of PPA	0	0	7	5	0	19	42	0	4	21
Ι											
2			Sage G	rouse							
3		This PPA is considered to be a stronghold for GRSG due to prime intact habitat.									
4			The Pueblos PPA is 133.903 acres in total, with 127.958 acres of BLM and 5.945								
5			acres of private ownership within. The entirety of this PPA is within Core								
6			GRSG habitat.								
7			The Pueblos PPA supports a healthy GRSG population, with a diverse habitat								
8			that accommodates the yearly needs of this species. There are 16 active leks,								
9			five inactive leks. One lek was observed for the first time in this PPA therefore,								
10			there is no available data. General GRSG population trends show a decline in								
11			the Pu	eblos PP	A. This is	s based	upon annu	Ial lek cour	nts sinc	e 2006-2	008 (see
12			Table	4-29).			•				,

Table 4-28Pueblos Sage-Grouse Habitat Matrix Categories

Table 4-29Greater Sage-Grouse Leks found within the Pueblo Project Planning Area

Lek Name/ ODFW Site ID	Conservation Status
Bradley Lake (HA0018-01)	Unoccupied Pending (Inactive)
Fields Basin (HA0018-02)	Occupied (Active)
Fields Creek (HA0019-01)	Unoccupied Pending (Inactive)
Rincon (HA0019-02)	Unoccupied Pending (Inactive)
Box Canyon #1 (HA0038-01)	Occupied Pending
South Catlow (HA0079-01)	Occupied Pending
Square Mountain (HA0080-01)	Occupied Pending
South Rincon (HA0081-01)	Unoccupied Pending
Mahogany Point (HA0094-01)	Occupied Pending
Funnel Canyon #1 (HA0113-01)	Occupied Pending
Funnel Canyon #2 (HA0113-02)	Unoccupied Pending
Pearl Wise (HA0018-03)	Unoccupied Pending (Inactive)
Box Canyon #2 (HA0038-02)	Unoccupied Pending
Rock Knoll HA0038-03)	Unoccupied Pending
Ram (HA0117-01)	Occupied Pending
Ladycomb #1 (HA0036-01)	Unoccupied Pending
Ladycomb #2 (HA0036-02)	Unoccupied Pending
Cone Reservoir (HA0019-03)	Unoccupied Pending (Inactive)
East Square Mountain (HA0127-01)	Occupied Pending
Shipley #1 (HA0138-01)	Occupied Pending
Shipley #2 (HA0138-02)	No Data
South Rincon #2 (HA0081-02)	Occupied Pending

13

14

Vegetation

- 15
- 16

Much of this PPA is located at high elevations (5,800 ft and above) and mostly supports cool dry soils. Understory composition varies due to the changes in

I 2 3 4	elevation. General plant associations based upon Ecological Site Inventory (ESI) soil types can be found in Table 4-30 below. The southern portion of this PPA is the largest contiguous tract of sagebrush-steppe with a predominately healthy understory remaining on the Burns District.
5	Conifer encroachment is not a major concern in this area. If encroachment is
6	observed standard removal procedures will be applied.

Ecological Site			_
Identification	ESI Soil Type	General Plant Associations	Acres
Number			
024XY016OR	Loamy 8-10	Basin Big Sage; Needleandthread;	677
024XY018OR;	Sandy Loam 8-10; Loamy 10-12	Ricegrass	4990
023XY212OR			
		Total	5667
023XY216OR	Claypan 12-16	_ Mtn Big Sage; Low Sage; Idaho Fescue;	1921
023XY318OR	Loamy 12-16	Needlegrass	2227
023XY404OR	Deep North 12-18; Misc Land Type		2186
023XY416OR	Wet Meadow		51
023XY310OR	North Slopes 12-16		2052
023XY216OR;	Claypan 12-16; Loamy 12-16		7290
023XY318OR			
023XY310OR;	North Slopes 12-16; South Slopes 8-		7868
023XY300OR	12		
023XY310OR;	North Slopes 12-16; Shallow North		4767
023XY312OR	12-16		
023XY312OR;	Shallow North 12-16; Deep North 12-		5321
023XY404OR	18		
023XY316OR;	Droughty Loam 11-13; Claypan 12-16		8350
023XY216OR			
		Total	42032
024XY020OR	Shrubby Loam 8-10	Shadscale; Wyoming Big Sage; Budsage;	3933
024XY033OR;	North Slopes 6-10; South Slopes 6-10	Spiny Hopsage	2299
024XY032OR			
		Total	6233
023XY202OR	Swale 10-14	Wyoming Big Sage; Low Sage;	332
023XY212OR	Loamy 10-12	Needlegrass; Bluebunch	19729
023XY214OR	Claypan 10-12		2431
023XY220OR	Clayey 10-12		8430
023XY300OR	South Slopes 8-12		6034
023XY214OR;	Claypan 10-12; Loamy 10-12		4995
023XY212OR			
023XY212OR;	Loamy 10-12; Clayey 10-12		24604
023XY220OR	, , , ,		
023XY300OR;	South Slopes 8-12; North Slopes 12-		11324
023XY310OR	16		
		Total	77879
010XY005OR	Loamy Bottom	Bulrush; Cattail; Creeping Wildrye;	98
		Basin Wildrye	
024XY010OR	Clay Basin 6-8	Greasewood; Saltgrass; Basin Wildrye	523
	,		

Table 4-30General Plant Associations based upon ESI Soil types for Pueblo PPA

March 2015
	Ecological Site Identification Number	ESI Soil Type	General Plant Associations	Acres						
	024XY113OR; 024XY013OR	Sodic Fan 6-10; Low Sodic Terrace 6- 10	Greasewood; Shadscale; Spiny Hopsage; Basin Big Sage	1381						
	Unknown			60						
Ι										
2		Fire								
3		Large scale wildfires are occur	ring at an accelerated pace, causing th	ne vegetation						
4		at lower elevations to chang	ge from Wyoming big sagebrush/pe	rennial grass						
5		communities to annual grass d	ominated communities. This issue is e	evident in the						
6		lower elevation areas that we	ere burned during the Pueblo Fire in	2006, which						
7		burned over 32,000 acres alor	ig the northeastern corner of the PPA	م (see Table						
8	4-3 I).									
		Table 4	I-3 I							
	Summary of Burn Probability									
	High and	Very High Burn Probability in PPA (acres)	3	1.934						
	High and	Very High Burn Probability in PPA (perce	nt)	98.6						
9										
10		There has been substantial di	sturbance from recent wildfires to t	he habitat in						
11		the northern portion or the	PPA, however, in documented fire so	ection of the						
12		PPA, large scale wildfires have	e been absent from the southern por	rtions of this						
13		PPA. Considering the recent l	arge scale disturbance to GRSG habit	at from large						
14		wildfires in the Northern Gr	eat Basin, the habitat within the Pu	eblos PPA is						
15		extremely important and d	eserves protection from near-futu	re wildfires.						
16		Accordingly, from the Fire O	perations perspective, the Pueblos P	'PA has been						
17		identified as the highest priori	ty PPA within the Burns District. BLM	1. Due to the						
18		remoteness of this area, th	iere are also some projects ident	ified in this						
19		assessment to aid Fire Operat	ions, such as linear fuel breaks, road	maintenance,						
20		initial attack resources, and	water developments. These potentia	l treatments						
21		will be discussed in more deta	il with in the Fire Operations, Fuels	Management,						
22		and Habitat Restoration and R	ecovery sections.							
23		The southern portion of this	PPA is the largest contiguous tract	of sagebrush						
24		with a predominately healthy	understory remaining on the Burns	District. This						
25		area is considered the highest	priority to prevent a large wildfire fro	om occurring						
26		on the Burns District. All tho	ugh in recent fire history the norther	n 3rd of this						
27		PPA was impacted (predomin	ately by the Pueblos Fire), the south	ern portions						
28		of this PPA have been largely	undisturbed by wildfires. Fire record	s from 1980-						
29		pressent show that there hav	e been 13 fires reported within the	boundary of						
30		the Pueblos PPA. From these	fires, 46,476 acres have burned withir	the Pueblos						
31		PPA since 1980, with the bul	k of these acres (32,208 acres) com	ing from the						
32		Pueblos Fire in 2006, which	burned in the northern portion of 1	this PPA and						

Table 4-30 General Plant Associations based upon ESI Soil types for Pueblo PPA

extends across Hwy 205 into the Roaring Spring PPA. The burned areas with higher elevation (higher resistance and resilience) are recovering, but a large portion of the area is not doing well, with invasive annual grasses hindering native perennial.

Management Strategies

Management Activities

The Burns District BLM grazing management strategy is based upon a target utilization of <50 percent for native bunchgrass communities and <60 percent for nonnative seeding's using a modified Landscape Appearance method. This allows management to account for both site specific environmental variables (soil type, soil depth, slope, aspect, and elevation) and climatic variations (precipitation, and temperature), which influence annual production rates. Cattle are permitted to graze allotments during specified periods, but are removed early if target utilization is reached. Typically utilization doesn't exceed 35-40 percent on most allotments.

17 Fuels Management

L

2

3

4

5

6 7

8

9

10

11

12

13

14

15

16

18 Utilizing the existing road systems within and outside the perimeter of the 19 Pueblos PPA, a network of fuel breaks has been identified to compartmentalize 20 and establish anchor points for fire fighters to safely engage wildfires that may 21 occur in this area in the future. Site specific treatment methods will be 22 determined at the time of implementation and will utilize all available tools, such 23 as mowing woody species, chemically treating herbaceous fuels (specifically 24 annual grasses), and seeding desirable species, which could include nonnatives. 25 These fuel breaks will be edge matched to any nearby fuel break treatments. 26 The treatment purpose and need would include controlling invasive annuals and 27 protecting sagebrush communities from large scale habitat conversion due to 28 wildfire. Multiple roads have been identified and prioritized for treatment (see 29 Table 4-32).

Table 4-32 Fuels Management Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Total				
Miles	109.14	44.81	0	153.95				
0								
1	Changes in the histor	ical fire regime are c	bserved throughout the	e Pueblos PPA.				
2	In the upper elevatio	ns, reduction in fire	e frequency has altered	the dominant				
3	vegetation from Mountain Big Sagebrush/Perennial Grass communities to							
4	Juniper. Currently th	ere are 2,341 acre	s of juniper encroachn	nent observed				
5	from the Juniper Enc	roachment layer. Fu	ture treatments have b	been identified,				
6	focusing initially on	areas of high GR	SG abundance and e	expanding into				
7	historical/potential ha	bitat once the core	areas have been addres	sed. Local IDT				
8	will evaluate each tr	eatment location to	o select a removal tec	hnique that is				
9	appropriate for the a	iffected area. Contin	nued management will	be done post-				

4-34

treatment to help maintain desirable vegetation and historical fire regimes. In the lower elevations, large scale wildfires are occurring at an accelerated pace, causing the vegetation at lower elevations to change from Wyoming big Sagebrush/Perennial Grass communities to Annual Grass dominated communities.

6 Fire Operations

L

2

3

4

5

7

8

9

10

11

12

13

14

15

16

17

This area has been listed as the highest priority of the identified PPA within the Burns District BLM for fire operations due to the large contiguous tract of largely undisturbed GRSG habitat. This area is a challenge from the fire suppression perspective due to the overall remoteness, rough condition of existing roads, and a lack of reliable water sources. The Burns District BLM will make this area the focus and emphasis area for initial attack and prepositioning of resources during a high fire potential, including aviation resources. Treatments to enhance fire operation capabilities for this area will include creating water sources for ground and aviation suppression resources to utilize during fire operations and improving/maintaining the road systems within this PPA to reduce the response time of initial attack resources.

- 18Two proposed well development locations have been identified for the Pueblos19PPA that will not only act as a fire operations resource, but also as a grazing20management tool to help with cattle distribution. They are both located on the21remote western side of the PPA where water resources are highly limited.
- First priority for fire operations has been given to the portion of the PPA west of the Rincon Flat Road, extending outside of the PPA boundary and the second priority has been given to the remaining eastern portion, extending to the Fields-Denio Road. First priority was given to the western portion for a variety of reasons, which include the sites lower resistance/resilience, fire spread history (wildfires are usually driven by a westerly wind in this region), and remoteness (see **Table 4-33**).

	I able 4-33	
Fire Ope	rations Management	Strategies
Priority I	Priority 2	Priority 3

T I I 4 3 3

	Priority	Priority I	Priority 2	Priority 3	Total						
	Acres	100,631	55,576	0	156,207						
	Percent of PPA	75.0	41.4	0	116.4						
29											
30		All roads identified for linear fuel breaks will be maintained/improved under the									
31		Fire Operations Management Strategy. This will improve initial attack response									
32		for any addition	for any additional wildfire starts that occur in the area. Roads identified for								
33		improvement/maintenance for response of suppression resources include:									
34		Stergen Cabin Road, Funnel Canyon Oregon End Road, Catlow Valley Road,									
35		Domingo Pass	Road, Ten Cent Mea	dows Road, Gusher We	ll Road, Rincon						
36		Oregon End Pueblo Road, and Lone Mountain Road.									

I	Habitat Restoration and Recovery
2	The majority of the Pueblos PPA consists of intact GRSG habitat and will
3	require minimal amounts of habitat restoration in order to maintain it as a
4	stronghold. The first priority for the PPA is to reestablish sagebrush within the
5	perimeter of the Pueblo Fire, which burned in 2006. Planting of sagebrush plugs
6	would be consistent with the other fire restoration projects in the Burns
7	District BLM (e.g. planting of "islands" to reestablish the shrub component
8	within burn scar) (see Table 4-34).

Table 4-34Habitat Restoration Potential Treatments

	Priority	Priority I	Priority 2	Priority 3	Total						
	Acres	0	22,412	0	22,412						
-	Percent of PPA	0	16.69	0	16.69						
9											
10		Potential restor	ation and recovery at lo	ower elevations within the	PPA will focus						
11		on areas invade	d by annual grasses, spe	cifically within the Pueblo	Fire perimeter.						
12		Treatment will	I reatment will focus on stopping the spread with the use of herbicide and								
13		biological thinni	ng at times when pere	ennial vegetation is dorm	ant. Seeding of						
14		perennial grasse	es will take place in ar	eas where the annual gra	ass invasion has						
15		diminished the r	diminished the natural community and impaired the ecological function of the site.								
16		In portions of	In portions of the Pueblos PPA mosaic brush beating treatments have been								
17		considered to e	establish a multiple age	class stand of sagebrush.	This treatment						
18		would increase	diversity of habitat and	l leave a more resilient la	andscape in the						
19		occurrence of a	ι wildfire. Much like the	e fuel breaks identified to	be constructed						
20		off major roads	to aid fire suppression	resources, associated trea	tments/tools to						
21		the mosaic sage	brush mowing would ne	eed to be available (mecha	anical, chemical,						
22		and potential fo	r nonnative seeding) de	pendent on site specifics.							
23		Forage availabili	ty will be an issue wher	n identifying areas for hab	itat restoration.						
24		During seeding	treatments the area wil	I need to be rested from	grazing for two						
25		seasons post-se	eding to allow full esta	ablishment. Range improv	ement projects						
26		will be continge	nt on allocation of alte	rnative forage for designat	ted permittee's.						
27		In portions of	the Pueblos PPA mosa	aic brush beating treatme	ents have been						
28		considered to e	establish a multiple age	class stand of sagebrush.	This treatment						
29		would increase	diversity of habitat and	l leave a more resilient la	andscape in the						
30		occurrence of a	u wildfire. Much like the	e fuel breaks identified to	be constructed						
31		off major roads	to aid fire suppression	resources, associated trea	tments/tools to						
32		the mosaic sage	brush mowing would n	eed to be available (mecha	anical, chemical,						
33		and potential fo	r nonnative seeding) de	pendent on site specifics.							
34		The Pueblo/Lon	e Mountain Allotment, v	which is 222,000 acres, is c	urrently divided						
35		into two pastur	es. One pasture covers	the eastern half of the all	otment and the						
36		other covers the	e western half. This allo	tment may be considered	for division into						
37		quadrants in effe	ort to move cattle more	e effectively throughout th	e allotment.						

I	Post-Fire Rehabilitation Management
2	If the Pueblos PPA burned, the western portion would be most susceptible to
3	cheatgrass invasion and would be priority I for ESR treatments. Potential
4	locations for herbicide and seeding to prevent the spread of invasive annuals
5	would be identified by an IDT. Depending on the scale of the wildfire, sagebrush
6	plugs could be planted to restore the shrub component to the landscape (see
7	Table 4-35).

	Priority	Priority I	Priority 2	Priority 3	Total				
	Acres	84,610	49,650	0	134,260				
	Percent of PPA	63	37	0	100				
8									
9		The second priority for	or post-fire rehabilitat	tion would be the rem	aining eastern				
10		portion of the PPA. The area is mostly characterized as a highly							
11		resistant/resilient site	resistant/resilient site and should naturally recover from fire. If the area has						
12		problems recovering, an IDT will identify potential treatment areas.							
13		Proposed Manageme	ent						
14		See Table 4-36 for	projects that have b	peen identified present	tly within the				
15		NEPA planning proces	s. See Figures 4-17	through 4-21 for a gra	phic depiction				
16		of the proposed treatments and strategies in the PPA.							

Table 4-35 **Post-Fire Rehabilitation Management Strategies**

Project Planning Area Treatment Summary Table								
Treatment Description	Priority	Threats Addressed	NEPA	Treatments				
		(I) se		Time Frame	Certainty of Effectiveness ¹			
		rasse		-(P)				

Table 4-36 **T** () **C T** ()

						(I) se						Time Frame		Certainty of Effectiveness ¹		ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Pueblo Fire ESR	7,357	Х				Х				Х				I			0-2
Pueblo Seeding Brush Beat	1,005		Х					Х			Х			I			3-5
Green Stripping EA	3,211	Х	Х					Х	Х					I		10	5+

 State jif treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

 I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

 2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

 3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

 4 = Based upon professional opinion, treatment is likely to be effective

 2

 Describe frequency of maintenance necessary to continue effectiveness (years)

 3

 Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

 2	4.2.5	Trout Creek East
3 4		Project Planning Area Description
5		General Site Description
6 7		The Trout Creek East PPA is in the southwest portion of the district and extends into the Burns District. The PPA is being extended down to highway 95
8		to incorporate nearby core habitat.
9		The PPA is located in southeastern Oregon, bordered by Nevada to the south,
10		highway 95 to the east, the Vale District boundary to the west and Whitehorse
11		road to the north. McDermitt, Nevada is the closest town to the southeast. The
12		Oregon Canyon and Blue mountains are located within the PPA.
13		This area has high elevation areas with generally frigid soils above 4,500ft and
14		mesic soils below 4,500ft. The mesic soils tend to have a higher risk for fire,
15		annual invasives, and conifer, so the district intends to target their funding
16		efforts there. Above 4,500ft there is a natural resilience to fire and invasives and
17		a good possibility of natural return after fire (see Table 4-37).

Table 4-37	
Trout Creek East Sage-Grouse Habitat Matrix Categories	

	Matrix Category	No Data	IA	IB	IC	2A	2B	2C	3A	3B	3C
	Acres	12	41,826	4,796	2,489	117,769	35,131	44,087	24,591	41,892	22,888
	Percent of PPA	0	12	I	I	35	10	13	7	12	7
18											
19			Sage-	Grouse							
20			The	PPA is	entirely	Greater	GRSG P	PH surroun	ded by pr	eliminary	general
21			habita	at. With	in the p	olanning a	rea, there	e are 65 lek	s, 42 are c	occupied p	ending,
22			one u	inoccupi	ied, 17 ι	unoccupie	d pending	, and five wit	th no data.		Ū
23			This	area wa	s also la	argely bur	ned by th	ne Holloway	fire of 20	12 and tre	atment
24			effort	s have r	not had	a positive	outcome	. The GRSG	populatio	n dropped	heavily
25			after	this fire,	but the	e habitat is	coming b	back well in t	he higher e	elevations.	
26			Veget	ation							
27			The	northeas	stern ar	ea of the	PPA bor	ders salt de	sert shrub	, and the	eastern
28			area	of the	PPA fro	om the H	olloway F	ire polygon	to highwa	ay 295 alo	ong the
29			Neva	da bord	er is co	mprised c	of the cald	era area wh	ich has a h	igh concer	ntration
30			of La	hontan	sagebru	ush. Furth	ner studie	es need to	be done	on the La	ahontan
31			sageb	rush in	order	to unde	rstand th	ie fire regir	nes, flamn	nability, re	ecovery
32			poter	ntial, and	l resilier	nce to inv	asive annu	ials. Lahonta	n sage is co	onsidered	to be a
33			hybri	d of lov	v sageb	rush and	black sag	ebrush, was	once con	sidered a	special
34			status	s species	before	50-60k a	cres of it v	was discover	ed.		

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessment Western Great Basin - Warm Springs Valley/Western Great Basin

At the upper elevations of the planning area significant rainfall and cooler temperatures result in a broad mosaic of low sagebrush, mountain big sagebrush communities, and a mountain shrub type composed of snowberry, bitterbrush, *Cenaothus*, and mountain big sagebrush. Grass and forb understories include Idaho fescue, western needlegrass, bluebunch wheatgrass, and Sandberg bluegrass. Numerous inclusions of small wet meadows and riparian strings are found at the upper elevations. Dropping in elevation, a transition zone is encountered which is composed primarily of Wyoming big sagebrush, bluebunch wheatgrass, and Thurber's needlegrass communities with a wide variety of forbs and occasional stands of basin wildrye in well drained, rocky sites. The lower elevations consist predominately of a broad mosaic of salt desert shrub and Wyoming big sagebrush with basin big sagebrush communities in drainage bottoms.

13 14 15

16

17

18

19

20

21

22

L

2

3

4

5

6

7

8

9

10

П

12

Management Strategies

Other Relevant Management Activities

The Trout Creek East Project Planning Area contains portions of five Wilderness Study Areas (Twelvemile Creek, Fifteenmile Creek, Oregon Canyon, Willow Creek, and Disaster Peak. There are no Wild Horse and Burro HMAs within the PPA. Livestock (cattle) grazing occurs throughout the PPA. There are no transmission lines or wind energy facilities within the PPA.

Treatments and Fire

23 This area was also largely burned by the Holloway fire of 2012 and treatment 24 efforts have not had a positive outcome. The GRSG population dropped heavily 25 after this fire, but the habitat is coming back well in the higher elevations. 26 Invasive annual grasses are observed in lower elevation areas and have the 27 opportunity to creep up into the higher elevation areas. ESR efforts after the 28 Holloway fire have included bitterbrush, mountain big sagebrush, and Wyoming 29 sagebrush plugs along with riparian amendments. The fire took out many of the 30 mahogany and aspen in the area so large woody species treatments are not 31 needed. There are treatments that have occurred outside of the PPA along the 32 eastern boundary. Treatments in this area include prescribed burns, mechanical 33 removal, and re-vegetation efforts. So far these treatments have resulted in 34 more resilient grass, but not more grass overall (see Table 4-38).

Table 4-38Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres) High and Very High Burn Probability in PPA (correct)	312,199
25	High and very High Burn Probability in PPA (percent)	73.5
33		
36	Fuels Management	
37	This area has WSA designations, but fuels treatments	have been selected
38	disregarding them. The District has identified several major	[•] roads (Whitehorse
39	Road, Little Whitehorse Road, Oregon Canyon Road and	I Oregon Canyon –

March 2015

I	Zimmerman Ranch Road) within the PPA have been selected for mowing, full
2	green stripping, and improving access for firefighting resources. Green stripping
3	may use native or nonnative seed may be utilized within green strips.

4 Roads will be monitored and treated for invasive annuals, but these treatments
5 are low priority due to the general lack of invasion within the area (see Table
6 4-39).

Additionally sagebrush islands will be monitored and managed adaptively. Islands
that are doing well and expanding on their own will be seeded to aid expansion.
Islands that seem to be at risk for annual grass invasives or conifer
encroachment will be treated by creating a one-mile buffer around the island
and then seeded to promote correct vegetation communities.

- 12Create an elevation based buffer in effort to keep invasive annual grasses out of13higher elevation areas. Treatments may include greenstripping and herbicide14application.
- 15Due to the recent burn this area is not in need of conifer or other large woody16species treatments.

Table 4-39Fuels Management Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Total
Miles	46.67	115.87	0	162.54
	Habitat Restoration and	d Recovery		
	Continue efforts to	seed, plug, and c	other treatments heavi	ly within the
	transition zone of 4	,000-5,000ft after ES	SR efforts in order to	maintain high
	elevation habitat and	try to bring back low	er elevation habitat.	-
	Areas that are being	treated under ESR	for the allotted 3 year	window, the
	developed project ar	ea will then step into	o a longer term treatme	ent plan under
	habitat restoration a	nd recovery. ESR tre	eatments will be carried	d through and
	will include all treatm	ent methods available	e (see Table 4-40).	-

Priority	Priority I	Priority 2	Priority 3	Tota
Acres	53,512	17,549	0	71,060
Percent of PPA	15.95	5.23	0	21.18
	Fire Operations			
	White Horse B	utte is located outside	of the Holloway fire and	is comprised of
	3a and 3b habit	at with healthy and in	tact Wyoming sagebrush	This area is the

Table 4-40 Habitat Restoration Potential Treatments highest priority of the PPA due to the intact sagebrush and being adjacent to the Holloway fire.

The portion of the caldera area that has not previously burned will be protected as much as possible due to the healthy habitat in the area. Fire operations would focus on preventing the area from burning and quick suppression if fire gets into the area. This area and its habitat will be a focus habitat area for the next 15 years in effort to keep habitat while the Holloway area recovers. Currently, this habitat in the caldera area is the last remaining portion of habitat in the planning area in the Vale district.

- 10In addition to the intact caldera area, fire operations within this PPA would11prioritize the protection of sagebrush islands within the Holloway fire, second12only to life and property, in effort to maintain core GRSG habitat. After a fire13the remaining islands and new seeding sites will be identified. The identified sites14will be sent through the ESR process and then into longer term monitoring and15maintenance.
- 16The caldera area that has previously burned will be protected initially, but if this17area converts to a more frequent fire cycle then it will be abandoned in favor of18using funds in higher priority sites, such as the Holloway fire polygon. This is19due to low success rates of reestablishment of sagebrush in the caldera area.
- 20The 12-mile ranch area will also be protected, but only if no other area is21currently burning. This is due to poor habitat conditions, the distance of the lek22from other leks (connectivity), and lack of confirmation that this lek is occupied.23This area would become a higher priority if the fire threatens to burn into the24adjacent Holloway area.
- 25Since water is scarce, developing water re-fill sites for engines and/or helicopter26use throughout the PPA will be implemented as much as possible to provide27additional water resources for suppression efforts. The decision on location of28these sites, what type of infrastructure will be constructed, and their order of29priority has been deferred to a later date.
- 30This PPA is a long drive distance from established facilities where suppression31resources are housed. To facilitate a more effective suppression response,32staging of resources in or near the PPA or McDermitt, Nevada will be33considered during anticipated events, depending on district-wide fire activity and34the availability of resources.
- 35In addition to the pre-positioning of resources, establishing fire breaks to36compartmentalize the area to minimize fire spread will be constructed and37maintained. These fire breaks may consist of road improvements to existing38travel corridors and/or fuel reduction buffer zones implemented by the use of39mechanical and/or chemical means (see Table 4-41).

L

2

3

4

5

6

7

8

	Priority	Priority I	Priority 2	Priority 3	Total						
	Acres	216,062	11,9419	0	335,481						
	Percent of PPA	64.5	35.5	0	100						
I											
2		Post-Fire Rehabilitation	Management								
3		An ESR plan was dev	eloped following th	e Holloway Fire in 201	2. The primary						
4		treatment utilized was	to allow for natura	al recovery of vegetative	e resources and						
5		deferment of livestoo	k grazing for two	full growing seasons.	Monitoring has						
6		indicated that this has been successful in reestablishment of vegetative resources									
7		including mountain big	sagebrush.								
8		An evaluation of post	-fire rehabilitation n	eeds will be undertake	n at the time of						
9		any new fires that occ	ur within the PPA. S	Specific treatments are	unknown at this						
0		time but are likely to i	include natural reco	very in resilient areas. I	n areas that are						
		less resilient potenti	al treatments coul	d include seeding of	sagebrush and						
2		native/nonnative vege	tation, deferment c	of livestock grazing, and	noxious weed						
3		control activities (see	Table 4-42).								

Table 4-41 Fire Operations Management Strategies

Table 4-42
Post-Fire Rehabilitation Management Strategies

· · · · · · · · · · · · · · · · · · ·			
216,650	119,416	0 33	36,066
64.5	35.5	0	100
	64.5	64.5 35.5	216,650 119,416 0 33 64.5 35.5 0

16See **Table 4-43** for projects that have been identified presently within the17NEPA planning process. See **Figures 4-22** through **4-25** for a graphic depiction18of the proposed treatments and strategies in the PPA.

Table 4-43
Project Planning Area Treatment Summary Table

Treatmer Descriptio	P	riorit	y		Thr Addr	eats essed		I	NEPA	1			Tr	eatmen	ts		
						s (I)						Tir Fra	ne me	Certai Effectiv	nty of eness ¹	ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ¹	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Sagebrush Planting	500	Х						Х		Х			Х	Х			0-2

Treatme Descript	ent tion	P	riori	ty		Thr Addr	eats essed		I	NEPA	1	Treatments					
						s (I)						Tir Fra	ne me	Certa Effecti	inty of veness ¹	ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Seed Scatter	54,000			Х				Х		Х					Х	25	Will not Imple- ment
Shrub Planting (Bitterbrush)	3,000			Х				Х		Х				X		25	5+ (Natural Revege- tation)
Shrub Planting (Mountain Mahogany)	7,000			X	111			X		X				X		5	5+ (Natural Revege- tation)

Table 4-43 Project Planning Area Treatment Summary Table

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

4.2.6 Trout Creek West

Project Planning Area Description

General Site Description

The Trout Creek West PPA is located in the southeast corner of the Burns BLM District, in the Andrews Resource Area, and is approximately 110 miles to the southeast of Burns, OR. The Trout Creek West PPA falls within the Trout Creek PAC which extends across Winnemucca, Burns, and Vale Districts. The Trout Creek PAC extends from the Nevada border north towards Flagstaff Butte. West to east this PAC extends from Grassy Basin, Red Mountain, and Chalk Canyon over towards the Sherman Field and the Trout Creek Mountain Road on the Burns District. The PAC then continues east towards Oregon Canyon on the Vale District. The boundary to the Trout Creek East PPA was defined using the district boundaries and contains delineated by all of the area from the Trout Creek PAC that is administered by the Burns District, BLM. The total size for this PPA is 89,894 acres with 73,756 acres being BLM, 13,589 acres of private, and 2,549 acres being undetermined (most of which are Winnemucca BLM District, BLM acres that are administered by Burns District BLM). For this

I 2

3 4

5 6

7

8

9

10

11 12

13

14

15

16

17

18

1	assessment, the Trout Creek West PPA has been extended out from the Trout
2	Creek PAC to include adjacent core habitat on the Burns District. Also, some
3	treatments extend outside the PPA boundary, as they have been deemed
4	necessary to protect the Trout Creek PAC. Examples include fuel break related
5	treatments, fire operations management, as well as annual grass control
6	treatments (see Table 4-44).

Table 4-44Trout Creek West Sage-Grouse Habitat Matrix Categories

	Matrix Category	No Data	IA	ΙB	IC	2 A	2B	2C	3A	3B	3C
	Acres	358	39,770	3,961	315	12,583	11,538	584	6,849	3,346	4,128
	Percent of PPA	0	48	5	0	15	14	I	8	4	5
7			6 C								
8			Sage Grou	ise Maria		L L			4h - h:-h - 44		CDCC
9			Ine Iro	ut Mour	itains	nave bee	en nome t	o one of	the highest		GKSG
10			populatio	ns withi	n the	state of (Jregon. II	he entirety	of the Iro		vvest
11			PPA is lis	sted as	Primar	ry Priorit	y Habitat	/ Core Gr	(SG habitat	. Inere a	are 13
12			active lek	s and th	ree lei	k that we	have no d	ata on four		e bounda	ries of
13			this PPA	(see Ia	ble 4	-45 belov	w). In 2012	the Holic	oway Fire h	ad a subs	stantial
14			impact on the Trout Creek Mountains GRSG population, burning 461,050 acres								
15			that was	that was of predominately GRSG habitat. The Holloway Fire started on							
16			VVinnemi	Winnemucca BLM District in Nevada and burned up through the Burns District							
17			BLM and then over to on to the Vale District BLM; negatively effecting GRSG								
18			populations across these three BLM Districts. Following the Holloway Fire, an								
19			Emergen	cy Stabi	lizatio	n and F	Rehabilitatio	on (ESR)	project w	as coord	linated
20			between	the th	ree B	LM Dist	ricts that	this fire	burned acr	oss the	lower
21			elevation	sites (*	~<5,80	JO ftt	ypically th	e low res	istant/resilie	ent sites)	, with
22			invasive	annual g	grasse	s being	the prima	ry conceri	n. I reatme	ents have	been
23			undertak	en, and a	are pla	anned to	address lo	wer elevat	ion sites; pi	rimarily u	itilizing
24			herbicide	s (imaza	pic) to	address	invasive an	inual grass	issues.		
25			There ha	s not be	en en	ough lek	count data	a collected	in the Tro	ut Creek	West
26			PPA to e	stablish	a gen	eral tren	d in GRSG	i populatio	n (two yea	rs of dat	a), but
27			there ap	pears to	be a	a reducti	on in nun	nbers. The	ere has bee	en a die	off of
28			sagebrusł	n are stil	l pres	ent due t	o Aroga m	oth infesta	tion; the ex	xtant of t	his die
29			off is unk	nown at	this ti	me, in pla	aces it is e>	ctensive.			

Table 4-45
Greater Sage-Grouse Leks found within the Trout Creek West Project Planning Area

Lek Name/ ODFW Site ID	Conservation Status	
Little Trout #I (HA0089-01)	Unoccupied Pending	
Table Mountain #1 (HA0090-01)	No Data	
LC Spring (HA0091-01)	No Data	
No Name #1 (HA0092-01)	Unoccupied Pending	
No Name #2 (HA0093-01)	Occupied Pending	

Lek Name/ ODFW Site ID	Conservation Status	
No Name #3 (HA1030-01)	Unoccupied Pending	
No Name #4 (HA1031-01)	Unoccupied Pending	
East Fork Trout Creek (HA0147-01)	Occupied Pending	
Center Ridge #3 (HA0088-03)	Occupied Pending	
Sheep Camp Spring (HA1045-01)	No Data	
Center Ridge #1 (HA0088-01)	Unoccupied Pending	
Stony Spring (HA0129-01)	Occupied Pending	
Center Ridge #2 (HA0088-02)	Occupied Pending	
Center Ridge #4 9HA0088-04)	Occupied Pending	
No Name #5 (HA0092-05)	Occupied Pending	

Table 4-45Greater Sage-Grouse Leks found within the Trout Creek West Project Planning Area

2
3
4
5
6
7

8

9

10

11

12

13

14

15

16

17

18

I

Vegetation

This area once held the best GRSG habitat in the state, however in 2012 most of the Trout Creek PAC burned on the Burns, Winnemucca, and Vale Districts BLM as part of the Holloway Fire. However, within the Trout Creek West PPA most of the GRSG habitat in the higher elevations has been rebounding positively from this large scale disturbance (see Table 4-46). Following the Holloway Fire, an Emergency Stabilization and Rehabilitation (ESR) project was coordinated between the three effected BLM Districts. The treatments carried out from this plan were largely effective; especially in higher elevations. The higher elevation sites are on the successional pathway back to a sage-steppe system, however treatments such as seeding islands of sagebrush plugs are planned to accelerate succession. The primary areas of concern within the Holloway fire remain on the lower elevation sites (~<5,800 ft. which are characterized as lower resistant/resilient sites), with invasive annual grasses being the primary concern. Treatments have been undertaken, and are planned to address lower elevation sites; primarily utilizing herbicides (imazapic), biothinning, and seeding to address invasive annual grass issues.

Table 4-46General Plant Associations based upon ESI Soil types for Trout Creek East PPA

Ecological Site Identification Number	ESI Soil Type	General Plant Associations	Acres
023XY509OR	Misc Land Type;Subalpine Slopes 16-	Mtn Big Sage; Low Sage; Fescues;	589
0222241000			175
023X1418OR	Aspen 16-35		1/5
023XY501OR	Loamy 16-25;Misc Land Type		1861
023XY507OR	Claypan 16-25		2211
023XY418OR;	Aspen 16-35;Subalpine Slopes 16-35		4066
023XY509OR			
023XY510OR;	Rocky Ridges 16-35;Claypan 16-25		1164
023XY507OR			
		Total	10066

Identification Number ESI Soil Type General Plant Associations Acres Number 023XY216OR Claypan 12-16 Mtn Big Sage; Low Sage; Idaho 1047 023XY216OR Droughty S Slopes 11-13;Misc Land Type Mtn Big Sage; Low Sage; Idaho 2081 023XY314OR Gravelly N Slopes 12-16 3079 3079 023XY314OR Learny 12-16 30379 023XY312OR; Shallow North 12-16;North Slopes 2353 023XY312OR; Shallow North 12-16;Claypan 12- 3335 023XY312OR; Deep North 12-16;Claypan 12- 6362 023XY312OR; South Slopes 12-16;Claypan 12- 6362 023XY312OR; South Slopes 12-16;Deep North 12- 3514 023XY312OR; South Slopes 12-16;Deep North 12- 3514 023XY312OR; South Slopes 8-12;Misc Land Type 3514 023XY312OR; South Slopes 8-12;Misc Land Type 827 023XY312OR; South Slopes 8-12;Misc Land Type 827 023XY312OR; South Slopes 8-12;Misc Land Type 43175 023XY140R Clayey 10-12 827 0	Ecological Site			
Number 023XY216OR Claypan 12-16 Mtn Big Sage; Low Sage; Idaho 1047 023XY31OR Droughty S Slopes 11-13;Misc Land Fescue; Needlegrass 2081 023XY31AOR Carvelly N Slopes 12-16 3079 3079 023XY31AOR Deep North 12-18;Misc Land Type 7325 023XY31AOR Deep North 12-16;North Slopes 3335 023XY31OOR 12-16 5895 023XY31OR 12-16 7157 023XY31OR 12-16 6362 023XY302OR; South Slopes 12-16;Deep North 12- 6362 023XY404OR; 18;Aspen 16-35 827 023XY418OR 12-18;Aspen 16-35 827 023XY210OR South Slopes 8-12;Misc Land Type Needlegras; Bluebunch 4506 023XY210OR; Claypan 10-12;Loayng 10-12 23897 389	Identification	ESI Soil Type	General Plant Associations	Acres
023XY216OR Claypan 12-16 Mtn Big Sage: Low Sage: Idaho 1047 023XY301OR Droughty S Slopes 11-13;Misc Land Type Fescue; Needlegrass 2081 023XY314OR Gravelly N Slopes 12-16 3079 023XY314OR Deep North 12-18;Misc Land Type 7325 023XY404OR Deep North 12-16;North Slopes 2353 023XY310OR 12-16 3535 023XY302R; South Slopes 12-16;Claypan 12- 6362 023XY302OR; South Slopes 12-16;Claypan 12- 6362 023XY302OR; South Slopes 12-16;Claypan 12- 6362 023XY302OR; South Slopes 12-16;Deep North 12- 6362 023XY302OR; South Slopes 12-16;Deep North 12- 827 023XY312OR; South Slopes 12-16;Deep North 12- 827 023XY314OR 12-18;Aspen 16-35 827 023XY440OR; 12-18;Aspen 16-35 827 023XY140OR 12-18;Aspen 10-12 8492 023XY212OR Clayey 10-12 Wyoning Big Sage; Low Sage; 6872 023XY212OR Clayey 10-12 Weedlegrass; Bluebunch 7186	Number			
023XY301OR Droughy S Slopes 11-13;Misc Land Type Fescue; Needlegrass 2081 023XY314OR Gravelly N Slopes 12-16 3079 023XY316OR Leamy 12-16 5895 023XY3140CR Deep North 12-18;Misc Land Type 7325 023XY310OR 12-16 23533 023XY312OR; Shallow North 12-16;North Slopes 3535 023XY302OR; Deep North 12-18;Shallow North 7157 023XY404OR; Deep North 12-16;Clayan 12- 6362 023XY404OR; Ischep North 12-16;Deep North 12- 3514 023XY404OR; 16;Deep North 12-16;Deep North 12- 827 023XY404OR; 12-16,Clayen 10-35 3514 023XY418OR 023XY312OR; South Slopes 12-16;Deep North 12- 827 023XY312OR; South Slopes 8-12;Misc Land Type 827 023XY310OR; South Slopes 8-12;Misc Land Type 827 023XY210OR Clayen 10-12 Wyoming Big Sage; Low Sage; 6362 023XY210OR South Slopes 8-12;Misc Land Type Needlegrass; Bluebunch 4306 023XY210OR; Claypan 10-12	023XY216OR	Claypan 12-16	Mtn Big Sage; Low Sage; Idaho	1047
Type 023XY314OR Gravelly N Slopes 12-16 3079 023XY314OR Deep North 12-18;Misc Land Type 7325 023XY314OCR Swale 12-16 3535 023XY314OCR Swale 12-16 3535 023XY314OCR Deep North 12-18;Misc Land Type 3535 023XY314OCR 12-16 3535 023XY314OCR Deep North 12-18;Mallow North 7157 023XY312OR 12-16 6362 023XY312OR; South Slopes 12-16;Claypan 12- 6362 023XY302OR; South Slopes 12-16;Deep North 12- 6362 023XY404OR 18;Aspen 16-35 3514 023XY404OR; 12-18;Aspen 16-35 827 023XY140R 12-18;Aspen 16-35 827 023XY220OR Clayey 10-12 Wyoming Big Sage; Low Sage; 6872 023XY214OR; Claypan 10-12;Clayey 10-12 7186 023XY212OR; Claypan 10-12;Claypan 10-12 3897 023XY214OR; Claypan 10-12;Claypan 10-12 3897 023XY214OR; Deesrt Loam 6-10;Shallow Loam 8-10 1641	023XY301OR	Droughty S Slopes 11-13;Misc Land	Fescue; Needlegrass	2081
023XY314OR Gravelly N Slopes 12-16 3079 023XY318OR Loamy 12-16 5895 023XY404OR Deep North 12-18;Misc Land Type 7325 023XY404OR Swale 12-16 2353 023XY404OR; Deep North 12-16;North Slopes 2353 023XY310OR 12-16 2353 023XY404OR; Deep North 12-18;Shallow North 7157 023XY312OR 12-16 6362 023XY30CR; South Slopes 12-16;Claypan 12- 6362 023XY302OR; South Slopes 12-16;Deep North 12- 6362 023XY302OR; South Slopes 12-16;Deep North 12- 3514 023XY312OR; Shallow North 12-16;Deep North 12- 3514 023XY312OR; Shallow North 12-16;Deep North 12- 3514 023XY312OR; I2-18;Aspen 16-35 827 023XY312OR; Loamy 10-12;Clayey 10-12 Wyoming Big Sage; Low Sage; 6872 023XY312OR; Loamy 10-12;Clayey 10-12 8492 3897 023XY310OR; South Slopes 8-12;Claypan 10-12 3897 3897 023XY14OR; Desert Loam 6		Туре		
023XY31BOR Loamy 12-16 5895 023XY404OR Deep North 12-18;Misc Land Type 7325 023XY404OR Swale 12-16 3535 023XY312OR; Shallow North 12-16;North Slopes 3535 023XY404OR; Deep North 12-18;Shallow North 71157 023XY404OR; Deep North 12-18;Claypan 12- 6362 023XY404OR; 16;Deep North 12-18 3514 023XY404OR; 16;Deep North 12-16;Deep North 12- 3514 023XY404OR; 18;Aspen 16-35 3514 023XY404OR; 12-18;Aspen 16-35 827 023XY210OR Clayey 10-12 Wyoming Big Sage; Low Sage; 6872 023XY210OR South Slopes 8-12;Misc Land Type Needlegrass; Bluebunch 4506 023XY210OR Claypan 10-12;Claypan 10-12 3897 23872 023XY214OR; Claypan 10-12;Loamy 10-12 3897 3897 023XY121OR; Desert Loam 6-10;Shallow Loam 8- Shadscale; Wyoming Big Sage; 236 236 023XY214OR; Desert Loam 6-10;Shallow Loam 8- Shadscale; Wyoming Big Sage; 236 234 023XY2	023XY314OR	Gravelly N Slopes 12-16		3079
023XY404OR Deep North 12-18;Misc Land Type 7325 023XY406OR Swale 12-16 2353 023XY12OR; Shallow North 12-16;North Slopes 3535 023XY310OR 12-16 7157 023XY310OR; South Slopes 12-16;Claypan 12- 6362 023XY302OR; South Slopes 12-16;Claypan 12- 6362 023XY302OR; South Slopes 12-16;Deep North 12- 6362 023XY302OR; South Slopes 12-16;Deep North 12- 6362 023XY302OR; South Slopes 12-16;Deep North 12- 827 023XY312OR; Shallow North 12-16;Deep North 827 023XY404OR; 12-18;Aspen 16-35 827 023XY140OR 023XY20OR Clayer 10-12 Wyoming Big Sage; Low Sage; 6872 023XY210OR South Slopes 8-12;Misc Land Type Needlegrass; Bluebunch 4506 023XY210OR South Slopes 8-12;Clayer 10-12 3897 3897 023XY210OR; Clayan 10-12;Loamy 10-12 3897 3897 023XY214OR; Clayan 10-12;Loamy 10-12 3897 3897 023XY214OR Shallow Loam	023XY318OR	Loamy 12-16		5895
023XY406OR Swale 12-16 2353 023XY312OR; Shallow North 12-16;North Slopes 3535 023XY310OR 12-16 7157 023XY312OR; Deep North 12-18;Shallow North 7157 023XY30OR; South Slopes 12-16;Claypan 12- 6362 023XY302OR; South Slopes 12-16;Deep North 12- 6362 023XY404OR; 18;Aspen 16-35 3514 023XY404OR; 12-18;Aspen 16-35 3514 023XY210OR 12-18;Aspen 16-35 827 023XY210OR; Shallow North 12-16;Deep North 827 023XY210OR; Clayey 10-12 Wyoming Big Sage; Low Sage; 6875 023XY210OR Clayey 10-12 Wyoming Big Sage; Low Sage; 6875 023XY210OR South Slopes 8-12;Misc Land Type Needlegrass; Bluebunch 4506 023XY214OR; Loamy 10-12;Clayey 10-12 8492 3897 023XY214OR; Claypan 10-12;Loamy 10-12 8492 3897 023XY214OR; Desert Loam 6-10;Shallow Loam 8- Shadscale; Wyoming Big Sage; Budsage; Spiny Hopsage 236 024XY017OR <	023XY404OR	Deep North 12-18;Misc Land Type		7325
023XY312OR; Shallow North 12-16;North Slopes 3535 023XY404OR; Deep North 12-18;Shallow North 7157 023XY404OR; Deep North 12-16 6362 023XY404OR; Iche Per North 12-18 6362 023XY404OR; Iche Per North 12-18 3514 023XY404OR; Iche Per North 12-16;Deep North 12-18 3514 023XY404OR; Iche Per North 12-16;Deep North 12-18 3514 023XY404OR; Iche Per North 12-16;Deep North 12-16;Deep North 12-16;Deep North 12-18;Aspen 16-35 3514 023XY404OR; 12-18;Aspen 16-35 827 023XY40AOR; 12-18;Aspen 16-35 827 023XY20OR Clayey 10-12 Wyoming Big Sage; Low Sage; 6872 023XY210OR; Loamy 10-12;Clayey 10-12 Needlegrass; Bluebunch 4506 023XY214OR; Clayen 10-12;Clayey 10-12 8492 3897 023XY214OR; Clayen 10-12;Loamy 10-12 3897 3897 023XY214OR South Slopes 8-12;Claypan 10-12 3897 3897 023XY214OR Desert Loam 6-10;Shallow Loam 8- Budsage; Spiny Hopsage 21641	023XY406OR	Swale 12-16		2353
023XY310OR 12-16 023XY404OR; Deep North 12-18;Shallow North 7157 023XY312OR 12-16 6362 023XY302OR; South Slopes 12-16;Claypan 12- 6362 023XY302OR; South Slopes 12-16;Deep North 12-18 3514 023XY302OR; South Slopes 12-16;Deep North 12- 3514 023XY312OR; South Slopes 12-16;Deep North 12- 3514 023XY312OR; Shallow North 12-16;Deep North 267 023XY312OR; Shallow North 12-16;Deep North 827 023XY312OR; Shallow North 12-16;Deep North 827 023XY30OR South Slopes 8-12;Misc Land Type 827 023XY210R; Loamy 10-12;Clayey 10-12 Needlegrass; Bluebunch 4506 023XY214OR; Claypan 10-12;Clayey 10-12 8492 3897 023XY214OR; Claypan 10-12;Claypan 10-12 3897 3897 023XY214OR; Desert Loam 6-10;Shallow Loam 8- Shadscale; Wyoming Big Sage; 236 24XY017OR 26 024XY015OR; Desert Loam 6-10;Shallow Loam 8- 1641 1877 3057 3057	023XY312OR;	Shallow North 12-16;North Slopes		3535
023XY404OR; Deep North 12-18;Shallow North 7157 023XY302OR 12-16 6362 023XY302OR; South Slopes 12-16;Claypan 12- 6362 023XY302OR; South Slopes 12-16;Deep North 12-18 3514 023XY302OR; South Slopes 12-16;Deep North 12- 3514 023XY404OR; 18;Aspen 16-35 2023 023XY404OR; 12-18;Aspen 16-35 827 023XY210OR Clayey 10-12 Wyoming Big Sage; Low Sage; 6872 023XY212OR Clayey 10-12 Wyoming Big Sage; Low Sage; 6872 023XY212OR Clayey 10-12 Wyoming Big Sage; Low Sage; 6872 023XY212OR; Loamy 10-12;Clayey 10-12 7186 4306 023XY214OR; Claypan 10-12;Loamy 10-12 8492 3897 023XY214OR South Slopes 8-12;Claypan 10-12 3897 3897 023XY214OR Desert Loam 6-10;Shallow Loam 8- Shadscale; Wyoming Big Sage; 236 244XY017OR 10 023XY300OR; Desert Loam 6-10;Shallow Loam 8- Shadscale; Wyoming Big Sage; 236 244 2458 244XY017OR 1641	023XY310OR	12-16		
023XY312OR 12-16 023XY302OR; South Slopes 12-16;Claypan 12- 023XY404OR 16;Deep North 12-18 023XY302OR; South Slopes 12-16;Deep North 12- 023XY302OR; South Slopes 12-16;Deep North 12- 023XY302OR; South Slopes 12-16;Deep North 12- 023XY312OR; Shallow North 12-16;Deep North 023XY300OR; South Slopes 8-12;Misc Land Type 023XY21OR; Loamy 10-12;Clayey 10-12 023XY212OR; Loamy 10-12;Claypan 10-12 023XY214OR; Claypan 10-12;Claypan 10-12 023XY214OR; South Slopes 8-12;Claypan 10-12 023XY214OR; South Slopes 8-12;Claypan 10-12 023XY214OR; Desert Loam 6-10;Shallow Loam 8- 024XY015OR; Desert Loam 6-10;Shallow Loam 8- 024XY017OR Shallow Loam 8-10 024XY017OR Claym 8-10 023XY509OR Rock Outcrop And Rubble Land 024XY016OR; Loamy 8-10 010XY	023XY404OR;	Deep North 12-18;Shallow North		7157
023XY302OR; South Slopes 12-16;Claypan 12- 16;Claypan 12-18 6362 023XY206OR; 16;Deep North 12-18 3514 023XY404OR; 18;Aspen 16-35 3514 023XY404OR; 18;Aspen 16-35 827 023XY404OR; 12-18;Aspen 16-35 827 023XY404OR; 12-18;Aspen 16-35 827 023XY404OR; 12-18;Aspen 16-35 827 023XY400R; 12-18;Aspen 16-35 827 023XY300OR South Slopes 8-12;Misc Land Type Wyoming Big Sage; Low Sage; 6872 023XY212OR; Loamy 10-12;Clayey 10-12 Needlegrass; Bluebunch 4506 023XY212OR; Claypan 10-12;Loamy 10-12 8492 7186 023XY212OR; Claypan 10-12;Loamy 10-12 3897 3897 023XY214OR; Desert Loam 6-10;Shallow Loam 8- 10 Shadscale; Wyoming Big Sage; 236 236 024XY015OR; Desert Loam 6-10;Shallow Loam 8- 10 Shadscale; Wyoming Big Sage; 236 236 024XY017OR Shallow Loam 8-10 Total 1877 023XY509OR Rock Outcrop And Rubble Land N/A 258	023XY312OR	12-16		
023XY216OR; 16;Deep North 12-18 023XY302OR; South Slopes 12-16;Deep North 12- 023XY312OR; Shallow North 12-16;Deep North 023XY312OR; Shallow North 12-16;Deep North 023XY312OR; Shallow North 12-16;Deep North 023XY404OR; 12-18;Aspen 16-35 023XY418OR 827 023XY404OR; 12-18;Aspen 16-35 023XY408OR Vyoming Big Sage; Low Sage; 023XY212OR Clayey 10-12 023XY212OR; Loamy 10-12;Clayey 10-12 023XY214OR; Claypan 10-12;Clayey 10-12 023XY214OR; Claypan 10-12;Loamy 10-12 023XY214OR; South Slopes 8-12;Claypan 10-12 023XY214OR; South Slopes 8-12;Claypan 10-12 023XY214OR; South Slopes 8-12;Claypan 10-12 023XY214OR; Desert Loam 6-10;Shallow Loam 8- 024XY015OR; Desert Loam 6-10;Shallow Loam 8- 024XY017OR 10 023XY509OR Rock Outcrop And Rubble Land N/A 258 024XY016OR; Loamy 8-10 023XY509OR; Loamy Bottom;Sodic Bottom Bulrush; Cattail; Creeping 87 024XY	023XY302OR;	South Slopes 12-16;Claypan 12-		6362
023XY404OR 3514 023XY302OR; South Slopes 12-16;Deep North 12- 023XY404OR; 3514 023XY418OR 827 023XY312OR; Shallow North 12-16;Deep North 12-18;Aspen 16-35 827 023XY404OR; 12-18;Aspen 16-35 827 023XY20OR Clayey 10-12 Wyoming Big Sage; Low Sage; 6872 023XY212OR; Loamy 10-12;Clayey 10-12 Needlegrass; Bluebunch 4506 023XY212OR; Loamy 10-12;Clayey 10-12 7186 7186 023XY212OR Claypan 10-12;Loamy 10-12 8492 3897 023XY214OR; South Slopes 8-12;Claypan 10-12 3897 3897 023XY214OR; Desert Loam 6-10;Shallow Loam 8- 024XY015OR; Desert Loam 6-10;Shallow Loam 8- 024XY017OR Shadscale; Wyoming Big Sage; Budsage; Spiny Hopsage 236 024XY017OR 10 Basin Big Sage; Needleandthread; Ricegrass 3057 010XY005OR; Loamy Bottom;Sodic Bottom Bulrush; Cattail; Creeping Wildrye; Basin Wildrye 379	023XY216OR;	16;Deep North 12-18		
023XY302OR; South Slopes 12-16;Deep North 12- 18;Aspen 16-35 3514 023XY312OR; Shallow North 12-16;Deep North 12-18;Aspen 16-35 827 023XY312OR; Shallow North 12-16;Deep North 12-18;Aspen 16-35 827 023XY312OR; Clayey 10-12 Wyoming Big Sage; Low Sage; 023XY300OR 6872 023XY212OR; Loamy 10-12;Clayey 10-12 Needlegrass; Bluebunch 4506 023XY212OR; Loamy 10-12;Clayey 10-12 8492 7186 023XY214OR; Claypan 10-12;Claypan 10-12 8492 3897 023XY214OR; Desert Loam 6-10;Shallow Loam 8- 024XY015OR; Desert Loam 6-10;Shallow Loam 8- 10 Shadscale; Wyoming Big Sage; Budsage; Spiny Hopsage 236 024XY017OR 10 Basin Big Sage; Needleandthread; Ricegrass 3057 3057 010XY005OR; Loamy Bottom;Sodic Bottom Bulrush; Cattail; Creeping Wildrye; Basin Wildrye 879	023XY404OR		_	
023XY404OR; 18;Aspen 16-35 023XY312OR; Shallow North 12-16;Deep North 827 023XY418OR 12-18;Aspen 16-35 827 023XY40AOR; 12-18;Aspen 16-35 827 023XY220OR Clayey 10-12 Wyoming Big Sage; Low Sage; 6872 023XY220OR South Slopes 8-12;Misc Land Type Needlegrass; Bluebunch 4506 023XY212OR; Loamy 10-12;Clayey 10-12 7186 7186 023XY212OR; Claypan 10-12;Loamy 10-12 8492 7186 023XY212OR; Claypan 10-12;Loamy 10-12 3897 7186 023XY214OR; South Slopes 8-12;Claypan 10-12 3897 7023XY214OR 7186 023XY214OR; Desert Loam 6-10;Shallow Loam 8- Shadscale; Wyoming Big Sage; 236 24XY017OR 10 1641 024XY017OR 10 Basin Big Sage; Needleandthread; 3057 7164 3057 023XY509OR Rock Outcrop And Rubble Land N/A 258 3057 024XY016OR Loamy 8-10 Basin Big Sage; Needleandthread; 3057 010XY005OR;	023XY302OR;	South Slopes 12-16;Deep North 12-		3514
023XY418OR 827 023XY312OR; Shallow North 12-16;Deep North 827 023XY404OR; 12-18;Aspen 16-35 827 023XY418OR Total 43175 023XY20OR Clayey 10-12 Wyoming Big Sage; Low Sage; 6872 023XY12OR; Loamy 10-12;Clayey 10-12 Needlegrass; Bluebunch 4506 023XY212OR; Loamy 10-12;Clayey 10-12 7186 7186 023XY212OR; Claypan 10-12;Loamy 10-12 8492 8492 023XY214OR; Claypan 10-12;Loamy 10-12 3897 3897 023XY214OR; Desert Loam 6-10;Shallow Loam 8- Shadscale; Wyoming Big Sage; 236 024XY015OR; Desert Loam 6-10;Shallow Loam 8- Shadscale; Wyoming Big Sage; 236 024XY017OR I0 I641 1641 023XY509OR Rock Outcrop And Rubble Land N/A 258 024XY016OR Loamy 8-10 Basin Big Sage; Needleandthread; 3057 024XY016OR Loamy Bottom;Sodic Bottom Bulrush; Cattail; Creeping 87 010XY005OR; Loamy Bottom;Sodic Bottom	023XY404OR;	18;Aspen 16-35		
023XY312OR; 023XY404OR; 023XY418OR Shallow North 12-16;Deep North 12-18;Aspen 16-35 827 023XY418OR Total 43175 023XY220OR Clayey 10-12 Wyoming Big Sage; Low Sage; 023XY212OR; 023XY212OR; 023XY212OR; 6872 023XY212OR; 023XY214OR; 023XY212OR Loamy 10-12;Clayey 10-12 Needlegrass; Bluebunch 4506 023XY212OR; 023XY212OR; Claypan 10-12;Clayey 10-12 8492 7186 023XY212OR; 023XY212OR Claypan 10-12;Loamy 10-12 8492 8492 023XY212OR South Slopes 8-12;Claypan 10-12 3897 3897 023XY214OR; 024XY015OR; Desert Loam 6-10;Shallow Loam 8- 10 Shadscale; Wyoming Big Sage; Budsage; Spiny Hopsage 236 024XY017OR I0 Ia877 1641 1877 023XY509OR Rock Outcrop And Rubble Land N/A 258 024XY016OR Loamy 8-10 Basin Big Sage; Needleandthread; Ricegrass 3057 010XY005OR; Loamy Bottom;Sodic Bottom Bulrush; Cattail; Creeping Wildrye; Basin Wildrye 879	023XY418OR			
023XY404OR; 023XY418OR 12-18;Aspen 16-35 Clayey 10-12 Wyoming Big Sage; Low Sage; 023XY300OR Clayey 10-12 Wyoming Big Sage; Low Sage; Needlegrass; Bluebunch 6872 023XY212OR; 023XY212OR; 023XY214OR; 023XY214OR; Claypan 10-12;Clayey 10-12 Needlegrass; Bluebunch 4506 023XY212OR Claypan 10-12;Clayey 10-12 8492 8492 023XY212OR South Slopes 8-12;Claypan 10-12 8492 8492 023XY214OR; Claypan 10-12;Loamy 10-12 8492 8492 023XY214OR South Slopes 8-12;Claypan 10-12 8492 8492 023XY214OR South Slopes 8-12;Claypan 10-12 8492 8492 023XY214OR South Slopes 8-12;Claypan 10-12 8492 8492 023XY214OR Desert Loam 6-10;Shallow Loam 8- 024XY017OR Shallow Loam 8-10 Shadscale; Wyoming Big Sage; Budsage; Spiny Hopsage 236 024XY017OR Shallow Loam 8-10 N/A 258 258 024XY016OR Loamy Bottom;Sodic Bottom Bulrush; Cattail; Creeping Wildrye; Basin Wildrye 807 Unknown 379	023XY312OR;	Shallow North 12-16;Deep North		827
Total 43175 023XY220OR Clayey 10-12 Wyoming Big Sage; Low Sage; 6872 023XY20OR South Slopes 8-12;Misc Land Type Needlegrass; Bluebunch 4506 023XY212OR; Loamy 10-12;Clayey 10-12 Needlegrass; Bluebunch 4506 023XY212OR; Claypan 10-12;Loamy 10-12 8492 7186 023XY214OR; Claypan 10-12;Loamy 10-12 8492 3897 023XY214OR South Slopes 8-12;Claypan 10-12 3897 2323Y214OR 232Y214OR Total 30953 024XY015OR; Desert Loam 6-10;Shallow Loam 8- 024XY017OR Shallow Loam 8-10 Id41 Total 30953 023XY207CR Rock Outcrop And Rubble Land N/A 258 024XY016OR Loamy 8-10 Basin Big Sage; Needleandthread; Ricegrass 3057 010XY005OR; Loamy Bottom;Sodic Bottom Bulrush; Cattail; Creeping Wildrye 879 010XY003OR Wildrye 379 379	023XY404OR;	12-18;Aspen 16-35		
Total43175023XY220ORClayey 10-12Wyoming Big Sage; Low Sage; Needlegrass; Bluebunch6872023XY212OR; 023XY212OR; 023XY214OR;Loamy 10-12;Clayey 10-127186023XY214OR; 023XY212ORClaypan 10-12;Loamy 10-128492023XY212OR3897023XY212OR3897023XY214OR; 023XY214ORSouth Slopes 8-12;Claypan 10-123897023XY214ORSouth Slopes 8-12;Claypan 10-123897023XY01OR; 023XY214ORDesert Loam 6-10;Shallow Loam 8- 024XY017ORShadscale; Wyoming Big Sage; Budsage; Spiny Hopsage30953024XY017OR 023XY509OR 024XY016ORN/A16411877 023XY509OR 024XY016ORLoamy 8-101641010XY005OR; 024XY016ORLoamy 8-10Basin Big Sage; Needleandthread; Ricegrass3057010XY005OR; 024XY003ORLoamy Bottom;Sodic Bottom Wildrye; Basin Wildrye87024XY003ORWildrye; Basin Wildrye379	023XY418OR			
023XY220ORClayey 10-12Wyoming Big Sage; Low Sage; Needlegrass; Bluebunch6872023XY212OR; 023XY214OR; 023XY212ORLoamy 10-12;Clayey 10-12Needlegrass; Bluebunch4506023XY214OR; 023XY212ORClaypan 10-12;Clayey 10-128492023XY212ORSouth Slopes 8-12;Claypan 10-123897023XY214OR; 023XY214ORSouth Slopes 8-12;Claypan 10-123897023XY214ORSouth Slopes 8-12;Claypan 10-123897024XY015OR; 024XY017ORDesert Loam 6-10;Shallow Loam 8- 10Shadscale; Wyoming Big Sage; Budsage; Spiny Hopsage236024XY017OR10I641023XY509OR 024XY016ORRock Outcrop And Rubble Land RicegrassN/A258010XY005OR; 024XY013OR;Loamy Bottom;Sodic Bottom Wildrye; Basin Wildrye87010XY005OR; 024XY003ORLoamy Bottom;Sodic Bottom Wildrye; Basin Wildrye87			Total	43175
023XY300ORSouth Slopes 8-12;Misc Land TypeNeedlegrass; Bluebunch4506023XY212OR; 023XY214OR; 023XY212ORLoamy 10-12;Clayey 10-127186023XY214OR; 023XY214ORClaypan 10-12;Loamy 10-128492023XY214ORSouth Slopes 8-12;Claypan 10-123897023XY214ORSouth Slopes 8-12;Claypan 10-1230953024XY015OR; 024XY017ORDesert Loam 6-10;Shallow Loam 8- 10Shadscale; Wyoming Big Sage; Budsage; Spiny Hopsage236024XY017OR1016417023XY509OR 024XY016ORRock Outcrop And Rubble Land Loamy 8-10N/A258010XY005OR; 024XY003ORLoamy Bottom;Sodic Bottom Wildrye; Basin Wildrye87010XY003ORWildrye; Basin Wildrye379	023XY220OR	Clayey 10-12	_ Wyoming Big Sage; Low Sage;	6872
023XY212OR; 023XY220ORLoamy 10-12;Clayey 10-127186023XY220ORClaypan 10-12;Loamy 10-128492023XY214OR; 023XY214ORSouth Slopes 8-12;Claypan 10-123897023XY214ORTotal30953024XY015OR; 024XY017ORDesert Loam 6-10;Shallow Loam 8- 10Shadscale; Wyoming Big Sage; Budsage; Spiny Hopsage236024XY017OR10I1641023XY509OR 024XY016ORRock Outcrop And Rubble Land RicegrassN/A258010XY005OR; 024XY03ORLoamy 8-10Basin Big Sage; Needleandthread; Ricegrass3057010XY005OR; 024XY03ORLoamy Bottom;Sodic Bottom Wildrye; Basin Wildrye87Unknown379	023XY300OR	South Slopes 8-12;Misc Land Type	Needlegrass; Bluebunch	4506
023XY220OR023XY214OR; 023XY212ORClaypan 10-12;Loamy 10-128492023XY300OR; 023XY214ORSouth Slopes 8-12;Claypan 10-123897023XY214OR030953024XY015OR; 024XY017ORDesert Loam 6-10;Shallow Loam 8- 10Shadscale; Wyoming Big Sage; Budsage; Spiny Hopsage236024XY017OR101641Total1877023XY509ORRock Outcrop And Rubble LandN/A258024XY016ORLoamy 8-10Basin Big Sage; Needleandthread; Ricegrass3057010XY005OR; 024XY03ORLoamy Bottom;Sodic BottomBulrush; Cattail; Creeping Wildrye; Basin Wildrye87Unknown379379	023XY212OR;	Loamy 10-12;Clayey 10-12		7186
023XY214OR; 023XY212ORClaypan 10-12;Loamy 10-128492023XY212ORSouth Slopes 8-12;Claypan 10-123897023XY214ORTotal30953024XY015OR; 024XY017ORDesert Loam 6-10;Shallow Loam 8- 10Shadscale; Wyoming Big Sage; Budsage; Spiny Hopsage236024XY017OR101641Total1877023XY509ORRock Outcrop And Rubble LandN/A258024XY016ORLoamy 8-10Basin Big Sage; Needleandthread; Ricegrass3057 Ricegrass010XY005OR; 024XY03ORLoamy Bottom;Sodic BottomBulrush; Cattail; Creeping Wildrye; Basin Wildrye87 Wildrye; Basin Wildrye	023XY220OR			
023XY212OR023XY300OR; 023XY214ORSouth Slopes 8-12;Claypan 10-123897023XY214ORTotal30953024XY015OR; 024XY017ORDesert Loam 6-10;Shallow Loam 8- 10Shadscale; Wyoming Big Sage; Budsage; Spiny Hopsage236024XY017OR10I1641023XY509ORRock Outcrop And Rubble LandN/A258024XY016ORLoamy 8-10Basin Big Sage; Needleandthread; Ricegrass3057 Ricegrass010XY005OR; 024XY003ORLoamy Bottom;Sodic Bottom Wildrye; Basin Wildrye87 Wildrye; Basin Wildrye379	023XY214OR;	Claypan 10-12;Loamy 10-12		8492
023XY300OR; 023XY214ORSouth Slopes 8-12;Claypan 10-123897023XY214ORTotal30953024XY015OR; 024XY017ORDesert Loam 6-10;Shallow Loam 8- 10Shadscale; Wyoming Big Sage; Budsage; Spiny Hopsage236024XY017OR10I641024XY017ORShallow Loam 8-10I641023XY509OR 024XY016ORRock Outcrop And Rubble LandN/A258024XY016ORLoamy 8-10Basin Big Sage; Needleandthread; Ricegrass3057010XY005OR; 024XY003ORLoamy Bottom;Sodic BottomBulrush; Cattail; Creeping Wildrye; Basin Wildrye87Unknown379379	023XY212OR			
023XY214ORTotal30953024XY015OR; 024XY017ORDesert Loam 6-10;Shallow Loam 8- 10Shadscale; Wyoming Big Sage; Budsage; Spiny Hopsage236024XY017ORShallow Loam 8-10I641Total1877023XY509ORRock Outcrop And Rubble LandN/A258024XY016ORLoamy 8-10Basin Big Sage; Needleandthread; Ricegrass3057010XY005OR; 024XY003ORLoamy Bottom;Sodic BottomBulrush; Cattail; Creeping Wildrye; Basin Wildrye87Unknown379379	023XY300OR;	South Slopes 8-12;Claypan 10-12		3897
Total30953024XY015OR; 024XY017ORDesert Loam 6-10;Shallow Loam 8- 10Shadscale; Wyoming Big Sage; Budsage; Spiny Hopsage236024XY017ORShallow Loam 8-101641Total1877023XY509ORRock Outcrop And Rubble LandN/A258024XY016ORLoamy 8-10Basin Big Sage; Needleandthread; Ricegrass3057010XY005OR; 024XY03ORLoamy Bottom;Sodic BottomBulrush; Cattail; Creeping Wildrye; Basin Wildrye87Unknown379	023XY214OR			
024XY015OR; 024XY017ORDesert Loam 6-10;Shallow Loam 8- 10Shadscale; Wyoming Big Sage; Budsage; Spiny Hopsage236024XY017ORShallow Loam 8-101641023XY509ORRock Outcrop And Rubble LandN/A258024XY016ORLoamy 8-10Basin Big Sage; Needleandthread; Ricegrass3057 Ricegrass010XY005OR; 024XY003ORLoamy Bottom;Sodic Bottom Wildrye; Basin Wildrye87Unknown379			Total	30953
024XY017OR10Budsage; Spiny Hopsage024XY017ORShallow Loam 8-101641Total1877023XY509ORRock Outcrop And Rubble LandN/A258024XY016ORLoamy 8-10Basin Big Sage; Needleandthread; Ricegrass3057010XY005OR; 024XY003ORLoamy Bottom;Sodic Bottom Wildrye; Basin Wildrye87Unknown379	024XY015OR;	Desert Loam 6-10;Shallow Loam 8-	Shadscale; Wyoming Big Sage;	236
024XY017ORShallow Loam 8-101641Total1877023XY509ORRock Outcrop And Rubble LandN/A258024XY016ORLoamy 8-10Basin Big Sage; Needleandthread; Ricegrass3057010XY005OR; 024XY003ORLoamy Bottom;Sodic Bottom Wildrye; Basin Wildrye87Unknown379	024XY017OR	10	_ Budsage; Spiny Hopsage	
Total1877023XY509ORRock Outcrop And Rubble LandN/A258024XY016ORLoamy 8-10Basin Big Sage; Needleandthread; Ricegrass3057010XY005OR; 024XY003ORLoamy Bottom;Sodic BottomBulrush; Cattail; Creeping Wildrye; Basin Wildrye87Unknown379	024XY017OR	Shallow Loam 8-10		1641
023XY509OR Rock Outcrop And Rubble Land N/A 258 024XY016OR Loamy 8-10 Basin Big Sage; Needleandthread; Ricegrass 3057 010XY005OR; Loamy Bottom;Sodic Bottom Bulrush; Cattail; Creeping 87 024XY003OR Wildrye; Basin Wildrye 379			Total	1877
024XY016OR Loamy 8-10 Basin Big Sage; Needleandthread; Ricegrass 3057 010XY005OR; Loamy Bottom;Sodic Bottom Bulrush; Cattail; Creeping 87 024XY003OR Wildrye; Basin Wildrye 379	023XY509OR	Rock Outcrop And Rubble Land	N/A	258
Ricegrass 010XY005OR; Loamy Bottom;Sodic Bottom Bulrush; Cattail; Creeping 87 024XY003OR Wildrye; Basin Wildrye 379	024XY016OR	Loamy 8-10	Basin Big Sage; Needleandthread;	3057
010XY005OR; Loamy Bottom;Sodic Bottom Bulrush; Cattail; Creeping 87 024XY003OR Wildrye; Basin Wildrye 379			Ricegrass	
024XY003OR Wildrye; Basin Wildrye Unknown 379	010XY005OR;	Loamy Bottom;Sodic Bottom	Bulrush; Cattail; Creeping	87
Unknown 379	024XY003OR		Wildrye; Basin Wildrye	
	Unknown			379

Table 4-46General Plant Associations based upon ESI Soil types for Trout Creek East PPA

6

7

Fire

Fire history up to 2012 in the area consisted of a low frequency of starts (four in the last 10 years) with medium sized fires (typically <1000 acres). Typically thunderstorms miss the Trout Creek Mountains, or when they do cross this area, they are wet storms. 2012 was an exception to this rule; not just in this localized area, but across the Northern Great Basin Region as a whole.

4-46

I	Although much of the higher elevation ground in this PPA has been recovering
2	from the 2012 Holloway Fire and is on the successional pathway back to a
3	sagebrush dominate ecosystem (with big sagebrush naturally reestablishing at
4	some sites already), lower elevations (~<5,800 ft.) are lest resilient and are
5	more subject to annual grass invasion. The possibility of re-burning is the biggest
6	threat to this PPA since it would further set back recovery. Within the
7	Holloway ESR Plan, prioritized portions of the fire were sprayed using plateau in
8	the fall of 2014 with additional acres planned for 2015. This is the last year of
9	funding under the Holloway ESR Plan. There may be a need for follow-up
10	herbicide treatments on lower elevation sites (see Table 4-47).

Table 4-47 Summary of Burn Probability

High and Very High Bu	rn Probability in PPA (acres)	78,739
High and Very High Bu	n Probability in PPA (percent)	94.5

Management Strategies

Treatments

|| |2

13 14

15

16

17

All ongoing treatments within the Trout Creek West PPA are part of the Holloway ESR Plan and will be presented in more detail within the Habitat Restoration and Post-Fire Rehabilitation sections.

18 Other Relevant Management Activities

19 The Burns BLM District grazing management strategy is based upon a target 20 utilization of <50 percent for native bunchgrass communities and <60 percent 21 for nonnative seeding's using a modified Landscape Appearance method. This 22 allows management to account for both site specific environmental variables 23 (soil type, soil depth, slope, aspect, and elevation) and climatic variations 24 (precipitation, and temperature), which influence annual production rates. Cattle 25 are permitted to graze allotments during specified periods, but are removed 26 early if target utilization is reached. Typically utilization doesn't exceed 35-40 27 percent on most allotments.

28 Fuels Management

29 Several major roads within the Trout Creek West PPA have been selected for 30 establishment and maintenance of linear fuel breaks. These fuel breaks are the 31 first priority fuels management treatments for this PPA and may include the use 32 of full green strips to help contain future wildfires. Having the ability to utilize all 33 available tools, such as, chemical treatments, mechanical treatments, and seeding 34 of desirable vegetation (including nonnative species) will allow managers to 35 better accomplish FIAT goals. Site specifics of this project would be determined 36 at the time of implementation by an IDT (see **Table 4-48**).

Priority	Priority I	Priority 2	Priority 3	Total
Miles	78.20	42.25	0	120.45
I				
2	Roads listed for esta	blishing linear	fuel breaks include:	Willow Butte Loop,
3	Chalk Creek Road,	Whitehorse	Ranch Lane, Trout	Creek Mtn Road,
4	Cottonwood Creek R	load, Grassy Ba	sin Road, Long Canyo	on Road, Cottowood
5	Fields Road, BLM Con	nection Road, I	Holloway No Name R	oad.
6	Much of this area is at	: a high risk for	cheatgrass conversior	n, especially if the fire
7	frequency is accelerat	ed. Currently a	annual grass dominan	ce drops out around
8	5,500 ft. in elevation	dependent on	aspect, but if this are	a was to experience
9	another large scale wi	ldfire it is likely	annual grasses would	d expand further into
10	the PPA. In addition	to green stripp	ing roads, treatments	could include green
11	stripping along elevation	on lines, which	could aid targeted gr	azing treatments and
12	keep wildfire starts	at lower elev	ations from spreadi	ng up Trout Creek
13	Mountains.			
14	Habitat Restoration and	Recovery		
15	Restoration and recov	very at lower el	evations within the T	rout Creeks PPA will
16	first prioritize areas	invaded by a	nnual grasses. Treatr	nents will focus on
17	stopping the spread c	of annual grasse	s with the use of he	rbicide and biological
18	thinning at times whe	en perennial ve	getation is dormant.	Seeding of perennial
19	grasses will take place	e in areas wher	e the annual grass inv	vasion has diminished
20	the natural communit	ty and impaired	d the ecological func	tion of the site (see
21	Table 4-49).			

Table 4-48Fuels Management Potential Treatments

Table 4-49
Habitat Restoration Potential Treatments

	Priority	Priority I	Priority 2	Priority 3	Total	
	Acres	0	35,900	0	35,900	
	Percent of PPA	0	43.03	0	43.03	
22						
23		Also within the	priority area are area	is where the shrub compo	onent has been	
24		removed due to	wildfire. Planting of sa	agebrush plugs to form hat	oitat islands is a	
25		viable option for restoring this component to the landscape. Seeding and				
26		planting plugs of sagebrush and bitterbrush, especially around the sagebru				
27		island have occurred and are planned to occur. The Burns District BLM w				
28		to consider sett	ing up an annual budge	t that is used specifically fo	r planting plugs	
29		within the larg	ge burned areas, whi	ich persist after catastro	ophic wildfires.	
30		Currently, the l	andscape trend is that	there is always some place	to plant plugs,	

Currently, the landscape trend is that there is always some place to plant plugs, and the district thinks having a separate budget for this will help habitat restoration and recovery. The sagebrush plugs have a higher rate of success than both seeds and seed agglomerates and would be the preferred technique, unless future research develops a better solution for reestablishment of

31

32

33

sagebrush. Natural recovery of sagebrush is taking place at higher elevations, which allows planting treatments to focus on the lower elevation sites. If there is a change in the natural recovery (e.g. re-burn) that effects sagebrush establishment then priority areas may be redefined.

5 Fire Operations

L

2

3

4

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

This area is considered just as important as the Pueblos PPA for fire suppression, and suppression efforts would be focused here if possible. Currently much of the area that burned in the 2012 Holloway fire is recovering, and another large scale wildfire in the area would likely lead to a substantial expansion of annual grasses, and possibility of conversion to an annual grass dominated/short fire return interval site. Although many areas of the Holloway Fire completely burned off all above ground vegetation, effectively resetting succession, within the Trout Creek West PPA there are some large unburned islands, as well as some isolated smaller islands. Due to the value these islands offer to GRSG currently, and also as seed sources to future expansion of sagebrush back into burned areas, protection of these islands is a high priority for fire operations within the Burns District BLM. However, priority I for this PPA was given to low elevation areas in the western portion, those with lower resistance/resilience and that are currently invaded by annual grasses, since wildfire starts in this region have the ability to rapidly spread across the entire PPA. In general, this area will be a high priority area for suppression using all of the methods available, including prepositioning and aviation resources.

All roads identified for establishing linear fuel breaks will be maintained/improved under the Fire Operations Management Strategy. This will improve initial attack response for any additional wildfire starts that occur in the area (see **Table 4-50**).

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	48,319	55,682	0	104,001
	Percent of PPA	57.9	66.7	0	124.7
27					
28		Post-Fire Rehabilitation	Management		
29		Through the Hollowa	y ESR Plan, prioritized	l portions of the fire w	ere herbicided
30		using imazapic in the	fall of 2014 with addi	tional acres planned foi	r 2015. This is
31		the last year of fundir	ng under the Hollowa	y ESR Plan And there r	may be a need
32		for follow-up herbicio	de treatments on lov	ver elevation sites. Th	ese areas will
33		continue to be the	e priority under Fl	AT, with all low an	d moderately
34		resistant/resilient site	s being priority I an	d would be treated us	sing herbicide,
35		seeding, and planting t	treatments. The seco	nd priority will be giver	to the higher
36		resistance/resilience s	ites; however, if there	e is an issue with the na	tural recovery
37		of sagebrush following	g future fires then the	priority areas may be	redefined (see
38		Table 4-51).	-		

Table 4-50Fire Operations Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	31,717	51,696	0	83,413
	Percent of PPA	38.0	62.0	0	100
1					
2		Proposed Manageme	nt		
3		See Table 4-52 for p	projects that have be	en identified presently	y within the
4		NEPA planning process	. See Figures 4-26 th	nrough 4-29 for a grapl	hic depiction
5		of the proposed treatm	ents and strategies in	the PPA.	

Table 4-5 IPost-Fire Rehabilitation Management Strategies

Table 4-52 Project Planning Area Treatment Summary Table

Treatment Description		Priority		Threats Addressed		NEPA		Treatments									
						s (I)						Tir Fra	ne me	Certai Effectiv	inty of veness ¹	ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Holloway ESR Seeding	40,336	Х				Х		Х		Х				I			0-2
Little Trout Creek Seeding	3,903		Х			Х					Х			I			3-5
Green Stripping EA	2,146	Х	Х					Х	Х					Ι		10	5+

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

6 7

8 9

10 11

12

13 14

15

4.2.7 Beaty Butte

Project Planning Area Description

General Site Description

The Beaty Butte PPA is located in the southeast corner of the Lakeview Resource Area and is in both eastern Lake County and western Harney County. The entire project area consists of 412,286 acres and is divided out into the following ownerships: 363,557 acres of BLM, 23,678 acres of private, and 14,360

I	of State Lands. There is a wide range of elevation within the project area ranging
2	from 4,465-8,012 feet with majority of the aspect being south and east.
3	The majority of the soil type across the project area is classified as warm/cool
4	and dry, which is considered low resistance to annual grass invasion. Some of
5	the highest elevations are classified as cool/cold and moist soils, with high
6	resistance to annual grass invasions (see Table 4-53).

	Matrix Category	No Data	IA	ΙB	IC	2 A	2B	2C	3 A	3B	3C
	Acres	13,735	0	0	13,252	0	1,077	319,123	0	2,806	52,118
	Percent of PPA	3	0	0	3	0	0	79	0	I	13
7											
8			Sage-Gro	ouse							
9		-	The GR	SG pop	oulation is	stable	to slightly	declining. T	his area	likely prov	ides the
10		5	seasona	l life re	quisites fo	r breed	ing, broo	d rearing, ar	id winter	habitat.	
11			Accordi	ng to	the PAC	there	is approx	ximately 64	-3,612 ad	res of PF	РН (100
12		ł	bercent) withi	n the PF	PA; how	vever, cu	irrent wee	d infesta	tions and	juniper
13		(encroac	hment	may limit	GRSG	habitat. 7	The populat	ion withi	n the Bea	ty Butte
14		I	PPA exhibits both migratory and resident seasonal movements. Areas around								
15		I	Hart Mountain and west toward the Warner Mountains provide some of the								
16		l	oest GR	SG hat	oitat (see 🕇	Table 4	-54).		-		

Table 4-53Beaty Butte Sage-Grouse Habitat Matrix Categories

Table 4-54Beaty Butte Lek Status

ODFW Site ID	Lek Name	Conservation Status
LA1105-01	Mc Reservoir	Occupied
LA1113-01	Guano #4	Occupied
LA1140-01	Blizzard	Occupied
LA1160-01	Rattlesnake Draw #I	Occupied
LA1164-01	Flook Burn	Occupied
LA1160-02	Rattlesnake Draw #2	Occupied
LA1124-02	Lookout #2	Occupied
LA1124-01	Lookout #I	Occupied
LA1119-01	Hilltop #I	Occupied
LA1119-03	Hilltop #3	Occupied
LA1119-02	Hilltop #2	Occupied
LA1103-02	Swede Knoll #2	Occupied
LA1103-03	Swede Knoll #3	Occupied
LA1103-01	Swede Knoll #I	Occupied
LA1105-02	Mc Reservoir #2	Occupied
LA1140-03	Blizzard #3	Occupied
LA1124-04	Lookout #4	Occupied
LA1140-02	Blizzard #2	Occupied
LA1140-05	Blizzard #5	Occupied

March 2015

ODFW Site ID	Lek Name	Conservation Status
LA1124-03	Lookout #3	Occupied
LA1108-06	Spanish Flat #6	Occupied
HA0021-05	Buckaroo #5	Occupied Pending
HA0103-01	Bench Top	Occupied Pending
LA1101-01	Poker Jim Lake	Occupied Pending
LA1102-01	Deer Creek	Occupied Pending
LA1110-01	Gibson Lake Road	Occupied Pending
LAIIII-0I	Sentinel Point #I	Occupied Pending
LA1112-01	Northwest Long Lake	Occupied Pending
LA1114-01	North Badger Hole	Occupied Pending
LA1116-01	Wool Lake	Occupied Pending
LA1122-01	South Boundary	Occupied Pending
LA1123-01	Clover Swale #4	Occupied Pending
LA1108-02	Spanish Flat #2	Occupied Pending
LA1108-01	Spanish Flat #I	Occupied Pending
LA1144-01	Sagehen #8	Occupied Pending
LA1157-01	South Teddy's Rim	Occupied Pending
LA1193-01	Fred's Pond	Occupied Pending
LA1219-01	West School Section Lake	Occupied Pending
LA1222-01	Antelope Butte Lakeview	Occupied Pending
LA1224-01	Rocky Canyon #2	Occupied Pending
LA1228-01	Potholes	Occupied Pending
HA0107-05	Bald Mountain #5	Occupied Pending
HA0107-01	Bald Mountain #I	Occupied Pending
HA0023-01	Juniper	Occupied Pending
HA0021-01	Buckaroo #I	Occupied Pending
HA0021-02	Buckaroo #2	Occupied Pending
HA0020-01	North Buckaroo Pass	Occupied Pending
LA1117-03	Lower Snyder #3	Occupied Pending
LA1104-03	North Poker Jim #3	Occupied Pending
LA1229-01	Hen Hill #I	Occupied Pending
LA1233-01	Swede Paiute #1	Occupied Pending
LA1233-02	Swede Paiute #2	Occupied Pending
HA0021-06	Buckaroo #6	Occupied Pending
LA1158-01	Paxton #I	Occupied Pending
LA1120-01	Black Canyon #I	Occupied Pending
LA1109-03	Desert Lake	Occupied Pending
LA1130-01	Morgan	Occupied Pending
HA0021-07	Buckaroo #7	Occupied Pending
LA1113-02	Guano #4 South	Occupied Pending
LA1109-06	Corral Creek 4	Occupied Pending
LA1117-04	Lower Snyder #4	Occupied Pending
LA1117-05	Reservoir Lake North	Occupied Pending
LA1238-01	Wool Lake North	Occupied Pending
LA1108-03	Spanish Flat #3	Unoccupied Pending
LA1109-01	Water Canyon	Unoccupied Pending
LA1108-05	Spanish Flat #5	Unoccupied Pending
LA1115-01	Wildlife Lake	Unoccupied Pending
LA1118-01	North Mc Reservoir	Unoccupied Pending

Table 4-54 Beaty Butte Lek Status

ODFW Site ID	Lek Name	Conservation Status
LA1111-02	Sentinel Point #2	Unoccupied Pending
LA1123-02	Clover Swale #3	Unoccupied Pending
HA1011-01	Southeast Spalding Reservoir	Unoccupied Pending
LA1132-01	Northeast Badger Hole #I	Unoccupied Pending
LA1133-01	Rocky Canyon #3	Unoccupied Pending
LA1138-01	School Section Lake	Unoccupied Pending
LA1108-04	Spanish Flat #4	Unoccupied Pending
LA1146-01	North Teddy's Rim	Unoccupied Pending
LA1155-01	West Long Lake #I	Unoccupied Pending
LA1159-01	Northeast Badger Hole #2	Unoccupied Pending
LA1161-01	Southwest Flook Lake	Unoccupied Pending
HA1028-01	West South Corral Spring	Unoccupied Pending
LA1181-01	Dobyn's Rim	Unoccupied Pending
LA1197-01	Rocky Canyon #I	Unoccupied Pending
LA1198-01	Spalding Ranch East	Unoccupied Pending
LA1199-01	Fairy Flat	Unoccupied Pending
HA1025-01	East Paradise	Unoccupied Pending
LA1205-01	South Little Juniper	Unoccupied Pending
LA1206-01	Southeast Little Juniper	Unoccupied Pending
LA1211-01	East Long Lake	Unoccupied Pending
LA1214-01	Northeast Long Lake	Unoccupied Pending
LA1220-01	East Gibson Lake	Unoccupied Pending
LA1225-01	Lower Robinson	Unoccupied Pending
LA1227-01	West Long Lake #2	Unoccupied Pending
LA1123-03	Clover Swale #2	Unoccupied Pending
LA1123-04	Clover Swale #1	Unoccupied Pending
HA0107-03	Bald Mountain #3	Unoccupied Pending
HA0107-02	Bald Mountain #2	Unoccupied Pending
HA0107-04	Bald Mountain #4	Unoccupied Pending
HA0107-06	Bald Mountain #6	Unoccupied Pending
HA0021-03	Buckaroo #3	Unoccupied Pending
HA0021-04	Buckaroo #4	Unoccupied Pending
LA1117-01	Lower Snyder #I	Unoccupied Pending
LA1117-02	Lower Snyder #2	Unoccupied Pending
LA1104-01	North Poker Jim #1	Unoccupied Pending
LA1104-02	North Poker Jim #2	Unoccupied Pending
LA1229-02	Hen Hill #2	Unoccupied Pending
LA1175-01	South Poker Jim #1	Unoccupied Pending
LA1175-02	South Poker Jim #2	Unoccupied Pending
LA1158-02	Paxton #2	Unoccupied Pending
LA1120-02	Black Canyon #2	Unoccupied Pending
LA1103-04	Homestead #I	Unoccupied Pending
LA1103-05	Homestead #2	Unoccupied Pending
LA1232-01	Flook Meadow	Unoccupied Pending
LA1109-02	Corral Creek	Unoccupied Pending
LA1221-01	Northeast Swede Knoll	Unoccupied Pending
LA1109-04	Corral Creek 2	Unoccupied
LA1109-05	Corral Creek 3	Unoccupied
LA1146-02	Lone Lek	Unoccupied

Table 4-54 Beaty Butte Lek Status

	ODFW Site ID	Lek Name	Conservation Status
	LA1104-04	North Poker Jim #4	Unoccupied
	LA1140-04	Blizzard #4	Unknown
I			
2		Vegetation	
3		The sagebrush cover across the PPA	A is currently intact with some areas in the
4		east portion of the PPA beginning to	have closed canopy cover consisting of big
5		sagebrush and Wyoming big sagebru	sh. The higher elevations are dominated by
6		low sagebrush with little invasive and	nual grass understory. However, the lower
7		elevation areas with big sagebrush	and Wyoming big sagebrush have a high
8		amount of invasive annual grass inva	sion. The Westside of the PPA has conifer
9		encroachment: however, conifer enc	roachment across the entire project area is
10		low.	
П		Invasive Species	
12		Cheatgrass is presents in trace amo	ounts within the understory of the lower
13		elevation vegetation, and reduces over	er 6,000 feet in elevation. Some areas in the
14		northeast have high coverage of ch	eatgrass. Higher amount of cheatgrass are
15		present in past burned areas where	e restoration activities did not take place.
16		Other nonnative invasive annual gras	sses, such as Medusahead rye (Taeniatherum
17		caput-medusae) and North Africa	Grass (Ventenata dubia), have not been
18		documented in the PPA. However,	due to the soil type and elevation these
19		species could easily invade this PPA	. Other noxious weeds are present in the
20		Beaty Butte PPA. Canada thistle	(Cirsium arvense) and bull thistle (Cirsium
21		vulgare), Russian knapweed (Acroptile	on repens), hoary cress (Cardaria spp.) are
22		scattered in small infestations near w	ater developments and along roads.
23		Small isolated infestations of noxious	s weeds and nonnative invasive species will
24		be controlled using an early detection	on, rapid response program and integrated
25		weed management program. The goa	al will be to eradicate the infestations while
26		they are still isolated infestations. Fo	or large infestations, such as cheatgrass, the
27		goal will be to contain and reduce t	he populations with high priority near leks.
28		Other priorities will be along roads t	o prevent invasive annual grasses and other
29		weeds from spreading to un-infeste	ed areas. All staff and contractors will be
30		encouraged to keep all of their vehicl	es and equipment clean and free of weeds.
31		Areas that have converted to annual	grass monocultures will be low priority for
32		treatment, but if funding becomes a	available these areas may be treated in an
33		effort to convert them back to more	productive habitat.
34		For future restoration efforts seed	will be collected from both native grasses
35		and forbs. The seed can be directly	planted or grown into seedlings and can be
36		used for habitat and recovery projec	ts. To ensure seed availability and viability a

Table 4-54 Beaty Butte Lek Status

- Iprofessional long term seed storage facility needs to be installed at the Lakeview2District.
- Conifer reduction from fuels treatments will also increase the quality of GRSG
 habitat. Reducing conifer cover allows the understory to increase while
 decreasing perch sites for aerial predators.
- 6 Treatments would include spraying and seeding along fire break areas. Areas 7 that have potential for overstory closure may benefit by some brush mowing or 8 reduction to assist in understory recovery. These projects will initially be 9 conducted on as a small scale pilot to ensure the restoration efforts are 10 effective before larger scale projects are implemented.
- П Fire 12 The current fire regime falls in a category IV, however, shorter intervals than 35 13 years may occur. There have been several large fires within and adjacent to the 14 Beaty Butte PPA. The majority of past fires have converted to annual grass 15 dominated vegetation that is not considered GRSG habitat. The majority of the soil types across the project area are classified as warm/cool and dry, which is 16 17 considered low resistance to annual grass invasion. Some of the highest elevations are classified as cool/cold and moist soils, with high resistance to 18 19 annual grass invasions (see Table 4-55).

Table 4-55 Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres) 89,169
	High and Very High Burn Probability in PPA (percent) 71.7
20	
21	Fire Regime IV (Stand Replacement, 35–100+ Years)
22	Mountain and sage shrublands, semi-desert shrub and grasslands, mountain
23	shrublands, semi-desert shrub and grasslands, and sage shrublands are classified
24	under Fire Regime IV; however, shorter stand replacement intervals of less than
25	35 years may occur.
26	Climate conditions and time needed for an adequate fuel complex to develop
27	are likely factors that control fire frequency in these ecosystems. Therefore, in
28	the driest and least productive systems, such as the semi-desert shrub and
29	grasslands, fuel load is the more limiting factor. In these systems, vegetation
30	develops very slowly under conditions of scant rainfall and poor soils. Bare
31	ground is prevalent even in the more productive sites. There is a lack of
32	information about fire regimes for semi-desert shrub and grasslands. Fire may
33	not be a primary disturbance in these ecosystems.
34	Mountain shrubland ecosystems occur at higher elevations and moister climates,
35	making them more productive and resilient to disturbance.

l 2	Management Strategies
3	Treatments
4	Noxious weeds within the PPA have been managed through the Lakeview
5	Resource Area Integrated Weed Management Plan, however no effective
6	herbicide was available for control of annual grass species, therefore they have
7	been unmanaged in the PPA. New herbicides have recently become available to
8	assist in managing the nonnative invasive winter annual grass species and
9	thousands of acres could be improved within GRSG habitat by removing these
10	grasses.
11	Other Relevant Management Activities or Issues
12	The Beaty Butte PPA has a high and generally stable population of GRSG. It also
13	has good connectivity to adjacent habitat. The remoteness of the area is a
14	concern for fire protection and lack of water.
15	The Beaty Butte HMA lies within the Beaty Butte PPA and has an AML of 100-
16	250 head of horses.
17	Free-roaming horses on Butte HMA were last counted during the first week of
18	June 2014. This inventory was conducted by specialists from Lakeview BLM,
19	Sheldon-Hart Mtn. National Wildlife Refuge Complex, and the US Geological
20	Survey. The Simultaneous Double-Count aerial inventory method was utilized
21	to provide a statistically valid population estimate with confidence intervals. This
22	method provides an estimate of sighting probabilities (the likelihood horses are
23	observed during the count) which is then used to correct raw count data (the
2 4 25	actual number of norses observed during the inventory) to account for
25	undercounts (norses not counted because they were not seen on an inventory).
26	The data collected during this inventory has been sent to the US Geological
27	Survey-Fort Collins Science Center for statistical analysis. The current
28	population estimate (1,287 horses) is based on raw count data from the survey,
29	which is likely a slight undercount of the actual population of the HMA.
30	At 1,287 horses the Beaty Butte HMA is currently over five times the high end
31	of the AML. These numbers negatively impact GRSG habitat restoration and
32	rehabilitation efforts.
33	Fuels Management
34	The main management activities will focus on juniper treatments. Juniper
35	treatments would occur in the western part of the PPA. The encroachment is
36	phase I and phase II and starting to spread into the flatter sagebrush areas.
37	Mechanical and hand treatments will be used for removal. No fuel breaks have
38	been implemented in this area, but green striping and other fuel breaks have
39	been proposed by the Beaty Butte working group. Some seeding on BLM lands
40	has occurred in the NE corner of the Priority Planning Area, but most
41	surrounding areas are infested with cheatgrass (see Table 4-56).

Priority	Priority I	Priority 2	Priority 3	Total
Miles	48.70	92.27	0	140.97
2	Fuels treatments will	be coordinated acros	ss property jurisdiction	al boundaries
3	and ownership by par	tnering with Hart M	t. and Sheldon Refuges,	Neighboring
4	Burns BLM District, Pr	rivate landowners and	the NRCS.	
5	Firebreaks or green-	stripping along existi	ng roadways would pr	ovide a fuel
6	break and safe zone fr	om which to fight fire	e. Some possible roads v	would be the
7	6152-0-00, 6132-0-00,	6162-0-A0, 6156-0-0	0, 7116-0-00, 6176-0-00) and 6176-0-
8	G0. One of the sugg	ested species for gre	en stripping is Sandbur	g's bluegrass
9	(poa secunda).			
10	Habitat Restoration and	Recovery		
11	Opportunities to res	tore, protect, enhan	ce, or maintain GRSG	habitat and
12	connectivity generally	exists in areas that ha	ave I) warm/dry or coo	l/dry soils, 2)
13	elevation below 6,000	feet, and/or 3) are o	of higher fire risk due to	> remoteness
14	and lack of water. Th	reats from weeds and	l fire are less in other s	oil types and
15	>6,000 feet elevatior	. Restoration treatm	nents would be dictat	ed by these
16	factors. Risks to res	toring areas with w	varm/dry or cool/dry	soils include
17	reduced productivity l	because of lack of pre	cipitation for plant grov	vth and drier
18	conditions from sout	herly aspects. Portio	ns of this PPA are loc	ated on the
19	border of Hart Wildli	fe Refuge, adjacent D	istricts and privately ov	vned parcels,
20	therefore a coordinate	ed approach will be us	sed in restoration effort	s (see Table
21	4-57).	••		``

Table 4-56 **Fuels Management Potential Treatments**

Table 4-57
Habitat Restoration Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Total
Acres	85,404	403,687	0	489,091
Percent of PPA	21.24	100.39	0	121.63

*Acreage percentages that are greater than 100 are due to different treatment types (ex; Conifer and Invasives) that share the same ground.

22	
23	Fire Operations
24	Most of the PPA acreage is 1st priority as it is intact sagebrush and is considered
25	intact, priority habitat. Most of the area is at the low end of 2C with minor
26	inclusions of 3C. This area is a GRSG priority for the Lakeview District, BLM.
27	The isolate portion of the PPA, to the northeast, is 2nd priority based on a
28	previous fire and the smaller area of intact habitat and operations (see Table
29	4-58).

	Priority	Priority I	Priority 2	Priority 3	Total			
	Acres	346,878	55,236	0	402,115			
	Percent of PPA	86.3	13.7	0	100			
Ι								
2		Post-Fire Rehabilitation	Management					
3		The majority of the B	The majority of the Beaty Butte PPA consists of warm/cool and dry soils, which					
4		would not be resistant to annual grasses or resilient to fires. However, there						
5		are several sections of	of the PPA with high	elevation over 6,000	feet with low			
6		sage that would be n	sage that would be more resilient to annual grasses. These areas would allow					
7		for a more passive	for a more passive post-fire rehabilitation management. If there are known					
8		annual grass infestations documented these sites will likely require herbicide						
9		applications with Imazapic post-fire. Natural restoration will be allowed and						
10		monitoring will take p	lace, results will dicta	te if active restoration	is needed (see			
11		Table 4-59).						

Table 4-58Fire Operations Management Strategies

Table 4-59
Post-Fire Rehabilitation Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	376,769	15,003	10,358	402,131
	Percent of PPA	93.7	2.6	3.7	100
12					
13		For the areas in lov	wer elevations Treat	tment opportunities inclu	ude spraying all
14		areas impacted to r	educe invasive annu	al grasses from establishi	ing and seeding
15		the following year.	This will help nat	tive vegetation reestabli	ish and thrive.
16		Thinning and drilling	g would occur post-	fire where applicable. G	enerally, under
17		the FIAT construct	higher elevation are	eas and low sage sites o	lo not need as
18		much management	due to their higher i	resistance and resilience	than Wyoming
19		sage sites. Areas le	ess than 6,000 feet	in elevation with warm	/cool dry soils
20		generally require th	ie highest post-fire r	rehabilitation due to the	low resistance
21		and resiliency. Area	is with new invasion	is will be high priority fo	or management
22		actions for the first	five years post-fire.	If annual grasses are not	controlled and
23		native plants are no	t established within	this five year period the	productivity of
24		the site and the GRS	SG habitat will declin	e.	
25		Proposed Manage	ment		
26		See Table 4-60 for	or projects that hav	e been identified prese	ntly within the
27		NEPA planning proc	cess. See Figures 4-	30 through 4-35 for a gr	aphic depiction
28		of the proposed tre	atments and strategie	es in the PPA.	

Treatm Descrip	ient tion	Р	riorit	y		Thr Addr	eats essed	I	I	NEPA	1			Trea	tments		
						s (I)						Ti Fra	me Ime	Certa Effectiv	inty of veness ¹	ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fra (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Invasive Annual Grass Management	401,507		Х			Х			X			x		Х		5-20	1-5
Other Invasive Plant Management	50	Х					Х		Х				Х	Х		5-20	1-5
Coleman I		Х			Х					Х			Х	Х		5	3-5
¹ State if treatm I = s 2 = s 3 = c 4 = E ² Describe freq ³ Identify poten	ent, once co site conditior site conditior continued cu Based upon p uency of ma stial treatmen	mplete ns (soils rrent n professi intenan nt comp	d, is lik s, resili nanage ional o ice nec pletion	kely or ence, s ment (pinion, essary time f	unlikel pecies grazing treatm to con rame, c	y to be compo compo , recre nent is tinue e conside	e effect osition, osition, ation, o likely t effective ering N	ive. Pro disturt disturt or othe o be ef eness (y EPA ad	ovide ra oances) oances) er land fective years) lequacy	ationale make make uses) n v, relati	e using treatm treatm nake lik ve pric	these ent eff ent eff celihoc ority, ar	codes: ectiven ectiven d of eff	ess likely ess unlikel fectiveness I ranking fa	y Iow Ictors		

Table 4-60Project Planning Area Treatment Summary Table

4.2.8 Clover Flat

Project Planning Area Description

General Site Description

The location of the Clover PPA falls within the Lakeview BLM District Resource area (Lake County, Oregon) and is approximately 20 miles north of Lakeview. The Clover Flat PPA encompasses a total of 31,531 acres, and consists of the following ownerships: 16,312 acres of BLM, 14,935 acres of private, and 284 of National Forest System Lands. Elevation ranges from 4,281-5,876 feet with predominately north and east aspects. The topography is a gently sloping hilltop plateau with steep rocky sides (50-60 percent). The area receives 10-12 inches of precipitation, with most of the precipitation occurring during the winter in the form of snow. Some precipitation occurs during the summer and fall in the form of thunderstorms but this precipitation is ineffective for plant growth.

17The majority of the assessment area consists of cool and moist soils. Generally,18the cool and moist soils exhibit moderately high resilience to disturbance and19moderate resistance to invasive annual grasses; natural sagebrush recovery is20likely to occur. On the east and north east portion on the assessment area21there are areas of warm and dry soils, and there are also small pockets of warm

March 2015

1 2

3 4

5 6

7

8

9

10

11

12

13

14

15

I	and moist soils throughout the PPA. The warm and moist soils show moderate
2	resilience to disturbance and moderately low resistance to invasive annual
3	grasses. The areas of warm and dry soils represent the highest risk of GRSG
4	habitat loss as these areas have low resilience and resistance. Recovery of
5	sagebrush is not likely to occur naturally within this soil moisture and
6	temperature regime (see Table 4-61).

 Table 4-6 I

 Clover Flat Sage-Grouse Habitat Matrix Categories

	Matrix Category	No Data	IA	IB	IC	2 A	2B	2C	3 A	3B	3C
	Acres	1,400	1,070	14,958	72	381	6,921	0	81	6,648	0
	Percent of PPA	4	3	47	0	I	22	0	0	21	0
7											
8		Sage-G	rouse								
9		Accor	ding to t	he PAC t	here is	approx	imately	31,531	acres	of PPH	(100
0		percer	nt) within	the PPA;	howev	ver, cur	rent we	ed infe	stations	and ju	niper
1		encroa	achment n	nay limit G	RSG hal	bitat (se	e Table	4-62).	The cu	rrent ESI	data

Table 4-62 Clover Flat Lek Status

layer covers 51.5 percent of the PPA (approximately 16,257 acres).

	ODFW Site ID	Lek Name	Conservation Status
	LA1121-01	Red Knoll Reservoir	Occupied
	LA1121-02	Tucker Hill Medusahead	Occupied
	LA0928-01	Juniper Creek	Occupied
	LA1180-01	Red Knoll Northwest	Unoccupied-Pending
	LA1135-01	O'Leary Reservoir	Historical
13			
14		GRSG abundance within the PPA is showin	g a slow decline, due in part, to the
15		conversion and establishment of non-suitabl	e habitat. Conifer encroachment and
16		annual invasive species are key drivers in	plant community conversions. This
17		population is relatively isolated and further	loss of habitat may extirpate GRSG
18		from the PPA.	
19		Vegetation	
20		Vegetation within the project area varies s	substantially from the high elevation
21		forests to low elevation marsh and grasslar	nds. Native plants within the general
22		area of the PPA, are considered to be in go	od vegetative condition. Medusahead
23		infestations are present and occur in the PP	PA, Typical vegetation for the project
24		area consists of rolling hills and benches o	covered with low and mountain big
25		sagebrush. In the warm-dry soils there is	an invasive annual grass understory
26		while in the cool-moist soils there is a native	e bunchgrass understory.
27		In addition to displacing plant communi	ties such as sagebrush and being
28		implicated in the increasing distribution o	f invasive plants such as cheatgrass
29		(Bromus tectorum), encroaching woodland	s also increase fuel loads, thereby

leading to changes in fire regimes. Across the PPA conifer expansion into sagebrush types at mid to high elevations also result in a reduction of the native grass, forb, and shrub species associated with these types. Currently conifer expansion into the PPA is impacting approximately 9,000 acres, and includes all ownership types. The NRCS has implemented conifer reduction starting in 2012, approximately 10,000 acres have been treated in and around the PPA.

Dominant Native Vegetation

Vegetation within the project area varies substantially from the high elevation forests to low elevation marsh and grasslands. Native plants within the general area of the PPA, except for the medusahead infestations, are considered to be in good vegetative condition. Typical vegetation for the project area consists of rolling hills and benches covered with low and mountain big sagebrush. There is scattered juniper on some of the rocky ridges and scattered across the upper elevations. Some scattered ponderosa pine extends down from the highest elevations and is mixed with juniper woodlands. The soils are thin but support tall sagebrush, as well as low sagebrush, and diversity increases in the steep rocky areas near the hill tops where juniper, gooseberry and long-flowered snowberry can be found. Native bunchgrasses in the area are bluebunch wheatgrass, Idaho fescue, needle-and-thread grass, Thurber's needlegrass, great basin wildrye, Sandberg bluegrass, squirrel-tail and Indian rice grass. Other shrubs include green rabbitbrush, spiny hopsage, and gray horsebrush. Medusahead as well as other introduced species are prevalent, including mediterranean sage, thistle, tumble mustard, cheatgrass, and bur buttercup. In areas where there is no medusahead infestation, forbs are abundant, including desert parsley, milkvetch, lupine, arrow-leaf balsamroot, death camas, larkspur, saxifrage, clover and desert primrose, as well as the cultural plants mentioned below.

28

L

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23

24

25

26

27

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Invasive Plants

The current local invasive plant data has documented 5,396 acres of medusahead rye in 105 separate infestation sites. There are also other invasive species such as Mediterranean sage (55 documented acres), Canada thistle (two acres), bull thistle (six acres), and cocklebur species (12 acres). Other nonnative invasive winter annual grass species cheatgrass and North African wire grass are known to exist within the PPA, however no formal survey has taken place to map these species.

Fire

The current fire regime falls in the category IV; however, shorter intervals than 35 years can probably occur. There is a variety of soil temperature moist regimes including cool-moist soils, warm-moist soils, and warm-dry soils. The GRSG population is stable to slightly declining. This area likely provides the seasonal life requisites for breeding, brood rearing, and winter habitat (see **Table 4-63**).

Table 4-63					
Summary	of	Burn	Probability		

	High and Very High Burn Probability in PPA (acres) High and Very High Burn Probability in PPA (percent)					
	High and very High Burn Probability in PPA (percent)	0.0				
ו ר	Eine De sinne IV (Chan d De blasser and DE 100) Verser)					
2	Fire Regime IV (Stand Replacement, 35–100+ Tears)	1 1				
3	Mountain and sage shrublands, semi-desert shrub and gra	ssiands, mountain				
4	shrublands, semi-desert shrub and grasslands, and sage shrubl	ands are classified				
5	under Fire Regime IV; however, shorter stand replacement int	ervals less than 35				
6	years may occur.					
7	Climate conditions and the time needed for an adequate	fuel complex to				
8	develop are likely factors that control fire frequency in t	hese ecosystems.				
9	Therefore, in the driest and least productive systems, such a	s the semi-desert				
10	shrub and grasslands, fuel load is the more limiting factor.	In these systems,				
11	vegetation develops very slowly under conditions of scant rain	fall and poor soils.				
12	Bare ground is prevalent even in the more productive sites.	There is a lack of				
13	information about fire regimes for semi-desert shrub and gra	asslands. Fire may				
14	not be a primary disturbance in these ecosystems.					
15	Mountain shrubland ecosystems occur at higher elevations and	moister climates,				
16	making them more productive and resilient to disturbance.					
17 18	Management Strategies					
19	Treatments					
20	Within the PPA one fire has been documented consisting	g of 78 acres. In				
21	addition one recent prescribed burn was implemented as a	a fuels project to				
22	reduce the thatch of invasive annual grass species. This project	burned 430 acres				
23	and was followed up with glyphosate applications and resea	ding/transplanting				
24	efforts	5 1 5				
25	Annual grass reduction and containment projects have taken	place on BLM and				
26	adjacent ownerships. These projects have consisted of herb	icide applications,				
27	burning and re-seeing efforts. The BLM treatments have been l	ess successful due				
28	to the lack of effective herbicides available to the BLM in the pa	ast.				
29	Other Relevant Management Activities or Issues					
30	The GRSG population in this PPA is isolated with apparent	poor connectivity				
31	and high risk of extirpation. Large pockets of invasive annual g	rasses exist within				
32	this area. Existing juniper and encroachment is a concern fo	or fire and habitat				
33	loss.					
34	Fuels Management					
35	The main management activities will focus on iuniper trea	tments. This will				
36	prevent a fire from spreading to or coming from the nearby	Fremont National				
37	Forest (see Table 4-64).					

	Priority	Priority I	Priority 2	Priority 3	Total		
	Miles	29.37	0	0	29.37		
І 2		Fuel's Management ac	tivities include:				
3		• Phase I ar	nd phase II Juniper tre	atments (removal)			
4 5		– P o	re-burn evaluation to ther invasive weeds is	determine if the risk of o s minimal.	cheatgrass or		
6 7		– T tł	he reduction of junip he GRSG habitat.	er expansion will also aid	in improving		
8 9 10 11 12 13		 Green str ecoregion considerin existing r to fight f Sandburg 	riping along Clover Fl n when available (20 ng the existing road) oadways to provide a fire. One of the sug 's bluegrass (poa secu	at Road using seed appro D-30 feet width should I. Fire breaks or green-st I fuel break and safe zone gested species for greer Inda).	priate to the be sufficient ripping along e from which n stripping is		
4 5 6		– L n u	Jse native species like o native species avai sed in fuel breaks wh	e Sandburg's bluegrass ur lable in which crested w ere annual grasses are pro	nless there is rheat may be evalent.		
7 8 9		 Fuel treat and priva Private la 	tments will be coordi ite ownership by pai ndowners and the NF	nated across jurisdictiona tnering with the US Fo RCS.	al boundaries prest Service,		
20		Habitat Restoration and	d Recovery				
21		Opportunities for ha	bitat restoration to	protect, enhance, or ma	intain GRSG		
22		habitat and connecti	vity generally exists	in areas that have: I)	warm/dry or		
23		cool/dry soils, 2) elev	ation below 6,000 fee	et, and/or 3) are of higher	fire risk due		
24		to remoteness and la	ck of water. Threats	from weeds and fire are	less in other		
25		soil types and >6,000) feet elevation. Rest	oration treatments would	d be dictated		
26		by these factors. Ris	sks to restoring are	as with warm/dry or c	ool/dry soils		
27 20		include reduced proc	from coutbonly occurse of i	ack of precipitation for	plant growth		
20 29		and drier conditions	district for coordina	tion of projects: however	aled on the		
20		soveral private lander	whore and the LIS Fo	worst Service that could u	er, there are		
31		cooperative restoration	on efforts.		participate in		
32		Key threats to GRSG	habitat are invasion	of exotic grasses, large-so	cale wildfires,		
33		and encroachment of	conifers. The priority	y for the PPA includes co	ontainment of		
34		current invasive anr	nual grasses. Oppor	tunities for habitat res	toration and		
35		recovery within the	PPA could be implen	nented; however other a	areas may be		
36 37		more effective at pro population expansion	oviding important con . There is limited info	nectivity and offer chanc ormation regarding GRSG	es for GRSG		

Table 4-64Fuels Management Potential Treatments

to other PPAs. In general, restoration and rehabilitation within the area has had mixed results. Clover Flat is comparatively lower priority compared to the North Warner PPA.

L

2

3

4

5

6

7

Invasive Plant Management

For areas that are not infested with invasive species, an aggressive early detection rapid response effort will be needed to keep these invasive annual grass species from invading intact plant communities.

8 The most successful and efficient method for managing weeds is prevention of 9 invasion. To help with prevention a cooperative weed management area was 10 established, which promotes education and early detection of new sites before 11 they become too large and costly to manage. Systematic and strategic detection 12 surveys should be developed and conducted in a manner maximizing the 13 likelihood of finding new patches before they expand. Once small patches are 14 located, seed production should be stopped and the weeds should be eradicated.

- 15 The already present nonnative invasive winter annual grass species are a high risk for the current GRSG habitat. In order to contain and control these winter 16 17 annual grass species large scale vegetation restoration efforts will need to take 18 place and consist of herbicide application and re-seeding efforts. Approximately 19 5,396 will need to have herbicide applications followed by reseeding/transplant 20 restoration effort. The main goal of the treatment will not be to completely 21 eradicate all existing infestations, since with infestations may already be too 22 large and costly to eradicate. However, successful containment would be 23 feasible by applying herbicides and restoration efforts. The most successful 24 containment strategy will be to boarder spray infestations, Planting aggressive 25 plants as a barrier, establish seed feeding biological control agents, and grazing 26 weeds to minimize seed production.
- 27 Areas with an adequate understory of desired vegetation should be identified 28 and prioritized as high for control since they have higher likelihood of successful 29 rehabilitation than areas where the desired species are completely displaced. 30 The seeding of perennial herbaceous species may be required where cover, 31 density and species composition of these species in inadequate. Seeding and/or 32 transplanting sagebrush for restoring GRSG habitat will also be needed. Success 33 will likely require more than one intervention due to low and variable 34 precipitation. The species of choice should include these with similar niche as 35 the invasive weeds. The goal should be to maximize niche occupation with 36 desired species.
- 37Since there is such a large amount of nonnative winter annual grass species38within in this project area and some of the areas that would be targeted for39annual grass removal is with in warm/dry soils there is a risk that the40restoration activities may not be highly successful. However, containment of the41large infestation is a must to prevent the large infestations from continually42spreading across the jurisdictional boundaries to private and other federally

managed lands. There are many private landowners along with the US Forest Service that have been working diligently to contain their infestation. The project would greatly complement the work that is already being implemented to reduce annual grasses within the PPAs.

5During all restoration activities all equipment should remain clean and as weed6free as possible. The Lakeview District implements a Weed Prevention Program7that is updated every few years to help the staff prevent spreading weeds and8invasive species. The BLM weed program should strive to keep weed9infestations along roads low, which will prevent future spreading.

10 Juniper treatment of phase I and phase II has been shown to be highly effective 11 at maintaining native shrubs and native bunch grasses, while functionally 12 restoring sagebrush landscapes on many ecological sites. Juniper should be 13 removed near leks in areas where conifer expansion exceeds a four percent 14 threshold. The removal of slash for phase I and Phase II juniper projects in areas 15 with intact sagebrush communities hand pile burning is the most appropriate 16 method. Mechanical treatment for juniper reduction would not occur due to 17 the risk of disturbance on the warm-dry and cool-dry soils. Burning should take 18 place in the winter months when soil tends to be frozen but the moisture 19 content of the trees is low. Seeding prior to juniper treatment should be 20 considered when current perennial grass community is in poor condition or if 21 exotic annual grasses are present. Broadcast seeding prior to soil disturbance or 22 under slash may increase the chances of establishment. Length of rest from 23 grazing following treatment will depend of understory composition at the time 24 of treatment and response of desirable vegetation following treatment. This 25 typically varies from less than one to more than three years (see Table 4-65).

Priority	Priority I	Priority 2	Priority 3	Total				
Acres	31,531	17,941	0	49,472				
Percent of PPA	100.00	56.90	0	156.90				
*Acreage percentages that are greater than 100 are due to different treatment types (ex; Conifer and Invasives) that s same ground.								
	Fire Operations							

Table 4-65 Habitat Restoration Potential Treatments

28The PPA is all considered Priority I due to the small operational size, proximity29to the Forest Service and private agricultural communities and lands (see Table304-66).

Table 4-66
Fire Operations Management Strategies

Priority	Priority I	Priority 2	Priority 3	Total
Acres	31,524	0	0	31,524
Percent of PPA	100	0	0	100

31

26 27

L

2

3

March 2015

Tost the Renabilitation management		Post-Fire	Rehabilitation	Management
------------------------------------	--	-----------	----------------	------------

- Natural sagebrush recovery is not likely, especially in the warm/dry soils. Perennial herbaceous species are typically inadequate for recovery. Risk of invasive annual grasses is high. Since there is already a large amount of invasive annual grasses present within and around the assessment area. Fire restoration plans should include application of imazapic to prevent larger infestation from establishing.
 - Areas that have higher elevations with cool/ moist soils may need to be restored by imazapic applications followed by natural recovery of the present native vegetation.
 - Areas with cool/warm dry soils or areas with previous annual grass invasions will need additional restoration efforts. After imazapic applications, seeding perennial herbaceous species will be required where cover, density and species composition of these species isin inadequate for recovery. Seeding and/or transplanting sagebrush as soon as possible is necessary for rehabilitating GRSG habitat.
 - Follow up treatments of imazapic will be needed to continue to reduce the invasive annual grass species for several years after the fire due to the large seed bank that is already present in the assessment area.
 - Once native grasses and shrubs have been successfully restored, native forb species could be incorporated to improve GRSG habitat and plant diversity. Treatments would be focused near the center of the assessment area around leks. Thinning and drilling would occur where applicable in the following years after the fire.
 - Vehicles used in or around these medusahead sites would be washed before leaving the site in an effort to reduce the spread of medusahead seed.
 - During the restoration process custom seed mixed could be used to make fuels breaks along roads. This would help prevent/ slow down future large fires within the PPA.
 - Local seed will be collected and grown out for restoration projects. Seed collection and local storage would provide tools for active restoration. Seeding or transplanting of sagebrush may be needed to accelerate establishment of sagebrush species. Livestock grazing rest will be needed until the restored native plants are strong enough to with stand grazing.
 - Fire restoration efforts would be coordinated with private landowners and the adjacent US Forest Service managed properties. To reduce herbicide application cost, the same commercial applicator could be used across the ownerships. Land managers

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

1 2 could use similar or complementary seed mixes and share equipment during restoration efforts (see **Table 4-67**).

Priority	Priority I	Priority 2	Priority 3	Total	
Acres	31,529	0	0	31,529	
Percent of PPA	100	0	U	100	
	Potential Se	ed Species			
	Grasses:			、 、	
	•	Bottlebrush squirreltail Sita	nion hystrix (Elymus elymoide	es)	
	•	Idaho fescue Festuca idahoe	nsis		
	•	Bluebunch wheatgrass Agro	neria spicata)		
	•	Great Basin wild rye Elymus			
	•	Tridicale Triticum aestivum >	c Secale cereale		
	•	Regreen Triticum aestivum x	Elytrigia elongata		
	•	Cereal Rye Secale Cereale			
	•	Crested Wheatgrass Agropy	ron cristatum		
	Forbs:				
	•	Milkvetch Astraglus purshii, A	A. obscurus, A. filipes		
	•	Big-headed clover Trifolium	macrocephalum		
	•	Phlox Phlox longifolia, A. diffu	ısa P gracilis (Microsteris gra	cilis)	
	•	Desert parsley Lomatium m	acrocarpum, L. nevadense		
	•	L. nudicaule, L. canbyi			
	•	Hawksbeard, Crepis acumin	atum		
	•	False dandelion Agoserus he	terophylla and other species	S	
	•	Arabis Arabis species			
	•	Buckwheat Erigonum coryml	oosus, E. umbellatum		
	•	Blue Mt prairie clover Petal	ostemon ornatum (Dalea orr	nate)	
	•	Alfalfa Medicago sativa	, ,	,	
	•	Small Burnet Sanguisorba m	inor		
		0			
	Shrubs:	Low sagebrush Artemisia and	buscula		
	•	Green rabbit brush Chryson	hamnus viscidiflorus		
	•	Grav horsebrush Tetradumi	n canescens		
	•	Gray norseorusii reuddynii			

 Table 4-67

 Post-Fire Rehabilitation Management Strategies

I	Proposed Management
2	See Table 4-68 for projects that have been identified presently within the
3	NEPA planning process. See Figures 4-36 through 4-40 for a graphic depiction
4	of the proposed treatments and strategies in the PPA.

Table 4-68Project Planning Area Treatment Summary Table

Treatment Description Priority		Threats Addressed			NEPA		Treatments										
						S						Tiı Fra	me Ime	Certai Effectiv	nty of veness ¹		tme
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse (I)	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ¹	Likely	Unlikely	Maintenance Time Frame (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Clover Flat Fuels I	32	X			Х						Х	X		х		5	3-5
Past Invasive Annual Grass Control	1,200	X				Х				Х			I	Х		5-20	0-5
Clover Flat Invasives I	31,530	Х				Х			Х			Х		X		5-20	3-5

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

5
6
7
8
9
0
I
2
3
4
5
6
7

4.2.9 Gravelly

Project Planning Area Description

General Site Description

The planning location of the Gravelly PPA falls within the Lakeview BLM District and is near the Nevada/ Oregon border. The Gravelly PPA is a total of 29,421 acres, and consists of the following ownerships: 26,737 acres of BLM and 5,561 acres of private. The majority of precipitation falls as snow, with higher elevations receiving greater depths of snow. Total annual precipitation ranges from 11-21 inches. Elevation ranges from 4,462 to 6,600 feet, with predominately north facing aspects.

18 The dominant soils are warm/cool and dry with low resilience. Effective19 precipitation limits site productivity. Decreases in site productivity, herbaceous
I	perennial species, and ecological conditions further decrease resilience.
2	Resistance due to the soil type is moderate to low. The PPA has a high climate
3	suitability to cheatgrass and other invasive annual grasses. Resistance generally
4	decreases as soil temperature increases, but establishment and growth are
5	highly dependent on precipitation (see Table 4-69).

Table 4-69Gravelly Sage-Grouse Habitat Matrix Categories

	Matrix Category	No Data	IA	ΙB	IC	2 A	2B	2 C	3 A	3B	3C
	Acres	3,816	0	786	856	0	8,292	9,103	0	5,102	4,342
	Percent of PPA	12	0	2	3	0	26	28	0	16	13
6 7			Sage-	Grouse							
8			Avail	able GR	SG tel	emetry	v data sh	lows an	exchange	of birds with	the South

Available GRSG telemetry data shows an exchange of birds with the South Warner Planning Project Area and frequently move into the Vya PPA in Nevada and California. GRSG seasonal habitat use within the PPA includes breeding, brood-rearing, and winter refuge. The population trend is stable; however, conifer encroachment if left unchecked will continue to impact the surrounding area (see **Table 4-70**).

Table 4-70 Lek Status

ODFW Site ID	Lek Name	Conservation Status
LA1209-01	Gravelly 87	Occupied
LA1106-02	Gravelly 89	Occupied
LA1106-01	Terry Spring	Occupied Pending
LA1152-01	Gravelly 78	Unoccupied Pending
LA1154-01	East May Lake	Unoccupied Pending
LA1156-01	Gravelly 91	Unoccupied Pending
LA1187-01	Gravelly 79	Unoccupied Pending
LA1188-01	Gravelly 88	Unoccupied Pending
LA1213-01	Gravelly 80	Unoccupied Pending

14 15

16 17

18

19

20

21

9

10

11

12

13

Vegetation

Elevation ranges from 5,000-6,000 feet and drops from the state line going north. The main concern is the conifer encroachment in areas. Some cheatgrass occurs in the understory of sagebrush, but tends to only be in disturbance areas such as along roads. Some perennial pepperweed occurs in the southwest corner of the PPA.

- Dominant Native Vegetation
- 22The ESI also compares the current plant composition to a defined Potential23Natural Plant Community for the identified soil type and precipitation zone.24About 19 percent of the PPA is in the mid-seral condition and 32 percent is in25the late seral condition. Most of the late seral acreage is in the low26sagebrush/Sandberg's bluegrass type. The 18 percent in the early seral stage are

 communities are in the northern part of Coleman Lake Pasture and close to the private irrigated meadows in Warner Valley. These areas were heavily grazed historically resulting in the loss of perennial grasses. These communities are now stable, but would require brush control and reseeding to restore the perennial grass understory and improve the ecological condition rating (see 	I	shrub communities with either no understory or cheatgrass understory. These
3private irrigated meadows in Warner Valley. These areas were heavily grazed4historically resulting in the loss of perennial grasses. These communities area5now stable, but would require brush control and reseeding to restore the6perennial grass understory and improve the ecological condition rating (see	2	communities are in the northern part of Coleman Lake Pasture and close to the
 historically resulting in the loss of perennial grasses. These communities are now stable, but would require brush control and reseeding to restore the perennial grass understory and improve the ecological condition rating (see 	3	private irrigated meadows in Warner Valley. These areas were heavily grazed
5now stable, but would require brush control and reseeding to restore the6perennial grass understory and improve the ecological condition rating (see	4	historically resulting in the loss of perennial grasses. These communities are
6 perennial grass understory and improve the ecological condition rating (see	5	now stable, but would require brush control and reseeding to restore the
	6	perennial grass understory and improve the ecological condition rating (see
7 Table 4-71).	7	Table 4-71).

Table 4-71	
Gravelly PPA Vegetation	Types

Vegetation Type	Acres	Percent of Planning Area
Grasses		
AGSP* Bluebunch wheatgrass	69	Т
DISP Inland saltgrass	484	
Grass Total	553	I
Shrubs		
CHVI-Green rabbitbrush	274	I
Shrubs/Grasses		
ATCO-BRTE Shadscale saltbush/cheatgrass	563	2
ATCO-SIHY Shadscale saltbush /bottlebrush squirreltail	1296	3
GRSP-SIHY Spiney hopsage//bottlebrush squirreltail	576	2
SAVE-DISP Greasewood/ Inland saltgrass	292	I
Shrub/Grass Total	2,727	7
Low sagebrush/Grass		
ARAR-POSE Low sagebrush/Sandberg bluegrass	12,407	34
Big Sagebrush		
ATTR2 Big Sagebrush	3,123	8
Big Sagebrush/Grass		
ARTR2-AGSP Big Sagebrush/blue bunch wheatgrass	727	2
ARTR2-RRTF Big Sagebrush/cheatgrass	2 762	7
ARTR2-POSE Big Sagebrush/ Sandherg bluegrass	2,748	7
Big Sagebrush/Grass Total	6.237	17
00	-,	
Wyoming Big Sagebrush/Grass		
ARTRW-BRTE Wyoming big sagebrush/cheatgrass	367	I
Mountain Big Sage/Grass		
ARTRV-POA++Mountain big sagebrush/bluegrass	863	2
Tree		
JUOC- ARTR2-AGSP Western Juniper/big sagebrush/bluebunch wheatgrass	247	I
Total Vegetation	26,798	72
Playa	2,103	6
Inclusions**	4,805	13
Incomplete	3,309	9
Planning Area Total	37,015	

Invasive	Plants

L

2

3

4

5

6

7

8

9

The following noxious weed species are known to exist across the PPA: halogeton (Halogeton glomeratus (m. Bieb.) C.A. Mey), Russian knapweed (Acroptilon repens (L.) DC.), bull thistle (Cirsium vulgare (Savi) Ten.), hoary Cress (Cardaria draba (L.) Desv.), perennial pepperweed (Lipidium latifolium L.), Mediterranean sage (Salvia aethiopis L.), Canada thistle (Cirsium arvense (L.)Scop.), spiny cocklebur (Xanthium spinosum L.), Scotch thistle (Onopordum acanthium L.) and Dyer's woad (Isatis tinctoria L.). The majority of these noxious weeds are present along roads, right-of-ways, riparian areas, and exclosures.

- 10There are several spring exclosures within the allotments that have large11Canadian thistle infestations. These areas are currently being managed through12biological (Ceutorhynchus litura and Urophora cardui), chemical, mechanical and13cultural control methods.
- 14One of the largest infestations of invasive species is located on the south east15portion of the PPA and is perennial pepperweed. The majority of the infestation16is located on private land and through the Lake County Cooperative Weed17Management Area, this infestation is being contained.
- 18 Mountain and Sage Shrublands, Semi-desert Shrub and Grasslands Mountain shrublands, semi-desert shrub and grasslands, and sage shrublands
- 19Mountain shrublands, semi-desert shrub and grasslands, and sage shrublands are20classified under Fire Regime IV; however, shorter intervals than 35 years can21probably occur (see **Table 4-72**).
- 22 Climate conditions and the time needed for an adequate fuel complex to 23 develop are likely factors that control fire frequency in these ecosystems. 24 Therefore, in the driest and least productive systems, such as the semi-desert 25 shrub and grasslands, fuel load is the more limiting factor. In these systems, 26 vegetation develops very slowly under conditions of scant rainfall and poor soils. 27 Bare ground is prevalent even in the more productive sites. There is a lack of 28 information about fire regimes for semi-desert shrub and grasslands. Fire may 29 not be a primary disturbance in these ecosystems.
- 30Mountain shrubland ecosystems occur at higher elevations and moister climates,31making them more productive and giving them a greater potential to burn more32often than semi-desert systems.

Table 4-72
Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres)12,033High and Very High Burn Probability in PPA (percent)37.9
33	
34	Past Fires and Fuels Projects
35	One historic fire consisting of 170 acres took place over 20 years ago in th
36	PPA.

I	Management Strategies
2	Treatments
3	Nonnative invasive species are currently being managed under an integrated
4	weed management plan that promotes early detection, rapid response for
5	controlling small isolated infestations. Annual grass reductions are also
6	promoted within this integrated weed management plan. Currently the
7	Perennial pepperweed located in the southeast corner of the PPA is being
8	managed through the Lake County Cooperative Weed Management Areas to
9	prevent the spread across the PPA.
10	Other Relevant Management Activities or Issues
11	The Gravelly PPA has a high population of GRSG and good connectivity to
12	adjacent areas. Threats to this PPA are juniper encroachment and cheatgrass.
13	Fuels Management
14	The main management activities would be focused on Juniper treatments.
15	Conifer reduction areas occur along the Stateline and going to the northern
16	parts of the PPA. All encroachment is in phase I and phase II. Piling with
17	machinery in the nearby South Warner Pac has been successful and does not
18	appear to be spreading cheatgrass, but more baseline data is needed to ensure
19	success in future treatments (see Table 4-73).

Table 4-73
Fuels Management Potential Treatments

	Priority	Priority I	Priority 2	Priority 3	Total			
	Miles	14.60	9.65	0	24.25			
20								
21		Fuel's Mar	nagement activities includ	e:				
22		•	Fuels treatments will	be coordinated acro	oss property jurisdictional			
23			boundaries and own	ership by partnerir	ng with the neighboring			
24			Cedarville Resource A	rea, Private landown	ers and the NRCS.			
25		•	A combination of fue	s reduction techniq	ues will be used such as			
26			mechanical juniper re	duction using hand	cutting and mechanical			
27			piling of trees, prescrib	ed fire to treat the o	cut juniper.			
28		Habitat Re	storation and Recovery					
29		Opportun	Opportunities for habitat restoration to protect, enhance, or maintain GRSG					
30		habitat an	habitat and connectivity generally exists in areas that have 1) warm/dry or					
31		cool/dry s	cool/dry soils, 2) elevation below 6,000 feet, and/or 3) are of higher fire risk due					
32		to remote	eness and lack of water.	Threats from weeds	and fire are less in other			
33		soil types	and >6,000 feet elevation	on. Restoration treat	ments would be dictated			
34		by these	factors. Risks to resto	ring areas with wa	rm/dry or cool/dry soils			
35		include re	duced productivity due	to lack of precipitat	ion for plant growth and			
36		drier con	ditions from southerly a	spect. This PPA is I	ocated on the border of			

- Nevada and private landowners, and a coordinated approach can be used inis restoration efforts.
- For areas that are not infested with invasive species, an aggressive early
 detection rapid response effort will be needed to keep nonnative invasive annual
 grass species from invading intact plant communities.
- 6 The most successful and efficient method for managing weeds is prevention of 7 invasion. To help with prevention a cooperative weed management area was 8 established, which promotes education and early detection of new sites before 9 they become too large and costly to manage. Systematic and strategic detection 10 surveys should be developed and conducted in a manner maximizing the 11 likelihood of finding new patches before they expand. Once small patches are 12 located, seed production should be stopped and the weeds should be 13 eradicated.
- 14The present nonnative invasive winter annual grass presence within the PPA is15moderate with the majority of the infestations being located in the lower16elevations of the northern portion of the PPA. These annual grasses pose a high17risk to current GRSG habitat. In order to contain and control these winter18annual grass species herbicide applications followed up with restoration efforts19are necessary (see Table 4-74).

Table 4-74Habitat Restoration Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Total
Acres	27,260	33,205	0	60,464
Percent of PPA	84.40	102.81	0	187.21

*Acreage percentages that are greater than 100 are due to different treatment types (ex; Conifer and Invasives) that share the same ground.

same ground.	
20	
21	Fire Operations
22	Priority I for the area is the 3C and 2C habitat interface which is intact
23	sagebrush and beyond the PPA to the east which would have the potential of
24	carrying fire into the larger intact habitat of the Beaty Butte PPA. 2nd Priority is
25	on the south edge at the border with the Surprise Field Office and is typically IB
26	and IC habitat areas at higher elevation. Also a 2nd Priority is a small,
27	developed agricultural area to the north side of the PPA (see Table 4-75).

Table 4-75
Fire Operations Management Strategies

Priority	Priority I	Priority 2	Priority 3	Total
Acres	39,730	2,795	0	42,525
Percent of PPA	123.0	8.7	0	131.7

March 2015

L

I Post-Fire Rehabilitation Management

2 If a fire occurred, the areas with Wyoming big sagebrush would likely convert to 3 annual invasives. Post-fire treatments would include herbicide application of the 4 pre-emergent chemical imazapic to any burnt Wyoming big sagebrush stands, or 5 areas with invasive annual grass species documented. Burned areas would be 6 seeded in a mosaic pattern to mimic natural stands. Adaptive management 7 methods will be implemented. Treatments of imazapic will be needed to 8 continue to reduce the invasive annual grass species. The imazapic application 9 should take place soon after the fire. Inactive and follow up treatments may be 10 applied for several years after the fire. Seeding perennial herbaceous species will 11 be required where cover, density and species composition of these species is 12 inadequate for recovery. Seeding and/or transplanting sagebrush following fire is 13 necessary to combat cheatgrass and annual conversions in GRSG habitat. Once 14 native grasses and shrubs have been successfully restored, native forb species 15 can be incorporated to improve GRSG habitat and plant diversity. Thinning and 16 drilling will occur where applicable in the following years after the fire. All fire 17 restoration efforts will be coordinated with adjacent landowners and agencies. 18 Different states have different guidelines regarding herbicide applications. This 19 PPA is on the Nevada boarder therefore herbicide applications may differ across 20 Nevada and Oregon. Sharing information and techniques will be helpful for all 21 parties involved (see Table 4-76).

 Table 4-76

 Post-Fire Rehabilitation Management Strategies

	Priority		Priority I	Priority 2	Priority 3	Total
	Acres		16,123	I 3,408	2,766	32,297
	Percent of PPA		49.9	41.5	8.6	100
22						
23			Proposed Management	nt		
24			See Table 4-77 for p	projects that have be	en identified presently	y within the
25			NEPA planning process	. See Figures 4-41 th	rough 4-45 for a grap	hic depiction
26			of the proposed treatm	ents and strategies in t	the PPA.	·
27 28		4.2.10	North Warner			
29 30			Project Planning Area	Description		
31			General Site Description			
32			The planning location of	of the North Warner	PPA falls within the La	akeview BLM
33			District and is approx	kimately 50 miles No	ortheast of Lakeview.	The North
34			Warner PPA encompas	ses a total of 293,401	acres, and consists of	the following
35			ownerships: 222,520 ac	res of BLM; 63,207 ac	res of private; 7,022 a	cres of state;
36			and 654 acres of Natio	onal Forest System La	nds. The majority of	precipitation
37			falls as snow, with hig	her elevations receivi	ng greater depths of	snow. Total
38			annual precipitation ra	nges from 11-21 incl	nes. Elevation ranges	from 4,249-
39			8,389.	-	Ũ	

Treatment Description	Priority	Threats Addressed	NEPA		Treatments	
• •		() s		Time Frame	Certainty of Effectiveness ¹	ame me
Name/Type Acres/Miles	l st 2nd 3rd	Conifer (C) Invasive annual grasse Riparian (R) Wildfire (W)	Initiated (I) Completed (C) Needed (N)	Pending Funding (P) ¹ Implementing (I) ¹	Likely Unlikely	Maintenance Time Fr. (Years) ² Completion Time Fra (0-2, 3-5, 5+ years) ³
Invasive 32,297 Annual Grass Species	×	X	×	хх	X	5-20 0-5
Current/ 25 Past Invasive Plant Management	X	х	Х	х	X	5-20 0-5
Management ¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes: 1 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely 2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely 3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low 4 = Based upon professional opinion, treatment is likely to be effective ² Describe frequency of maintenance necessary to continue effectiveness (years) ³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors The majority of the North Warner PPA is classified as having cool and dry soils where resilience is low. Effective precipitation limits site productivity. Decreases in site productivity, herbaceous perennial species, and ecological conditions further decrease resilience. Resistance due to the soil type is moderate to low. The PPA has high climate suitability to cheatgrass and other invasive annual grasses. Resistance generally decreases as soil temperature increases, but establishment and growth are highly dependent on precipitation (see Table 4-78).						

Table 4-77Project Planning Area Treatment Summary Table

 Table 4-78

 North Warner Sage-Grouse Habitat Matrix Categories

Category	No Data	IA	IB	IC	2 A	2B	2C	3 A	3B	30
Acres	5,598	1,552	32,068	4,917	106	36,139	185,757	0	1,377	25,887
Percent of	2	I	11	2	0	12	63	0	0	Ģ
PPA										
		Sage-gro telemetr	use popula y data sho	ation tre ws an e	end is xchang	stable wi ge of birc	ithin the N Is to the S	lorth Wa outh Wa	arner PPA, Irner Planni	availabl

1 2 population stronghold. Maintaining and protecting the existing intact habitat will likely continue to sustain the stable abundance of GRSG (see **Table 4-79**).

Table 4-79Greater Sage-Grouse Leks found within the bounds of the North Warner ProjectPlanning Area

ODFW Site ID	Lek Name	Conservation Status
LA1126-01	Honey Creek North	Occupied Pending
LA1141-01	Paddy's Lake Northeast	Occupied Pending
LA1142-01	Horn Spring	Unoccupied Pending
LA1143-01	Lynch Cow Camp	Occupied
LA1165-01	Fish Lake Southeast	Occupied Pending
LA1173-01	Taylor Ranch South #I	Occupied Pending
LA1173-02	Taylor Ranch South #2	Occupied Pending
LA1176-01	South Honey Creek #I	Occupied
LA1176-02	South Honey Creek #2	Occupied
LA1176-03	South Honey Creek #3	Occupied
LA1177-01	Rabbit Creek North #I	Occupied
LA1177-02	Rabbit Creek North #3	Occupied
LA1183-01	Mule Lake East #I	Occupied Pending
LA1186-01	Sid Luce Reservoir East #1	Occupied Pending
LA1195-01	Drakes Flat Powerline	Occupied
LA1234-01	Lane	Occupied Pending
LA1234-02	Lane #2	Unoccupied
LA1153-01	North Abert Rim #I	Occupied Pending
LA1153-02	North Abert Rim #3	Occupied Pending
LA1153-04	North Abert Rim #4	Occupied Pending
LA1179-01	Fish Creek Warner	Occupied Pending
LA1192-01	Radio Tower South #1	Occupied Pending
LA1192-02	Radio Tower South #2	Occupied Pending
LA1196-01	Fish Lake Northeast	Occupied Pending
LA1208-01	Crump Reservoir	Occupied Pending
LA1208-03	Crump Reservoir South	Occupied Pending
LA1208-04	Crump Reservoir Southeast	Occupied Pending
LA1210-01	Binkey Lake West	Occupied Pending
LA1226-01	Binkey Lake North	Occupied Pending
LA1236-01	Clover Creek	Occupied Pending
LA1129-01	South Miners Draw	Unoccupied Pending
LA1134-01	Lynch Cow Camp Spring #4	Unoccupied Pending
LA1136-01	South Commodore Ridge	Unoccupied Pending
LA1145-01	Lfl	Unoccupied Pending
LA1151-01	Fitzgerald Ranch South	Unoccupied Pending
LA1166-01	Featherbed Lake East	Unoccupied Pending
LA1167-01	Twin Lakes East #I	Unoccupied Pending
LA1167-02	Twin Lakes East #2	Unoccupied Pending
LA1167-03	Twin Lakes East #3	Unoccupied Pending
LA1172-01	Cement Springs	Unoccupied Pending
LA1178-01	Windy Hollow Draw East	Unoccupied Pending
LA1182-01	Twin Lakes Northeast	Unoccupied Pending
LA1185-01	Southwest Bull Lake	Unoccupied Pending
LA1189-01	Dent Draw	Unoccupied Pending
LA1190-01	South Anthony Spring	Unoccupied Pending

Table 4-79
Greater Sage-Grouse Leks found within the bounds of the North Warner Project
Planning Area

	ODFW Site ID	Lek Name	Conservation Status
	LA1194-01	East Luce Reservoir	Unoccupied Pending
	LA1203-01	East Lynch Cow Camp Spring	Unoccupied Pending
	LA1216-01	South Lynch Cow Camp Spring	Unoccupied Pending
	LA1230-01	Mcdowell Creek	Unoccupied Pending
	LA1208-02	Crump Reservoir West	Occupied Pending
I			
2		Vegetation	
3		Vegetation is predominately low sage and	Wyoming big sagebrush in the higher
4		elevation areas. There are scattered infe	stations of cheatgrass across the PPA
5		Within the historic hurned area small co	ontrollable infestations of medusahead
4		have begun to invade and are high prior	ity to contain and control within the
7			
/		project area. Trace amounts of North Afr	ican wire grass, a new invasive species
8		to the Lakeview Resource Area, have also	begun to invade the project area and
9		will be controlled through an early detecti	on rapid response program.
10		Dominant Native Vegetation	
11		There is high connectivity in the far nor	thern areas of the PPA Vegetation is
12		predominately low sagebrush and Wy	oming hig sagebrush in the higher
12		elevation areas Accest will be important	to consider in areas along the forest
13		elevation areas. Aspect will be important	to consider in areas along the lorest
14		tringe.	
15		Invasive Plants	
16		The North Warner PPA is considered on	e of the highest priorities for control,
17		and containment of winter annual gra	ass species. Some medusahead and
18		cheatgrass are present within the area.	Extensive surveys for invasive annual
19		grass species began three years ago and a	proximately one third of the PPA has
20		been mapped for annual grasses. The kno	wh invasive winter annual grasses are
21		medusahead rve North Africa grass and	cheatgrass All of the annual grasses are
21		that have been documented are consid	ered small enough that they can be
22		contained and controlled. The majority	of infostations are residing in past
23		contained and controlled. The majority	of intestations are residing in past
24		wildfires and along transportation corrido	rs.
25		Besides invasive winter annual grasses, o	other nonnative invasive species have
26		been documented within the North War	ner PPAs. There is a large amount of
27		Mediterranean sage and whitetop specie	s that are invading the PPA. Both of
28		these species have potential to degrade	GRSG habitat if control measures are
29		not taken to reduce the populations Se	everal thistle species such as Canada
30		thistle bull thistle and Scotch thistle are	e scattered across the PPA many in
21		riparian areas and near water developmen	to
51		riparian areas and near water developmen	lts.
32		Fire	
33		The current fire regime falls in the catego	ory IV however, shorter intervals than
34		35 years can probably occur. The nort	hern portions of the PPA have had

multiple wildfires covering over 15,000 acres. These areas have been converted to crested wheat seedings and are being invaded by invasive annual grasses. The majority of the North Warner PPA is classified as warm/cool and dry soils, with the high elevation areas consisting of cool/cold and moist soils (see **Table 4-80**).

Table 4-80 Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres) 21,833
	High and Very High Burn Probability in PPA (percent)7.5
6	
7	Mountain and sage shrublands, semi-desert shrub and grasslands
8	are classified under Fire Regime IV; however, shorter intervals than 35 years can
9	probably occur. Climate conditions and the time needed for an adequate fuel
10	complex to develop are likely factors that control fire frequency in these
11	ecosystems. Therefore, in the driest and least productive systems, such as the
12	semi-desert shrub and grasslands, fuel load is the more limiting factor. In these
13	systems, vegetation develops very slowly under conditions of scant rainfall and
14	poor soils. Bare ground is prevalent even in the more productive sites. There is
15	a lack of information about fire regimes for semi-desert shrub and grasslands.
16	Fire may not be a primary disturbance in these ecosystems.
17	Mountain shrubland ecosystems occur at higher elevations and moister climates,
18	making them more productive and giving them a greater potential to burn more
19	often than semi-desert systems
20	Past Fire and Fuels
21	The Snyder Creek Restoration Project took place in this PAC starting in 2007
22	and was completed in 2011. The project area is characterized by checkerboard
23	ownership of BLM and private lands made up of sage, bitterbrush, mahogany,
24	bunchgrasses and aspen. All of these areas are experiencing juniper
25	encroachment at the phase I or phase II level.
26	The project was designed as a landscape restoration project that included 3,425
27	acres of BLM administered lands and 984 acres of private land. Working with
28	private landowners, the Watershed Council and NRCS Lakeview BLM was able
29	to cut and burn across ownership boundaries to effectively treat the entire
30	watershed. The treatment included hand and mechanical treatments with
31	burning occurring one to two years after the cutting. The objectives for the
32	burning were to reduce the cut juniper by 40-80 percent and to remove all of
33	the limbs to below four feet eliminating potential raptor perches. Juniper was
34	jackpot burned when snow was present or the ground was frozen. This helped
35	protect the native vegetation. During the 2010 GRSG brood rearing season
36	GRSG broods were observed using the treatment area.

I

2

3

4

l 2	Management Strategies
3	Treatments
4	Invasive species surveys are occurring across the entire North Warner PPA.
5	High priority areas have large nonnative invasive annual grass populations. The
6	goal of this survey project is to develop a containment/management plan for the
7	existing invasive species. Treatments will consist of herbicide applications
8	followed by restoration if needed. Canada thistle has become an issue in many
9	of the riparian areas and springs within the PPA. Biological control agents have
10	been releases and are being monitored annually for success.
11	Other Relevant Management Activities or Issues
12	Within the North Warner PPA, the overall management goal is to maintain and
13	protect existing intact habitat. The highest threats within the PPA are juniper
14	encroachment and nonnative invasive annual grasses.
15	Fuels Management
16	The main management activities will focus on juniper treatments. Juniper
17	treatments will occur in the southern two thirds of the PPA. Encroachment is in
18	phase I and phase II stages and starting to spread into lower elevation rangeland.
19	Mechanical and hand treatments will be applied. At this time no fuel breaks have
20	been identified, however, green striping and fuel breaks are appropriate options
21	for this PPA (see Table 4-81).

Table 4-81
Fuels Management Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Tota
Miles	0	167.22	0	167.22
	Fuel's Management act	tivities include:		
	 Green str several m appropriat should be green-strij safe zones green strij 	iping along power lin ain roads in the no te to the ecoregion sufficient considerin pping along existing r from which to fight f pping is Sandburg's blu	ne road, the Snyder Creek rthern part of the PPA when available (20-30 ng the existing road). Fire roadways to provide fuel fire. One of the suggested uegrass (<i>poa secunda</i>).	k road and using seed feet width ebreaks or breaks and species for
	• Fuel treat boundarie private lan	ments will be coord s and ownership by p idowners and the NR	inated across property ju artnering with the US Fore CS.	risdictional est Service,
	Habitat Restoration and	Recovery		
	Opportunities for hal	pitat restoration to p	protect, enhance, or main	tain GRSG
	habitat and connectiv	ity conorally oviete	in areas that have 1) we	nm/dm/ or

36habitat and connectivity generally exists in areas that have 1) warm/dry or37cool/dry soils, 2) elevation below 6,000 feet, and/or 3) are of higher fire risk due

I 2 3 4 5 6 7 8	to remoteness and lack of water. Threats from weeds and fire are less in other soil types and at elevations greater than 6,000 feet. Restoration treatments will be dictated by these factors. Risks to restoring areas with warm/dry or cool/dry soils include reduced productivity due to a lack of precipitation for plant growth and drier conditions from southerly aspect. This PPA is not located on the border of any other district for coordination of projects; however, there are several private landowners and the US Forest Service that could participate in cooperative restoration efforts.
9	Phase I and phase II juniper treatments are planned throughout the area.
10	• Phase I and phase II Juniper treatments (removal)
 2	 Pre-burn evaluation to determine that the risk of cheatgrass or other invasive weed is minimal.
3 4	 The reduction of juniper expansion will also aid in improving the GRSG habitat.
15	Invasive Species
16	The area currently has a very manageable amount of nonnative winter annual
17	grass infestation. The majority of the infestations are small and wide spread. The
18	Most successful and efficient method for managing invasive species is prevention
19	of invasion. To prevent invasion of invasive species all roads will be surveyed
20	and any invasive species found will be managed to prevent future spread. All
21	BLM staff will follow the most updated weed prevention schedule to prevent
22	spreading weeds during restoration activities.
23	The areas that have been surveyed and have existing invasive infestations should
24	be aggressively managed and contained through the BLMs Integrated Weed
25	Management Program. The majority of the invasive annual grasses are infesting
26	the warm/cool and dry soils. Control efforts will consist of herbicide
27	applications, biological control efforts, and manual control of small infestations
28	followed by re-seeding efforts.
29	All invasive annual grass control efforts will be coordinated with the other
30	landowners within the PPA (Private, State and Federal). Currently, the Lake
31	County Cooperative Weed Management Area has been assisting all of the
32	landowners in planning weed control and restoration efforts within the PPA.
33	Key Threats to GRSG habitat are invasions of nonnative invasive annual grasses,
34	large-scale wildfires, and encroachment of conifers. Several opportunities for
35	habitat restoration and recovery within PPA could be implemented (see Table
36	4-82).

	Priority	Priority I	Priority 2	Priority 3	Total		
	Acres	0	488,835	0	488,835		
	Percent of PPA	0	166.61	0	166.61		
	*Acreage percentages th same ground.	at are greater than 100 are	e due to different treatmen	t types (ex; Conifer and Invasiv	es) that share the		
Ι	-						
2		Fire Operations					
3	Priority I areas for fire operations are on the eastern edge of the PPA at the						
4	interface between 2C (west) and 3C (east) GRSG habitat designations. These						
5	are areas of Wyoming Big Sage at lower elevations that would carry fire into the						
6	adjacent low and mixed sage areas. The rest of the PPA, which is the second						
7		priority is at hig	her elevation and fur	ther to the west is bour	nded by a west		
8		facing escarpmen	t. The habitat to the	west, at higher elevation	s, is at less risk		
9		and at mid-elevat	ion to the east is low	and mixed sage which ty	pically does not		
10		carry fire (see Ta	uble 4-83).				

Table 4-82Habitat Restoration Potential Treatments

Table 4-83	
Fire Operations Management Se	trategies

	Priority	Priority I	Priority 2	Priority 3	Total				
	Acres	44,057	249,344	0	293,401				
	Percent of PPA	15.0	85.0	0	100				
П									
12		Post-Fire Rehabilitation	Management						
13		The areas that are in	higher elevation (over	5,500) and cool/cold a	nd moist soils				
14		are going to be the	most resistant to a	nnual grasses and have	e the highest				
15		likelihood of recoveri	ng naturally as long as	annual grasses have no	ot invaded the				
16		area prior to the fire.	area prior to the fire. These areas will be allowed passive restoration, and will						
17		be monitored to see i	be monitored to see if additional restoration is needed.						
18		For areas with warm/	cool and dry soils, an	active restoration and	proach will be				
19		need. These areas wi	be prone to annual	grass invasions after fi	res. therefore				
20		imazapic applications	will be applied as so	oon as possible after t	the fire is no				
21		longer active. These applications should be made before the annual grasses have							
22		a chance to germinate. To encourage competition against annual grasses native							
23		grasses or favorable species will be seeded the following year once annual							
24		grasses have been co	ntrolled and native g	rasses have been estal	olished. Forbs				
25		and shrub species the	at GRSG prefer will	be incorporated throu	ugh additional				
26		seeding or hand plan	ning plugs. Treatment	s will focus near the	center of the				
27		PPA around leks.							
28		If fires occur across	jurisdictional boundar	ries, restoration activit	ies should be				
29		coordinated with the	adjacent landowner o	or land managing agenc	y (see Table				
30		4-84).	•	0 0 00					

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	232,690	60,715	0	293,405
	Percent of PPA	79.3	20.7	0	100
1					
2		Proposed Managemer	nt		
3		See Table 4-85 for p	projects that have be	en identified present	y within the
4		NEPA planning process	. See Figures 4-46 th	nrough 4-50 for a grap	hic depiction
5		of the proposed treatm	ents and strategies in	the PPA.	·

Table 4-84 **Post-Fire Rehabilitation Management Strategies**

Table 4-85 **Project Planning Area Treatment Summary Table**

Treatm Descript	ent tion	P	riori	ty		Thr Addr	eats essed		I	NEPA	PA Treatments						
						(I) s						Ti Fra	me Ime	Certai Effectiv	inty of veness ¹	me	ne
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P)	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fra (Years) ²	Completion Time Fraı (0-2, 3-5, 5+ years) ³
Invasive Annual Grass Species	293,398	X				Х			X				Х	X		5-20	0-5
Current Other Invasive Species Management	100	X					Х	Х		Х			Х			5-20	0-5
Snyder Creek	1351	Х			Х					Х			Х	Х		5	3-5

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

3 Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

Project Planning Area Description

6 7

4.2.11 Orejana West

8 9 10

General Site Description

- 11 12 The Orejana West PPA is located in the north east section of the Lakeview
- 13 District, on the border of the Lakeview and Burns District Boundary. The PPA consist of a total of 123,869 acres broken out by the following ownerships: 14

4-82

- 122,187 acres of BLM, 761 acres of private, and 1,833 acres of State owned lands.
- 3 Elevation within the PPA ranges from 4,478 feet to 5,597 feet with
 4 predominantly southeast aspect. The area receives 10-12 inches of precipitation,
 5 with most of the precipitation occurring during the winter in the form of snow.
 6 Some precipitation occurs during summer and fall in the form of thunderstorms
 7 but this precipitation is ineffective for plant growth.
- 8 Almost the entire PPA is classified as warm/cool and dry soils with very small 9 areas consisting of cool and moist soils located in drainages. The dominant 10 vegetation is Wyoming big sagebrush (Artemisia triedentata Nutt. Ssp. 11 wyomingensis) which has a closing canopy leading to very little understory.
- 12Currently there is a very low amount of invasive species; however, due to the13elevation and soil types annual grasses could easily invade this PPA. Only one14large fire has taken place within the PPA, however it was 4,858 acres. Conifer15expansion is very low in the Orejana West PPA.
- 16Past projects consist of fuel breaks along the roads. The purpose of the fuel17breaks in this project area was to create more defensible fire breaks within large18tracts of Wyoming big sagebrush habitat. This will increase the ability to contain19future wildfire and reduce overall fire size. The current fire regime falls into20category IV; however, shorter intervals than 35 years can probably occur. The21Orejana West PPA is considered a high priority for sage steppe due to all of the22large fires that have taken place east of the planning area (see Table 4-86).

			•		-			-	-		
	Matrix Category	No Data	IA	IB	IC	2 A	2B	2C	3 A	3B	3C
	Acres	2,363	0	0	1,387	0	2,666	103,840	0	2,624	11,902
	Percent of PPA	2	0	0	I	0	2	83	0	2	10
23											
24			Sage-G	rouse							
25			Accord	ding to	the PA	C there	is appro	ximately 27	0,774 a	cres of	PPH (100
26			percen	t) with	in the PP.	A. Intac	t sagebrus	h with canor	oy closu	re, withir	n the PPA,
27			may b	e com	oromising	unders	tory healt	h; significant	loss of	habitat	(~160,741
28			acres)	occurr	ed during	a recei	nt fire eas	t of the PPA	. GRSG	habitat	within the
29			PPA generally provides the seasonal life requisites for sustained population								
30			abunda	ince. C	Conifer er	ncroachr	nent and	invasive ann	uals do	not app	ear to be
31			limiting	g GRS	G popul	ations;	however,	decadent	stands	of Wyo	oming big
32			sagebr	ush are	affecting	the und	lerstory st	ructures nec	essary d	luring the	e breeding
33			season	for sci	reening pr	otection	n (see Tab	ole 4-87).	-	_	_
33			season	for sci	reening pr	otection	n (see lat	Die 4-87).			

Table 4-86Orejana West Sage-Grouse Habitat Matrix Categories

March 2015

Т

2

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessment Western Great Basin - Warm Springs Valley/Western Great Basin

	ODFW Site ID	Lek Name	Conservation Status
	HA0007-01	Loggerhead	Occupied
	HA0041-01	Basin	Occupied Pending
	HA0042-01	Monument Reservoir	Occupied Pending
	HA0007-02	East Loggerhead	Unoccupied Pending
	HA0031-01	North Twin Lakes	Unoccupied Pending
I			
2		Dominant Native Vegetation	
3		Orejana West PPA is prede	ominately Wyoming big sagebrush, few amounts of
4		cheatgrass (Bromus tectorum)	have returned after mowing treatments in the past.
5		Fire suppression activities	in the past have had an effect on the current
6		vegetation community in t	hat they have been allowed to succeed further
7			The My mave been anowed to succeed further
/		towards late successional sta	iges. The vyyoming big sagebrush communities have
8		a closed canopy that has led	to the reduction of many of the perennial grasses
9		and forbs that historically se	rved as the understory in this plant community.
10		Invasive Plants/ Soil Temperatu	ire and Moisture Regime
10		In areas where fuel break	were created chatteress has invaded however
11		In aleas where her breaks	were created, cheatgrass has invaded, nowever
12		across the entire planning ai	rea invasive species are considered low. Due to the
13		Warm/Cool and Dry soils	that dominate the planning area and the closing
14		canopy. It is likely that che	eatgrass and other nonnative invasive annual grass
15		species will degrade the habi	tat if they become established and expand.
16		Mountain and Sage Shrublands	s, Semi-desert Shrub and Grasslands
17		Mountain shrublands, semi-d	esert shrub and grasslands, and sage shrublands are
18		classified under Fire Regime	IV: however, shorter intervals than 35 years can
19			
20		Climate conditions and the	e time needed for an adequate fuel complex to
21		develop are likely factors	that control fire frequency in these ecosystems.
22		Therefore, in the driest and	l least productive systems, such as the semi-desert
23		shrub and grasslands, fuel l	oad is the more limiting factor. In these systems
24		vegetation develops very slo	why under conditions of scant rainfall and poor soils
21		Para ground is provalent ov	on in the more productive sites. There is a lack of
25		Bare ground is prevalent ev	
26		information about fire regin	hes for semi-desert shrub and grasslands. Fire may
27		not be a primary disturbance	e in these ecosystems.
28		Mountain shrubland ecosyste	ems occur at higher elevations and moister climates.
29		making them more production	ve and giving them a greater potential to hurn more
30		often than somi dosort syste	
50		onen man senn-desert syste	
31		The invasion of cheatgras	s into Wyoming big sagebrush/native grassland
32		associated vegetation has all	ered wildfire dynamics throughout the Great Basin
33		by providing fuel continuity a	ind increasing the fire fuels that carry fires

Table 4-87 Lek Status

2 3	There has only been one fire consisting of 4,858 acres that has taken place within the Orejana West PPA (see Table 4-88).
	Table 4-88 Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres) 124,080
	High and Very High Burn Probability in PPA (percent) 99.9
4	
5	Past Treatments
6	Fuels break mowing has occurred in the recent past along all of the major roads
7	in the PPA.
8 9	Management Strategies
10	Other Relevant Management Activities or Issues
11	The West Orejana PPA is in close proximity to lost habitat from past fire activity.
12	It is in the highest priority for fire protection due to remoteness and lack of
13	water. There is an interest to conduct test mowing to modify and improve
14	decadent sagebrush to encourage understory growth, and to create firebreaks.
15	Fuels Management
16	Fuels break mowing has occurred in the recent past along all of the major roads
17	in the PPA. Conifer encroachment is not a major concern in this area. The main
18	management activities would be focused on the maintenance of the mowed fuel
19	breaks (see Table 4-89).

Priority	Priority I	Priority 2	Priority 3	Total		
Miles	0	258.76	0	258.76		
20						
21	Fuels Management a	activities may include:				
22 23 24	 Green approprise be sufficient 	striping along the mo riate to the ecoregion v cient considering the ex	wed fire break roads vhen available (20-30ft v isting road). To provide	using seed width should a fuel break		
25 26	and safe for gree	e zone from which to fig en stripping is Sandburg's	ht fire. One of the sugge bluegrass (poa secunda)	ested species		
27 28 29	-	Establish strips no large road will provide foragi of fuel break.	er than 50 feet on eithe ng for grouse and provid	r side of the de >100 feet		
30 31 32	-	Use native species like no native species availa used in fuel breaks when	Sandburg's bluegrass un ble in which crested w re annual grasses are pre	lless there is heat may be evalent.		

Table 4-89Fuels Management Potential Treatments

I 2 3 4	 Monitoring for annual grasses will take place within the fuels break areas and selective herbicide application will be made to reduce any annual grass establishments that invade the firebreaks.
5 6 7	 Mowing equipment should all be cleaned prior to entering the PPA to prevent spreading weed seeds from previous projects.
8 9 10 11	• A combination of fuels reduction techniques will be used such as grazing the mowed fuel breaks to reduce fine fuel build up and green stripping in mowed fuel lines to improve the effectiveness of the fuel breaks.
2 3 4	• Fuels treatments will be coordinated across property jurisdictional boundaries and ownership by partnering with the Neighboring Burns BLM District, Private landowners and the NRCS.
15	Habitat Restoration and Recovery
16	Opportunities for habitat restoration to protect, enhance, or maintain GRSG
17	habitat and connectivity generally exists in areas that have 1) warm/dry or
18	cool/dry soils, 2) elevation below 6,000 feet, and/or 3) are of higher fire risk due
19	to remoteness and lack of water. Threats from weeds and fire are less in other
20	soil types and greater than 6,000 feet elevation. Restoration treatments would
21	be dictated by these factors. Risks to restoring areas with warm/dry or cool/dry
22	soils include reduced productivity because of lack of precipitation for plant
23	growth and drier conditions from southerly aspect. This PPA is located on the
24	border of the Burns District, along with private landowners, and a coordinated
25	approach can be used is restoration efforts (see Table 4-90).

Table 4-90Habitat Restoration Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Total
Acres	249,601	0	0	249,601
Percent of PPA	200.03	0	0	200.03

*Acreage percentages that are greater than 100 are due to different treatment types (ex; Conifer and Invasives) that share the same ground.

Due to the thick canopy cover of the Wyoming big sagebrush, small chemical treatments or mowing projects would be researched. These types of treatments would reduce canopy cover and allow native grasses and forbs to reestablish either naturally or through re-seeding/planting efforts. The risk to mowing strips or island to break up the canopy would be additional disturbance in the project area with in the warm/cool and dry soils, which would lead to additional annual grass expansion. To prevent annual grasses from invading the mowed areas, herbicide application may need to follow mowing.

26 27

28

29

30

31

32

33

Invasive Plant Management

Since the project area has a low invasive annual grass and noxious weed populations this PPA, these species would be managed through an early detection and rapid response when found. For small isolated infestations of annual grass infestations the most appropriate treatment method would be selective herbicide treatments. For large infestations an integrated weed management strategies will be used to reduce and contain infestations.

8 Fire Operations

Т

2

3

4

5

6

7

9

10

11

12

13

14

15

The entire PPA is priority I for suppression and protection due to intact (unburned) sagebrush and, at present, controllable cheatgrass in the understory. The Juniper fire encroached with a finger into the area and is the present source of invasives. The PPA is uniform in geography and vegetation and cannot be further prioritized base on resource values. The area is remote and the development of a water source would be beneficial to suppression activities (see **Table 4-91**).

Table 4-91Fire Operations Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	124,781	0	0	124,781
	Percent of PPA	100	0	0	100
16					
17		Post-Fire Rehabi	litation Management		
18		Wildfires in lov	w elevation sagebrush	habitats may burn nearly	all vegetation
19		leading the are	a unsuitable for sagebr	ush dependent species fo	r a number of
20		years. This is p	particularly true in Wy	oming big sagebrush type	s. The historic
21		Wyoming big s	agebrush/native grassla	nd vegetation has not be	en successfully
22		rehabilitated de	espite large amounts o	f time and money spent	to restore the
23		burned areas. C	One of the biggest risks	to Wyoming big sagebrus	h communities
24		after drastic w	ildfires is annual grass	invasion. It is crucial to	prevent these
25		annual grasses	from established with	nin the first two years	after the fire.
26		Treatment opp	ortunities would includ	e spraying all areas impa	cted to reduce
27		invasive species	. To restore a Wyomi	ng big sagebrush commur	nity it will take
28		several years ar	nd methods for success	s to be achieved and succ	ess will greatly
29		depend on mo	oisture available the y	ears following the fire.	Following the
30		herbicide applic	ation the area will need	l to be monitored to see i	f native grasses
31		will be able to r	ecover naturally. Seedi	ng of native species may b	e needed and if
32		a large shrub co	omponent is destroyed	during the fire seedling s	hrubs may also
33		need to be plar	ted. For additional suc	cess in rehabilitation proje	cts native seed
34		will be collected	I near the project area	and grown out. Grass and	valuable GRSG
35		forbs would bo	th be collected. To assu	ire that the local seed wo	uld be available
36		and viable for 1	restoration projects; lo	cal seed storage would be	e needed. Rest
37		from grazing af	ter the fire will be ne	eded until the restored p	plants have the
38		ability to withst	and grazing activities (se	e Table 4-92).	
		,	(,	

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	24,78	0	0	124,781
	Percent of PPA	100	0	0	100
I					
2		Proposed Managemer	nt		
3		See Table 4-93 for p	projects that have be	en identified present	ly within the
4		NEPA planning process	. See Figures 4-51 th	nrough 4-55 for a grap	hic depiction
5		of the proposed treatm	ents and strategies in	the PPA.	

Table 4-92Post-Fire Rehabilitation Management Strategies

Table 4-93 Project Planning Area Treatment Summary Table

Treatm Descrip	ient tion	P	Priorit	y		Thr Addr	eats essed		I	NEPA	1			Trea	tments		
						s (I)						Ti Fra	me Ime	Certa Effecti	inty of veness ¹	ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Orejana West Fuels I		Х						Х		Х			Х	Х		5	3-5
Orejana West Invasive Annual Grass Management	124,800		X			Х			Х			X		X		5-20	3-5

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

6 7 8

9

10

11

12 13

14

15

16

4.2.12 South Warner

Project Planning Area Description

General Site Description

The planning location of the South Warner PPA falls within the Lakeview BLM District Resource area and is approximately 50 miles east of Lakeview. The South Warner Project Area has a total of 37,513 acres, and consists of the following ownerships: 28,400 acres of BLM, 8,554 acres of private, 221 acres of State, and 304 of National Forest System Lands. The PPA is located in the

1	comignid rain shadow ragion cast of the Caseda Mountains and is characterized
1	semial d'han-shadow region east of the Cascade Floundains and is characterized
2	by cool temperatures, light precipitation, and moderate winds. This area has
3	both maritime and continental climate patterns, with most of the weather
4	patterns moving inland on cyclonic low pressure fronts off the Pacific Coast.
5	Maritime air masses are blocked by the Cascade Mountain Range and the
6	Warner Mountains. This results in the east side of the Warner Mountains
7	receiving slightly less precipitation than the west side. The majority of
8	precipitation falls as snow, with higher elevations receiving greater depths of
9	snow. Some precipitation occurs during the summer and fall in the form of
10	thunderstorms but this precipitation is ineffective for plant growth. Total annual
11	precipitation ranges from 11-21 inches. Elevations within the Project Area range
12	from 4,485-6,368 feet with the average elevation around 5,700 feet. Eighty-three
13	percent the Project Area lies at elevations above 5,700 feet
14	Temperature also varies widely, both seasonally and by elevation. Summer highs

- 14Temperature also varies widely, both seasonally and by elevation. Summer highs15can exceed 100 degrees F in the lower elevations and winter lows below 016degrees F can occur at all elevations. Freezing temperatures can occur any time17of the year, especially at higher elevations. Higher elevation areas have a18progressively shorter growing season, especially above the 6,000 foot elevation.
- 19The majority of the PPA is dominated by 25 percent- >65 percent sagebrush20with warm/cool and dry soils. With dominant soils of this type natural sagebrush21recovery is not likely. Perennial herbaceous species are typically inadequate for22recovery and risk or an invasive annual grass is high.
- 23In the canyon lands and high elevation areas there are some pockets of24cool/cold and moist soils. These soils usually have natural sagebrush recovery.25Perennial herbaceous species are sufficient for recovery. The risk of invasive26annual grasses is typically low (see Table 4-94).

Matrix Category	No Data	IA	IB	IC	2 A	2B	2C	3 A	3B	3C
Acres	4,019	274	5,301	594	63	22,698	3,855	0	717	0
Percent of PPA	11	I	14	2	0	60	10	0	2	0
		Sage-Grous	e							
		The GRSC	opulati	on is st	able. A	Available G	RSG telem	netry data	shows that	at this
		area is us	ed for all	l the li	fe req	uisites inc	luding bree	eding, bro	od-rearing	g, and
		winter hal	oitat. Mov	rement	of GF	RSG occur	s between	the Sout	h Warner	· PPA,
		Gravelly P	PA, Nort	h Warı	ner PP	A, and the	e Vya PPA	in Nevada	and Calif	fornia.
		Therefore	seasonal	mover	nents b	etween th	ese plannir	ig areas ar	e importa	nt for
							•	0	•	

Table 4-94South Warner Sage-Grouse Habitat Matrix Categories

	ODFW Site ID	Lek Name	Conservation Status
	LA1125-01	Big Reservoir North #1	Occupied
	LA1137-01	Parsnip Creek	Occupied
	LA1125-02	Big Reservoir North #2	Unoccupied-Pending
	LA1147-01	Lucky Reservoir	Unoccupied-Pending
	LA1204-01	Joe Lake	Unoccupied-Pending
	LA1223-01	North Big Lake	Unoccupied-Pending
Ι			
2		Vegetation	
3		Vegetation within the project are	ea varies substantially from the high elevation
4		forests to low elevation marsh ar	nd grasslands. Native plants within the general
5		area of the PPA, except for the r	nedusahead infestations, are considered to be
6		in good vegetative condition. Typ	ical vegetation for the project area consists of
7		rolling hills and benches covered	with low and mountain big sagebrush. In the
8		warm-dry soils there is an invasiv	ve annual grass understory while in the cool-
9		moist soils there is native huncher	ass understory
10		In addition to displacing plant	communities such as sagebrush and being
11		implicated in the increasing distr	ibution of invasive plants such as cheatgrass
12		(Bromus tectorum), encroaching	woodlands also increase fuel loads, thereby
13		leading to changes in fire regimes	Conifer expansion in the PPA into sagebrush
14		types at mid to high elevations a	lso result in a reduction of the native grass.
15		forb, and shrub species associ	ated with these types Currently juniper
16		expansion is impacting GRSG ne	esting and brood rearing babitats within the
17		Project Area by reducing available	e nesting cover, reducing native grass and forb
18		cover providing raptor perches	for aerial predators and providing cover for
19		covotes and other terrestrial pr	redators. There are 43,000 acres of juniper
20		within the PPA Over 35,000 acro	es of juniper are encroaching into bitterbrush
21		and sagebrush-steppe habitats, low	v sagebrush habitats, and aspen stands. Of the
22		43 000 acres of juniper within the	Project Area there are 8 000 acres in phase I
23		conditions 30,000 acres in phas	e II conditions and 4 000 acres in phase III
24		conditions. Currently the South V	Varner luniper Removal Project is taking place
25		within the PPA The South Warn	er luniper Removal Project is currently taking
26		place on 115.000 acres of shrub-s	teppe habitat within and surrounding the PPA.
27		The NRCS has implemented con	fer reduction starting in 2012, the amount of
28		treated acres in and around the Pl	PA are unknown
_0			
29		The understory is in good condi	tion. Some cheatgrass is in the area, but not
30		widespread	.
		···	
31		Dominant Native Vegetation	
32		Three vegetation types dominate	the Project Area: upland forest, riparian, and
33		sagebrush/grassland steppe. Wetla	ands, special status plants, and noxious weeds
34		are also present and are described	l in more detail below.

Table 4-95 Lek Status

Sagebrush-Steppe

L

2

3

4

5

6

7

8

9

10

11

12

24

25

26

27

28

29

30

The dominant vegetation in the PPA is low sagebrush-bunchgrass and mountain big sagebrush-bunchgrass with juniper as an overstory. Some basin big sagebrush and Wyoming big sagebrush stands exist within the PPA, but these are limited to the lower elevations on the north and east sides and make up a small amount of the total area.

Other shrub communities that occupy smaller percentages of the Project Area, but may be very important include: silver sagebrush, mountain mahogany, antelope bitterbrush, and some small stands of mixed pine and fir. There are also small inclusions of important plant populations such as snowberry and aspen. All of these unique vegetation types are very important habitat for GRSG, mule deer, elk, and other species.

- 13 The most common grasses found in the understory include Sandberg's 14 bluegrass, bottlebrush squirreltail, Idaho fescue, bluebunch wheatgrass, and 15 Thurber's needlegrass. These grass species are often found growing together, 16 but one or two are usually the dominant species at a given site depending on 17 soils, topography and previous disturbance. In low sagebrush the dominant 18 grasses are Sandberg's bluegrass, bottlebrush squirreltail, and Idaho fescue. In 19 mountain big sagebrush, the dominant grasses are bluebunch wheatgrass, Idaho 20 fescue, bottlebrush squirreltail, and Sandberg's bluegrass. Within juniper/low 21 sagebrush/grass, the dominant grasses are Idaho fescue, and bottlebrush 22 squirreltail. Within juniper/mountain big sagebrush/grass, the dominant grasses 23 are Thurber's needlegrass, bottlebrush squirreltail and bluebunch wheatgrass.
 - Invasive Plants

Noxious weeds such as hoary cress (whitetop), Canada thistle, bull thistle, diffuse knapweed, spotted knapweed, field bindweed, Mediterranean sage, yellow toadflax, and perennial pepperweed have been identified in several areas within the Project Area. These infestation areas are small in size and located mainly in riparian corridors. Canada thistle has become pervasive in the riparian portion of the Project Area.

31 Currently there have not been extensive surveys completed for annual grass 32 species within the PPAs. Cheatgrass occurs in several isolated patches scattered 33 across the Project Area. Ecological sites most at risk of domination by 34 cheatgrass within the Project Area are located on east and south facing slopes. 35 There are two sites where cheatgrass is abundant within the Project Area. The 36 first is a long strip of land along the base of South Warner rim. This area is the 37 lowest in elevation within the Project Area and is east facing. The second site is 38 a small area located on the western edge of the Project Area. This site is also 39 east facing, but is not currently dominated by cheatgrass. During 2014 field 40 surveys Japanese brome and North Africa Grass were both found in dry creek 41 beds within the PPA. The documented sites were estimated to be less than 30 42 acres, however due the location, there is a high probability for spread. Due to

I	warn dry soil types with in the majority of the PPA there is a high risk of
2	invasive annual grasses to spread in this area.

3	Fire
4	The current fire regime falls in the category IV however, shorter intervals than
5	35 years can probably occur. One fire consisting of 568 acres has been
6	documented in the PPA. There is a variety of soil temperature moist regimes
7	including cool-moist soils, cool-dry soils, and small inclusion of warm-dry soils.
8	The warm-dry soils show low resistance and resilience to invasive annual
9	grasses; however within the PPA these areas are relegated to steep slopes and
10	canyons and are not likely used by GRSG. Intermittent smaller fires have
11	occurred in the recent past (see Table 4-96).

Table 4-96Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres)198High and Very High Burn Probability in PPA (percent)0.5
12	
13	Mountain and Sage Shrublands, Semi-desert Shrub and Grasslands
14	Mountain shrublands, semi-desert shrub and grasslands, and sage shrublands are
15	classified under Fire Regime IV; however, shorter intervals than 35 years can
16	probably occur.
17	Climate conditions and the time needed for an adequate fuel complex to
18	develop are likely factors that control fire frequency in these ecosystems.
19	Therefore, in the driest and least productive systems, such as the semi-desert
20	shrub and grasslands, fuel load is the more limiting factor. In these systems,
21	vegetation develops very slowly under conditions of scant rainfall and poor soils.
22	Bare ground is prevalent even in the more productive of these sites. There is a
23	lack of information about fire regimes for semi-desert shrub and grasslands. Fire
24	may not be a primary disturbance in these ecosystems.
25	Mountain shrubland ecosystems occur at higher elevations and moister climates,
26	making them more productive and giving them a greater potential to burn more
27	often than semi-desert systems
28	Fire regimes affect nutrient cycling in semi-arid forests. Nitrogen, which burns
29	(volatizes) at a relatively low temperature, is affected by fuel loading (Johnson et
30	al. 1998). Soil heating at 20 tons/acre of woody fuel loading exceeds nitrogen's
31	low volatilization temperature of (392° Fahrenheit (F)) 200 degrees Celsius (C).
32	At this temperature soil surface nitrogen is at risk of burning off the site (Brown
33	et al. 2003; Johnson et al. 1998). Twenty tons per acre of woody fuel occurs
34	with scattered pole and limbs, which is easily achieved with juniper expansion
35	onto sagebrush-grass rangelands. The risk of soil heating increases as juniper
36	expansion onto sagebrush- grassland and pine forest become denser.

Past Fire and Fuels

There has only been one fire consisting of 568 acres that has taken place within the South Warner PPA. Currently the South Warner Juniper Removal Project is taking place within the PPA. Removal of juniper is currently taking place on 115,000 acres of shrub-steppe habitat.

Management Strategies

Treatments

L

2

3

4

5

6

7 8

9

10

11

12

13

Juniper reduction has occurred in this area, and a five-10 year maintenance plan will need to be implemented to maintain the projects. Seeding burnt piles would occur. Native grasses mostly come back after the reduction has occurred. Mechanical and hand treatments have occurred. Lopping and piling and burning seem to be most successful.

14Currently the nonnative invasive species are being managed within the PPA15through the most updated Integrated Weed Management program. Currently16the noxious weed infestations within the PPA are low compared to many other17areas across the resource areas. However, due to the large amount of18cheatgrass across the Resource Area it has not been a priority to control. In the19future small isolated patched will be added to the annual weed treatment plan20and large infestations will be a priority to contain.

21 Other Relevant Management Activities or Issues

22The South Warner PPA has high value GRSG habitat and good connectivity.23There is a concern and interest to protect and maintain the investment of past24treatments.

25 Fuels Management

26The main management activities would be focused on possible green stripping27along the pipeline and the power line but both areas already make a fairly28defendable fuel break (see **Table 4-97**).

	Priority	Priority I	Priority 2	Priority 3	Total
	Miles	0	149.59	0	149.59
29					
30		Fuel's Mana	gement activities includ	e:	
31		•	Green striping along p	ower line and pipe li	ne using seed appropriate
32			to the ecoregion wl	nen available (20-30) feet width should be
33			sufficient considering	the existing road).	Fire breaks or green-
34			stripping along existin	g roadways to prov	ide a fuel break and safe
35			zone from which to	fight fire. One of t	he suggested species for
36			green stripping is Sand	burg's bluegrass (poo	i secunda).

Table 4-97Fuels Management Potential Treatments

l	 Establish strips no larger than 50 feet on either side of the
2	road will provide foraging for grouse and provide >100 feet
3	of fuel break.
4	 Use native species like Sandburg's bluegrass unless there is
5	no native species available in which crested wheat may be
6	used in fuel breaks where annual grasses are prevalent.
7	 Fuels treatments were coordinated across property jurisdictional
8	boundaries and ownership by partnering with the Private
9	landowners and the NRCS. Any maintenance treatments would
10	involve the same level of coordination.
	 A combination of fuels reduction techniques was used such as
2	mechanical juniper reduction using both hand cutting and
3	mechanical piling of trees, prescribed fire for fuel reduction of the
4	cut juniper and grazing that reduces fine fuel build up in the existing
5	fuel breaks. Maintenance treatments would most likely involve hand
6	cutting small juniper coming back in but we would not want to limit
7	our treatment options.
 18 19 20 21 22 23 24 25 26 27 28 29 	Habitat Restoration and Recovery Opportunities for habitat restoration to protect, enhance, or maintain GRSG habitat and connectivity generally exists in areas that have 1) warm/dry or cool/dry soils, 2) elevation below 6,000 feet, and/or 3) are of higher fire risk due to remoteness and lack of water. Threats from weeds and fire are less in other soil types and >6,000 feet elevation. Restoration treatments would be dictated by these factors. Risks to restoring areas with warm/dry or cool/dry soils include reduced productivity because of lack of precipitation for plant growth and drier conditions from southerly aspect. This PPA is not located on the border of any other district for coordination of projects; however, there are several private landowners and the US Forest Service that could participate in cooperative restoration efforts.
30 31	Key threats to GRSG habitat are invasion of exotic grasses, large-scale wildfires, and encroachment of conifers.
32	The most effective time to remove young juniper and restore sagebrush-steppe
33	communities (in terms of both cost and desired vegetative response) is during
34	phases I and II. Once a stand transitions to phase III, the understory is not
35	adequate to carry a fire, nor is there an adequate seed source in the soil of
36	desirable native understory plant species. Cheatgrass and other nonnative
37	invasive species often take over phase III sites when the juniper canopy is
38	removed without additional intensive work to the site such as seeding with
39	native species.
40 41	Improve nesting, brood rearing and winter habitats for GRSG through a reduction of post-settlement juniper. This includes, but not limited to

maintaining mature big sage with intact native understory grasses, maintain brood rearing habitats around springs, seeps, and meadows, and avoiding activities that would cause the long term spread of nonnative grasses or noxious weeds. Remove juniper to promote the maintenance and health of sagebrush, native grasses and forbs in GRSG habitats.

6 Areas treated by prescribed fire would be rested from livestock grazing for a 7 minimum of two growing seasons to allow the cool season bunchgrasses- which 8 are especially vulnerable to grazing after treatment- to capitalize on resource 9 availability created by the disturbance. However, reintroduction of livestock to a 10 disturbed area prior to the native or reseeded plant community becoming 11 established, regardless of the number of years of rest afforded the site, can 12 result in failed rehabilitation efforts and increased levels of nonnative invasive 13 annual grasses, therefore grazing should be deferred until resource objectives 14 are met as determined by a BLM interdisciplinary team.

15 The South Warner PPA has relatively low noxious weeds/ nonnative invasive 16 annual grass species when compared to several other areas across the Lakeview 17 Resource Area. The majority of the infestations could be eradicated through use 18 of effective herbicides followed up by following the most updated integrated 19 weed management plan. Small isolated patches of Africa wire grass (Ventenata 20 dubia) have recently detected along the main road entering the PPA. This 21 species has recently begun invading the Lakeview RA and is currently a high 22 priority for containment and control. Cheatgrass is likely scattered across the 23 PPA in moderately infested areas, however no formal survey has currently taken 24 place within this PPA. Early detection and rapid response for nonnative invasive 25 annual grasses and other noxious weeds would be the highest priority for this 26 PPA (see Table 4-98).

Priority	Priority I	Priority 2	Priority 3	Total
Acres	8,561	66,481	0	75,043
Percent of F	PPA 22.82	177.19	0	200.01
*Acreage per same ground. 7	centages that are greater than	100 are due to different tr	eatment types (ex; Conifer ar	nd Invasives) that share the
8	Fire Operatio	ns		
9	The entire	PPA is Priority I du	e to a large investmer	nt in long term habitat
0	restoration a	and recovery in junipe	er reduction and seeding	gs (see Table 4-99).

Table 4-98
Habitat Restoration Potential Treatments

Tal	ole 4-99
Fire Operations M	anagement Strategies

Priority	Priority I	Priority 2	Priority 3	Total
Acres	37,522	0	0	37,522
Percent of PPA	100	0	0	100

31

Т

2

3

4

March 2015

I Post-Fire Rehabilitation Management

2 Areas that are a high priority for post-fire rehabilitation will be areas lower than 3 6,000 feet in elevation containing warm/cool and dry soils. These areas would be 4 very likely invaded by nonnative winter annual grass species. To prevent invasion 5 the fire would be sprayed with imazapic to prevent annual grasses from 6 germinating as soon as possible one the fire is no longer active. 7 Seeding/transplanting success will depend on site characteristics, annual invasive 8 and post-treatment precipitation. Areas that are accessible should be drilled 9 seeded using native seed compatible with the local ecoregion. Less accessible 10 areas should be broadcast seeded. Hand planning of bitter brush and sagebrush П species will also occur.

- 12Areas that are not accessible, areas with cool/cold and moist soils, or areas over136,000 feet will be evaluated to see if natural restoration will be adequate. Since14the annual invasive are currently low within this PPA, a preventative treatment15herbicide application of imazapic would assist in preventing new invasions of16annual grasses after fires.
- All large areas burned should be allowed at least two growing seasons of rest
 from grazing (see Table 4-100).

	Priority		Priority I	Priority 2	Priority 3	Total
	Acres		29,143	8,377	0	37,520
	Percent of PPA		77.7	22.3	0	100
19						
20			Proposed Managemer	nt		
21			See Table 4-101 for	projects that have be	en identified presentl	ly within the
22			NEPA planning process.	See Figures 4-56 th	rough 4-60 for a grap	, hic depiction
23			of the proposed treatm	ents and strategies in 1	the PPA.	
24 25		4.2.13	Vya			
26 27			Project Planning Area	Description		
28			General Site Description			
29			The Vya PPA is loca	ted in northeastern	Modoc County, Ca	alifornia and
30			northwestern Washoe	County, Nevada. The	area is comprised of 2	34,885 acres
31			of which 186,001 acres	s (79 percent) are ad	ministered by the BLI	M, 530 acres
32			(greater than one perce	nt) are administered b	by the US Forest Servi	ce, 850 acres
33			(greater than one perce	ent) are private lands,	and 47,360 acres (20	percent) are
34			under unknown jurisdic	tion. The PPA extends	s west to the eastern	slopes of the
35			Warner Mountains, eas	t to the western slope	es of Massacre Rim, so	outh towards
36			Long Valley, and north	to Twelvemile Creek	which is located on th	ne California-
37						

 Table 4-100

 Post-Fire Rehabilitation Management Strategies

—					1	-			1								
Descript	ent tion	P	Priorit	t y		Addr	eats essed	I	l	NEPA	•			Tre	atments		
						(I) si						Time Frame		Certa Effect	ainty of iveness ¹	ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
South Warner Fuels I	24,670	Х			Х					Х			Х	Х		5	3-5
Cahill Allotments Invasive Plant Management	250	Х				Х	Х			Х			Х	Х		5- 20	0-5
South Warner Invasive Annual Grass Management	37,519		Х			Х			X	X			X	x		5- 20	0-5

Table 4-101 Project Planning Area Treatment Summary Table

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

I	
2	Nevada border. The PPA includes a small portion of the Warner Mountain
3	range, the Larkspur Hills, Mosquito Valley, the northern portion of Long Valley,
4	Coleman Valley, Macy Flat, Horse Lake Rim, and the western slopes of Massacre
5	Rim. Mountain ranges are typically oriented north to south, medium to large
6	valley bottoms between the ranges; however, there is a large plateau that
7	extends from the Oregon border south towards Fortynine Mountain, west
8	towards surprise valley, and east to long valley. There are numerous ephemeral
9	drainages located within the PPA. There are two perennial streams that lie
10	within the PPA, Twelve mile creek and Cottonwood creek. Twelvemile creek is
11	situated in the northwestern portion of the PPA and Cottonwood Creek is
12	located within the Little Coleman Canyon drainage in the northeastern portion
13	of the PPA. Springs and seeps commonly occur throughout most of the PPA;
14	however most of these areas are not meeting riparian health objectives.
15	Elevations throughout the PPA generally range from 4,455 feet in valley bottoms
16	to approximately 8,268 feet on top of the Warner Mountains. The majority of
17	the PPA ranges from 5200 feet to just over 6,300 feet in elevation. The most

1 2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

drastic changes in elevation occur on the northwestern portion of the PPA (see **Table 4-102**).

Table 4-102 Vya Sage-Grouse Habitat Matrix Categories

Matrix Category	No Data	IA	IB	IC	2 A	2B	2C	3A	3B	3C
Acres	7,652	2,600	19,903	7,686	73	32,673	23,358	144	102,164	38,636
Percent of PPA	3	I	8	3	0	14	10	0	43	16

Majority of the PPA is dominated by 3B and 3C habitat; however, there is a small percentage of IB and IC habitats within the PPA. IB habitat is primary located on plateaus adjacent to Mosquito Lake which is located in the central portion of the PPA. 3B and 3C habitat is primarily characterized as a mixture of big and low sagebrush species occurring on slopes below 5,500 feet. A portion of the PPA burned during the 2005 and 2014 fire seasons. Approximately 22,000 acres burned during the Barrel Fire and an additional 13,184 acres of public land was burned during that Coleman Fire. A portion of the Coleman fire burned through the old burn scar of the Barrel fire which occurred during the 2005 fire season. Primary vegetation consisted of a mix of big and low sagebrush sites between 4800 feet and 6200 feet in elevation on all aspects.

Sage-Grouse

The Vya PPA is adjacent to the Massacre Planning Area (to its southeast). There are eleven active leks within the planning area. Most leks are found on mountain benches or on dry lake beds in areas where sagebrush height is less than six inches in height. However, GRSG have been recorded strutting in sagebrush that exceeds twelve inches in height. The majority of the leks within the Vya PPA are located within the larkspur hills which are located in the western portion of the PPA. There are several leks that occur in Mosquito Valley and near Macy Flat. Mosquito Valley is located in the central portion of the PPA and Macy Flat is located in the far northeastern portion of the PPA. Lek attendances for the eleven active leks in the PPA have been in a slow decline for the past several years. So far, fire has only impacted the central and eastern portions of the PPA, leaving the majority of the PPA largely intact. Fire, invasive species, and especially juniper, remain the biggest concerns in this planning area; however, fires in the lower elevations have had limited to no restoration success. Radio telemetry data from the late 1990s and current data confirm that birds in the northern and central part of the planning area travel between California, Oregon and Nevada. Due to the proximity of the Sheldon Refuge to the east, it is very likely there is some connectivity to birds there as well. Distribution patterns and movements are typical of the Great Basin with wintering occurring on valley bottom and mountain bench locations and brood rearing occurring within riparian areas throughout the PPA. The planning area is known to be used by GRSG year round.

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessment Western Great Basin - Warm Springs Valley/Western Great Basin

Vegetation

Fire

The planning area is inhabited by a variety of terrestrial and aquatic plant communities. Most of the area exceeds 5500 feet in elevation and vegetation is predominately low sagebrush and mountain big sagebrush with other mountain shrub species including antelope bitterbrush and western snowberry Riparian species and small isolated aspen communities exist in riparian areas which are prevalent throughout the planning area. Recent fuels reduction treatments have reduced the presence of western juniper. In 2005, the Barrel Fire burned approximately 25,400 acres, with a large portion of the acres burned occurring within the Vya planning area boundaries. Portions of the Barrel fire are recovering well due to high elevations under cool/moist temperature regimes; however, approximately 15,250 acres were subsequently burned during the Coleman fire in 2014. Roughly 2,000 acres have been seeded with big sagebrush, antelope bitterbrush and native perennial grasses. 2,000 acres in the Fee and Larkspur allotments were seeded in the 1980's with crested wheatgrass.

Cheatgrass dominates small portions of past fires at low elevations throughout the planning area especially near Lake Annie. Wildfire prevention is key in order to prevent cheatgrass invasion from lower elevations. Other noxious weeds such as Bull thistle, Canada thistle, Dyers woad occurring as small populations have been documented.

21

L

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

More than fifty fire ignitions are known to have occurred in this planning area since 1980. Most fires were natural caused starts that burned within a very short time period although some were man caused fires. Most fires within the PPA have been relatively small in size (greater than one acre); however, there have been several large fires that have occurred within the planning area. The two largest fires have been the 2005 Barrel Fire and the 2014 Coleman Fires which burned in the northern portions of the planning area. The Coleman Fire burned through a large portion of the 2005 Barrel Fire burn scar. Altogether about 28,360 acres have burned since 1980 in this planning area with most of the planning area remaining largely intact. At elevations below 5,500 feet, heavy cheatgrass infestations are generally observed. These large populations of cheatgrass in the lower elevation will continue to pose a threat to remaining intact habitat for GRSG. Although there have been no fuel breaks created per se, several large juniper reduction projects with limited pile burning have occurred within the planning area (see **Table 4-103**).

Fire regimes are a measure of historic fire return interval and fire severity, with condition class measuring an areas departure from that fire regime. Fire regimes within the Vya PPA area are as follows: 77 percent in Fire Regime III, 19 percent in Fire Regime IV, and the remaining in the other Fire Regimes. Two condition classes are largely present with 55 percent in Condition class II and 40 percent in Condition class I, with very little in within condition class III and the remaining not being classified.

Table 4-103 Summary of Burn Probability

	07 5 4 2
High and Very High Burn Probability in PPA (acres)	97,563
High and Very High Burn Probability in PPA (percent)	41.6

The Susanville Interagency Fire Center contains the BLM, FOREST SERVICE, NPS, and CALFIRE. Station locations within and near the planning area include Surprise BLM station, Alturas BLM station, FOREST SERVICE Warner Mountain station, CALFIRE Alturas station, and the Likely Fire Protection District station. Response time within this planning area is generally fast, with good coverage from multiple resources. Air tankers and helicopters may respond from a number of locations including California, Oregon, Idaho and Nevada. There are several air tanker bases in California that rotate air tankers throughout the summer that can typically respond quickly to the planning area. The nearest air tanker base is located at the Redding Air Base in Redding, California. This air base is managed by the US Forest Service.

13

1 2

3

4

5

6

7

8

9

10

11

12

14 15

16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

Management Strategies

Treatments

Some ESR seeding has occurred in the PPA, primarily on the Barrel and Coleman fires. The majority of these treatments were aerial seedings of native/nonnative species with the main objective to impede cheatgrass expansion and stabilize sites. Drill seeding in areas where this type of treatment was feasible. Treatments were developed for areas were the likelihood of cheatgrass and other invasives would potentially invade the disturbed sites. Seeding efforts on the Barrel Fire were marginally successful; however, natural recovery of perennial grasses and sagebrush were remarkably good. In contrast, seeding efforts on the Coleman fire have yet to be monitored; therefore, success or failure of the treatments has yet to be determined. After three years of severe drought, natural recovery of sagebrush is likely to be marginal at best, therefore, a concerted effort has taken place to aerial seed a large portion of the Coleman fire with Wyoming and mountain sagebrush to establish these shrub species back into the ecosystem and to reduce the amount of time that it would normally take for these species to reoccupy these disturbed sites. Other ESR treatments in the area have been focused on the control of noxious weeds, broadcast seeding of native shrubs and perennial grasses, and planting of bitterbrush and sagebrush seedlings.

- Other Relevant Management Activities
 - There is no known current or planned mineral exploration in the planning area. Some small gravel pits occur.
- 37One large 750kV transmission power line crosses the PPA, running north to38south. A 42 inch natural gas pipeline was finished in 2011 and follows closely the39route of the transmission power line.

- IAlthough there are no wild horse and burro management areas in the planning2area, there are some scattered horses.
- 3Livestock grazing is the most noticeable management activity that occurs4throughout the planning area with approximately 230 miles of fence and over5100 water developments related to livestock grazing having been built. The6planning area encompasses approximately 20 allotments in the northern part of7the Surprise Valley Resource Area.
- 8 Fuels Management
- 9Fuels treatments have been occurring in the PPA since the Late 1990's. Calcutta,10Smiling Dog Spring, Stateline, Susila, and Toney ranch habitat restoration11projects have already been completed within the PPA. The Horse Lake habitat12restoration project is currently in progress with an additional 8,000 acres13planned to be treated in the following years.
- 14There are few natural fuel breaks within the PPA. The Ruby Pipeline runs15through the center of the PPA. The pipeline is approximately 150 feet wide and16is devoid of any vegetation for a large portion of the pipeline. Efforts have been17made to reestablish vegetation along the pipeline; however, they have been18marginally successful. In addition to the pipeline, there are numerous roads that19run through the PPA that would act as manmade fuel breaks in the event of a20wildfire (see Table 4-104).

r dels r landgement r otentiar r eatments								
	Priority	Priority I	Priority 2	Priority 3	Total			
	Miles	52.98	58.63	0	111.61			
21								
22		First order priority pha	ase I and 2 juniper re	emoval across much of th	e Vya PPA.			
23		First order priority fue	l breaks include:					
24		• Highway 3	4					
25		Barrel Spri	ngs Road					
26		Improvement	ents on old two tracl	c roads as minor fuel brea	aks			
27		Identify opportunities	to utilize a coordin	nated approach across j	urisdictional			
28		boundaries						
29		Habitat Restoration and	Recovery					
30		Within the Vya planı	ning area, juniper r	eduction projects and	ESR related			
31		seeding has occurred.	Over 1,000 acres of	juniper have been treate	d so far and			
32		an additional 100,000 a	acres have been analy	zed under the Vya progr	ammatic EA			
33		for reduction and habi	tat restoration over	a ten year period of time	e. Success of			
34		these projects has bee	en largely undetermi	ned due to the fact that	: monitoring			

Table 4-104Fuels Management Potential Treatments

data for treatments has only been collected over the past five years. However, with the little monitoring data that has been collected, some improvement has been documented and observed after post juniper removal projects have been implemented. Principle species that have been documented returning to once dominated juniper woodlands include; bottlebrush squirreltail (*Elymus elymoides*), Sandberg's bluegrass (*Poa secunda*), and lupine (*Lupinus spp.*).

- 7 With regards to ESR seeding's, success of seeding's during the Barrel Fire were 8 reported as being relatively unsuccessful. This was largely determined by 9 qualitative means and not quantitative means. On the Coleman Fire, 10 approximately 458.18 acres of perennial grasses and forbs were seeded in four 11 allotments impacted by the fire. This was accomplished largely by the use of 12 dozers and range drills. Drill rates varied between five lbs/acre and 7.5 lbs/acre. 13 Success is yet to be determined on these seeding's due to the fact that no 14 monitoring data has been collected to determine if the seeding's were successful 15 or not. In addition to drill seeding, over 2000 acres of aerial seeding will be 16 taking place in February of 2015. A mix of sagebrush seed, perennial grasses, and 17 forbs are planned to be seeded at a rate of four lbs/acre over the four 18 allotments affected by the fire. Monitoring of this treatment will begin in the 19 summer of 2015.
- 20In addition to aerial seeding and drill seeding, approximately 35 acres within the21Coleman Fire will be hand planted with a mixture of Wyoming sagebrush and22bitterbrush seedlings. A total of 14,200 seedlings are set to be planted sometime23in the spring.
- 24Success on south facing slopes, especially below 5,500 feet in elevation, is likely25to be dominated by cheatgrass. Unfortunately, it is likely that the seed bank was26not destroyed during the Coleman fire which will put added pressure to try and27maintain connectivity within the planning area. Success of treatments on north28facing slopes will likely recover naturally. This has been documented on the Lost29Fire which occurred during the 2012 fire season.
- 30The Surprise Resource Staff is committed to reducing juniper densities on sage-
steppe ecosystems and into riparian communities, as well as, to address any
issues that arise with regards to maintaining connectivity within the Vya planning
area. As it stands now, the Vya planning area remains largely intact, if the
seedings are successful on south facing slopes, then there is a chance of some
recovery on those portions damaged by the Coleman Fire.
- 36Coordination of projects with government agencies (primarily the NRCS) and37private landowners in this area has been frequent and this coordination of38efforts will be continued (see Table 4-105).

L

2

3

4

5

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	26,950	873	0	27,823
	Percent of PPA	11.47	0.37	0	11.85
I					
2		Fire Operati	ons		
3		High Priority for Suppression (see Tables 4-106 and 4-107)			
4		• Big sagebrush sites below 5500 ft. primarily in the W. Fire			
5		suppression is crucial here because pure stands of cheatgrass will			
6		likely result if a fire occurs.			
7		• Vya Mountain which is an important GRSG area. Also, if it burns it			
8		will burn SW towards drier areas.			
9		•	Previously burned areas esp	pecially the North slopes of	the Coleman
10			Fire to prevent the cycle of	return fires.	
11		Moderate F	Priority for Suppression		
12		•	Big sagebrush sites above 5	500 ft. in order to prevent	the spread of
13			cheatgrass which is pres	ent in pure stands near	by at lower
14			elevations.		
15		•	North slopes above 5500 ft	•	
16		•	Coleman Fire Low sagebr	ush area because it has a	a lower burn
17			probability.		
			, ,		
18		Low Priorit	y for Suppression		
10		-	l avu aagabwyah aitaa wekish	have a lawan huma	بانعر مرونيم وراب
17		•	Low sagedrush sites which	nave a lower burn probab	mily primarily
20			in the SE region.		

Table 4-105 **Habitat Restoration Potential Treatments**

Table 4-106 **Fire Operations Priority Areas**

Site Description	Fire Operations Priority Rating	Acreage
Wyoming Sagebrush (3b) < 5500 ft.	High	8,896.7
Low Sagebrush < 5500 ft. (3c)	High	46,365.2
North Slope > 5500 ft.	Medium	45,972.7
Big Sagebrush > 5500 ft.	Medium	8,778.4
Low sagebrush > 5500 ft.	Low	68,227.2
Coleman Fire Low Sage > 5500 ft.	Medium	5,162.6
Coleman Fire North Slope > 5500 ft.	High	10,019.3
Mountain Big Sagebrush > 5500 ft.	Medium	9,635.0
Mixed Sagebrush < 5500 ft.	High	4,454.6
Mixed Sagebrush > 5500 ft.	Medium	12,174.4
Salt Desert Scrub and Grassland >5500 ft.	Medium	4,447.0
Mountain Big Sagebrush < 5500 ft.	High	9,094.2

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	164,396	29,982	40,526	234,904
	Percent of PPA	70.0	12.8	17.3	100
I					
2		Post-Fire Rehabilitation /	Management		
3		High Priority for ESR (see Tables 4-108 and 4-109):			
4		Big Sagebrush species greater than 5,500 ft elevation, but excluding			
5		southern aspects			
6	Wyoming Big sagebrush				
7		Lower elevation Wyoming Big sagebrush composition flanks the SW region of			
8		the planning area and higher elevation Big Sagebrush communities are generally			
9		in the SE. Pre-burned areas are also a high priority for ESR in order to attempt			
10		to stop reoccurring fires. The area in and around the Coleman fire perimeter			
11		are a high priority.			
12		Moderate Priority for ESR:			
13		• Areas less than 5,500 ft			
14		Southern aspects			
15		The majority of habit	at below 5,500 ft ca	an be found in the we	st part of the
16		planning area.			
17		Low Priority for ESR			
18		Low Saget	orush greater than 5,5	500 ft	
19		Northern	aspects greater than	5,500 ft	
20		• There are	e some communities	s of Low sagebrush al	oove 5,500 ft
~ .		throughou	it the planning area.	Additionally the dry lake	heds are not
21			ie ene planning al eal ,	addictorially circ ary larce	

Table 4-107Fire Operations Management Strategies

Table 4-108 Post-Fire Rehabilitation Management Strategies

Priority	Priority I	Priority 2	Priority 3	Total
Acres	151,551	30,188	53,144	234,883
Percent of PPA	64.5	12.9	22.6	100
Site Description	Priority	Acreage		
---	----------	----------		
Wyoming Sagebrush < 5500 ft.	High	8,896.7		
Low Sagebrush < 5500 ft.	Moderate	46,365.2		
North Slope > 5500 ft.	Low	45,972.7		
Big Sagebrush > 5500 ft.	High	8,778.4		
Low sagebrush > 5500 ft.	Low	68,227.2		
Coleman Fire Low Sage > 5500 ft.	High	5,162.6		
Coleman Fire North Slope > 5500 ft.	Moderate	10,019.3		
Mountain Big Sagebrush > 6000 ft.	High	9,635.0		
Mixed Sagebrush < 5500 ft.	Moderate	4,454.6		
Mixed Sagebrush > 5500 ft.	Moderate	10,517.7		
Mixed Mountain Sagebrush < 5500 ft.	Moderate	1,656.7		
Mixed Sagebrush > 5500 ft.	High	4,446.9		
Salt Desert Scrub and Grassland >5500 ft.	Low	4,447.0		

Table 4-109 Fire Rehabilitation Priority Areas

Salt Desert Scrub and Grassland >5500 ft. Low 4,447.0 2 Proposed Management 3 See Table 4-110 for projects that have been identified presently within the 4 NEPA planning process. See Figures 4-61 through 4-65 for a graphic depiction 5 of the proposed treatments and strategies in the PPA.

Table 4-110 Project Planning Area Treatment Summary Table

Treatm Descrip	ient tion	P	Priori	t y		Thr Addr	eats essed	l	I	NEPA	•			Trea	atments		
						(I) se						Tiı Fra	me .me	Certa Effectiv	inty of veness ¹	ame	ıme
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grass	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years)²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Vya Green Stripping	2,730	Х						W			Ν	Р		LI		5-7	5+
Vya Green Stripping	3,026		Х					W			Ν	Р		LI		5-7	5+
Vya Conifer Treatments	24,286		Х		С						N	Р		LI		10-20	5+

State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

 2	4.2.14 Bull Creek
3 4	Project Planning Area Description
5	General Site Description
6	The Bull Creek Project PPA is located in western Washoe County, Nevada. The
7	area is comprised of 66,250 acres of which 65,110 acres (98 percent) are
8	administered by the BLM and 1,139 acres (two percent) are administered by an
9	undetermined entity. The area encompasses the Hay's Mountain Range on the
10	western side of the planning area and several large valley and dry lake beds on
H	the eastern portion of the planning area. Mountain ranges are typically oriented
12	north to south, with large valley bottoms between ranges. There are several
13	ephemeral drainages within the planning area; however, there are no perennial
14	streams within the planning area. Springs and seeps commonly occur throughout
15	most of the mountains; however there are some areas within the planning area
16	that are not meeting riparian health objectives. Elevations throughout the
17	planning area generally range from 4,469 feet in valley bottoms to approximately
18	7,677 feet on near the top of the Hay's Mountain Range (see Table 4-111).

 Table 4-111

 Bull Creek Sage-Grouse Habitat Matrix Categories

	Matrix Category	No Data	IA	IB	IC	2 A	2B	2C	3A	3B	3C
	Acres	I,587	0	1,846	1,190	0	7,494	7,688	0	21,422	25,023
	Percent of PPA	2	0	3	2	0	11	12	0	32	38
19			The	majority	of the B	ull Cre	eek plannin	g area is	comprised	d of 3B and 3	C habitat
20			types	. These	habitat	types	tend to b	e low r	esistance	and low res	ilience to
21			invas	ive specie	es and/o	r distu	rbances.				
22			Sage-	grouse							
23			The	Bull Cre	ek PPA	is adja	acent to th	ne Wall	Canyon a	nd Duck Flat	t Planning
24			Area	s. The Bu	ull Creek	c Plann	ing Area lie	es entirel	y in the M	assacre PMU	. The Bull
25			Cree	k plannir	ng unit d	contair	ns three kn	iown act	ive GRSG	leks. Leks v	vithin the
26			Bull	Creek p	lanning	area a	re predom	ninantly f	ound on	mountain be	enches or
27			plate	aus adja	cent to	Boul	der Flat v	vith typi	cal vegeta	ation within	the leks
28			consi	sting of I	ow sage	brush	and perenr	nial grass	es. GRSG	that are utiliz	zing these
29			leks,	tend to	be obse	rved s	trutting in	sagebrus	h with an	average heig	ht of less
30			than	six inche	es. These	e leks	are primar	ily locate	ed west of	Boulder Flat	t which is
31			locat	ed in the	eastern	portic	on of the pl	anning ai	rea. Popula	ation trends v	within the
32			plann	ing area	are ge	nerally	/ trending	downwa	rd. The _l	planning area	a remains
33			large	ly intact,	with ve	ery litt	le of the p	lanning :	area being	g impacted by	y fires or
34			othei	r disturb	ances. 7	There	currently i	s no GF	S or tele	metry data d	on GRSG
35			move	ements v	within t	he bul	ll creek pl	lanning a	area. Dist	ribution patt	erns and
36			move	ements a	re typic	al of t	he Great I	Basin wit	h winterir	ng occurring	on valley
37			botto	oms and	mountai	in ben	ch location	s. Brood	rearing g	enerally occu	urs within

the riparian areas throughout the focal area. The planning area is known to be used by GRSG year round. Currently, fire, invasive weeds, and juniper encroachment in to sage-steppe ecosystems remain the biggest concerns within the Massacre planning area.

Vegetation

L

2

3

4

5

6

7

8

9

10

11

12

13

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Vegetation in the planning area consists mainly of Wyoming big sagebrush and perennial bunch grass communities at lower elevations and on west facing slopes. Upper elevations of the planning area throughout the Hays canyon range consist of low sagebrush, including Lohantan, black and early mountain big sagebrush and mixed mountain brush species. Juniper encroachment exists at a current state of phase I and II through the central region in areas with cool/dry to cool/moist soil temperature/moisture regimes versus the outskirts which are warm/dry.

- 14Cheatgrass is mixed in with native perennial grasses throughout the area;15however, no notable pure stands of cheatgrass exist. No populations of other16noxious weeds exist within this project site.

Fire

The planning area has not been heavily impacted by fire except for the Buzz Fire, occurring in 2001. Historically, just 2,206 acres in the Bull Creek area has been burned or approximately three percent of the total planning area. Fires that have occurred within the bull creek planning area have all been naturally caused starts that burned within a very short time period. Prior to 1999, this area had very limited fire history and what fires did occur were generally small in size. However, there has been a higher occurrence of fires in the recent past and the potential for future fires is high due to the conversion of cheatgrass coupled with higher amounts of recreational use (see **Table 4-112**).

Fire regimes are a measure of historic fire return interval and fire severity, with condition class measuring an areas departure from that fire regime. Fire regimes within the Bull Creek PPA are as follows: 64 percent in Fire Regime III, 28 percent in Fire Regime IV, and the remaining in the other Fire Regimes. Two condition classes are largely present with 51 percent in condition class I, and 45 percent in condition class II, with very little in condition class III, a small amount classified as barren and the remaining not being classified.

Table 4-112 Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres)	6,071
	High and Very High Burn Probability in PPA (percent)	9.2
34		
35	Existing Treatments	
36	There have not been any small or large scale ESR se	eedings within the Bull Cre
37	planning area. However, there have been severa	l juniper reduction projec

completed within the planning area. This juniper reduction project is located within the Willow Creek drainage and Hay's Canyon which is located on the northern and central portions of the planning area.

Т

2

3

4

5 6

7

8

9

10

11

12

13

Management Strategies

Other Relevant Management Activities

The planning area is located within an area that is intensively managed for livestock grazing. There are four grazing allotments located within the planning area, 30 water developments and 39 miles of fencing. Additionally, portions of the planning area are actively used for recreational activities such as hunting, fishing, hiking, or sightseeing. There is a population of California bighorn sheep that is actively managed by both the SFO staff and the NDOW. There are no horse management areas within the planning area or mining activities.

14 Fuels Management

15Over 2,000 acres of juniper have been treated within the planning area. These16projects have been aimed at sage steppe restoration and to reduce juniper17encroachment into riparian areas. There are several juniper reduction projects18planned within the planning area; however, the National Environmental Policy19Act (NEPA) process has yet to be completed on them. A prescribed burn is20planned to reduce juniper along the Hay's Mountain range to reduce the risk of21predation on California bighorn sheep (see Table 4-113).

Table 4-113Fuels Management Potential Treatments

	Priority	Priority I	Priority 2	Priority 3	Total
	Miles	3.52	19.76	0	23.28
22					
23		First order priority ph	ase I and 2 juniper re	movals include:	
24		Table Lake	es area		
25		• Eastern sl	opes of the Hay's Ran	ge	
26		First order priority fu	el breaks include:		
27		• Hay's Can	yon road		
28		Second order priority	fuel breaks include:		
29		Subsequer	nt roads that could be	improved upon to be m	nade into fuel
30		breaks			
31		Habitat Restoration and	l Recovery		
32		Restoration efforts h	ave been focused on	preserving higher eleva	ation habitat.
33		Juniper reduction trea	atments have taken p	lace to protect ripariar	n habitat and

I	future juniper removal treatments are planned throughout the area. Mechanical
2	treatment will be the primary method used to reduce disturbance and spread of
3	invasive annuals. Prescribed burn has been proposed at high elevations in the
4	Hays Range. This area is highly resistant and resilient therefore, would recover
5	well. There are opportunities to work with permittees and the NRCS to
6	coordinate juniper treatments.
7	There may be seeding opportunities on the east side in areas where the
8	perennial grass understory has been lost due to heavy grazing (see Table

4-114).

8 9

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	53,501	0	0	53,501
	Percent of PPA	80.76	0	0	80.76
10					
П		Fire Operations			
12		High Priority for	Suppression (see Tabl	es 4-115 and 4-116)	
13		• Wyd	oming Big sagebrush site	s with little potential for re	covery
14		• Salt	Scrub or Water at low	elevations on the W edge	e of the area
15		beca	use fire could easily	spread into areas with m	nore suitable
16		habi	tat.		
17		Moderate Priori	ty for Suppression		
18		• High	ner elevations on nort	h slopes that have a grea	ter recovery
19		pote	ential.		,
20		Low Priority for	Suppression		
21		• Low	sagebrush at high eleva	tions which is less likely to	burn, and has
22		the	greatest potential for re	covery.	

Table 4-114Habitat Restoration Potential Treatments

Table 4-115 Fire Operations Management Strategies

Priority	Priority I	Priority 2	Priority 3	Total
Acres	117,952	107,913	34,886	260,751
Percent of PPA	61.5	56.3	18.2	136

	Site Description	Fire Operations Priority Rating	Acreage
	Low Sagebrush > 5500 ft.	Low	12,667.0
	Wyoming Big Sagebrush > 5500 ft.	High	22,066.3
	Salt Scrub or Water < 5500 ft.	High	10,924.7
	Mountain Big Sagebrush > 5500 ft.	Medium	892.3
	Mixed Sagebrush > 5500 ft.	Medium	5,206.4
I			
2	Post-Fire Rehal	bilitation Management	
3	High Priority	for ESR	
4	• B	ig Sagebrush species greater than 5,500 ft. exc	luding southern
5	a	spects.	-
6	• V	Vyoming Big sagebrush	
7	Wyoming sag	ebrush and mixed sagebrush areas in the NE have a	a greater chance
8	of recovering	with treatment due to elevation however, recov	ery will depend
9	on aspect (see	e Tables 4-117 and 4-118).	

Table 4-116Fire Operations Priority Areas

Table 4-117Post-Fire Rehabilitation Priority Areas

Site Description	Priority	Acreage
Low Sagebrush > 5500 ft.	Low	12,667.0
3B Wyoming Big Sagebrush > 5500 ft.	High	22,066.3
Salt Scrub or Water < 5500 ft.	Low	10,924.7
Mountain Big Sagebrush > 5500 ft.	Moderate	892.3
Mixed Sagebrush > 5500 ft.	High	5,206.4
North Slope > 5500 ft.	Low	43,702.6
South Slope > 5500 ft.	Moderate	45,495.0

Table 4	-118
Post-Fire Rehabilitation M	lanagement Strategies

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	20,998	6,717	38,540	66,255
	Percent of PPA	31.7	10.1	58.2	100
11					
12		Moderate Priority for ESR			
13		Areas less than	n 5,500 ft.		
14		Southern aspen	cts		
15		South slopes on the S en	d of the PPA above	e 5,500 ft. do not hav	ve a strong
16		chance of recovery but o	lue to the elevatior	n might have some su	uccess with
17		treatment after fire.		-	

I	Low Priority for ESR
2	• Low sagebrush greater than 5,500 ft.
3	• Northern aspects greater than 5,500 ft.
4	These areas are high resilience and resistance areas with a strong potential for
5	natural recovery.
6	Proposed Management
7	See Table 4-119 for projects that have been identified presently within the
8	NEPA planning process. See Figures 4-66 through 4-70 for a graphic depiction
9	of the proposed treatments and strategies in the PPA.

 Table 4-119

 Project Planning Area Treatment Summary Table

Treatment Description		P	riori	y		Thr Addr	eats essed		NEPA		Treatments						
						s (I)						Tiı Fra	me .me	Certa Effecti	inty of veness ¹	ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years)²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Bull Creek Green Stripping	184	Х						W			N	Р		LI		5-7	5+
Bull Creek Green Stripping	1,016		Х					W			Ν	Р		LI		5-7	5+
Bull Creek Invasive Weeds Treatments	32,235	X				Ι					N	Р		LI		5-7 if follow- up is neces- sary	5+
Bull Creek Conifer Treatments	21,265		Х		С						Ν	Р		LI		10 to 20	5+
Bull Creek Green Stripping	184	Х						W			N	Р		LI		5-7	5+

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

4.2.15	Wall	Canyon
--------	------	--------

|

Project Planning Area Description

General Site Description

The VVall Canyon PPA is located in northwestern VVashoe County, Nevada. The
area is comprised of 255,947 acres of which 245,251 acres (96 percent) are
administered by the BLM, 147 acres (greater than one percent) administered by
the State of Nevada, and 10,549 acres (four percent) are undetermined lands.
The PPA encompasses the southern end of the Hays Mountain range, Wall
Canyon creek and adjacent tributaries, Cherry Mountain, and the lands
surrounding the eastern slopes of the Hay's Mountain range and Cherry
Mountain which is primarily dominated by large plateaus. Mountain ranges are
typically oriented north to south, with large valley bottoms between ranges.
There is only one perennial stream located within the PPA which is located near
the southern portion of the PPA. The stream is called Wall Canyon Creek and
feeds into a large reservoir at the bottom of the canyon that is commonly used
for recreational activities such as hunting and fishing. In addition, the water from
the reservoir is used exclusively for irrigation. Springs and seeps commonly
occur throughout most of the mountains; however most of these areas are not
meeting riparian health objectives. Elevations throughout the PPA generally
range from 4,469 feet in valley bottoms to approximately 7,923 feet on top of
the Hay's Mountain range (see Table 4-120).

Table 4-120Wall Canyon Sage-Grouse Habitat Matrix Categories

	Matrix Category	No Data	IA	ΙB	IC	2 A	2B	2 C	3 A	3B	3C
	Acres	1,496	0	1,929	2,462	3	33,442	34,25 I	423	26,272	155,668
	Percent of PPA	I	0	I	I	0	13	13	0	10	61
24											
25			The m	ajority	of the	PPA	is comp	rised of	3B and 3C	C habitat	which is
26			charact	erized a	s being	low r	esistance	and low	resilience t	to disturba	ances and
27			invasive	es. Habit	at class	ified a	as IB an	d IC ha	bitat can b	e found v	vithin the
28			southe	n portio	on of tl	ne Ha	y's Range	e which i	s located ir	n the sout	thwestern
29			portion	of the F	PPA.						
30			Sage-gr	ouse							
31			The W	all Canyo	on PPA	is adja	cent to t	hree othe	er planning a	areas in the	e Surprise
32			PPA gr	oup with	n good (connec	ctivity to	at least t	wo of them	n. The Wa	ll Canyon
33			plannin	g area li	ies with	in two	o PMUs.	The plan	ning area is	s largely v	vithin the
34			Massac	re Popul	ation ma	anagen	nent unit;	however	, a small poi	rtion of th	e planning
35			area is	within th	ne Buffal	o-Skea	daddle Po	pulation N	1 anagement	Unit. The	re are ten
36			active l	eks with	in the p	lanning	g area. Le	eks within	the Wall C	Canyon plar	nning area
37			are pre	edominar	ntly fou	nd on	mountai	in benche	es or platea	us in the	southern

portion of the planning area with typical vegetation within the leks consisting of low sagebrush and perennial grasses. GRSG that are utilizing these leks tend to be observed strutting in sagebrush with an average height of less than six inches. Population trends within the planning area are generally trending downward. The planning area remains largely intact; however, a portion of the planning area was burned during the 2012 Lost Fire. This area has largely recovered naturally; however, sagebrush cover is still lacking in the affected areas and will not likely become a major vegetative component for many years to come. There is currently no GPS or radio telemetry data to show that GRSG within the Wall Canyon planning area are interacting with GRSG populations within the Duck Flat and High Rock planning areas. Distribution patterns and movements are typical of the Great Basin with wintering occurring on valley bottoms and mountain bench locations. Brood rearing generally occurs within the riparian areas throughout the PPA. The planning area is known to be used by GRSG year round. However, recent GPS and radio telemetry data from 2013 and 2014 confirm that the northern part of the PPA is used throughout the year by GRSG. Currently, fire, invasive weeds, and juniper encroachment in to sagesteppe ecosystems remain the biggest concerns within the Duck Flat planning area.

Vegetation

Vegetation in the PPA generally consists of Wyoming big sagebrush on mostly west facing slopes. The native perennial bunch grass understory has been phased out throughout large portions of the SW and W. Islands of low sagebrush exist but are sparse. Upper elevations in the NE region of the planning area consist of mountain big sagebrush and mixed mountain shrub species. Small patches of saltscrub comprised of greasewood and saltbush exist at lower elevations closer to the lake playas to the W and SW. In 2012 the Lost Fire burned approximately 41,000 acres, consuming several thousands of acres of sagebrush scrub land. Only 634 acres within the Wall Canyon project planning boundaries were burned, occurring mainly on N facing slopes with high resilience and resistance potential. Natural recovery is taking place. 3,164 acres of rangeland located at the north end of the Wall Canyon West allotment were seeded with crested wheatgrass in the 1980's.

- 34Cheatgrass dominates portions of the PPA on south facing slopes. Other noted35noxious weeds include Bull thistle, Russian knapweed, and perennial36pepperweed which exist as small populations.
- 37 Coniferous encroachment is not a major concern within this planning area.

Fire

39The planning area has had some impact from fire. Although most fires have been40small, there have been twenty one known fires that have occurred in this41planning area burning a total of 25,483 acres or roughly 12 percent of the42planning area. The largest fire to have occurred within the Wall Canyon

L

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

planning area occurred during the 2012 fire season. These were all natural caused starts that burned within a very short time period. Prior to 1990s, historical fire information is very limited; however, fires that did occur tended to be small in size. There has been a higher occurrence of fires in the recent past and the potential for future fires is higher due to the conversion of cheatgrass coupled with higher amounts of recreational use. Restoration on sites is generally better on northerly facing slopes and on sites at higher elevations, generally above 6,000 feet. Other than juniper and fuels reduction targeted projects, no fuel breaks have been accomplished within the planning area to help prevent the future spread of catastrophic fire.

11 Fire regimes are a measure of historic fire return interval and fire severity, with 12 condition class measuring an areas departure from that fire regime. Fire regimes 13 within the Wall Canyon PPA area are as follows: 56 percent in Fire Regime III, 14 38 percent in Fire Regime IV, 3 percent in fire Regime V, and the remaining in 15 the other Fire Regimes. Three condition classes are largely present with 42 16 percent in condition class III, 40 percent in condition class II, 16 percent in 17 condition class one, two percent classified as barren, and the remaining not 18 being classified (see Table 4-121).

Table 4-121 Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres) 96,555
	High and Very High Burn Probability in PPA (percent) 37.8
19	
20 21	Management Strategies
22	Treatments
23	Although there have been several wildfires that have occurred within the PPA,
24	no large scale seeding operations have been conducted thus far. However, there
25	is an aerial seeding operation that will be taking place in 2015 to try and
26	establish sagebrush and perennial grasses over portions of the Lost Fire which
27	burned in 2012.
28	Other Relevant Management Activities
29	Mineral exploration is almost non-existent however some small operations have
30	occurred in the Hays Range.
31	One large 750kV power line crosses the PPA, running north to south. Evidence
32	suggests that there has been loss of active leks in the vicinity of the power line.
33	Two Wild Horse and Burro HMAs fall within the southern portion of the
34	planning area, the Coppersmith and Fox Hog HMAs. These HMAs overlap the
35	planning area by about 39,255 acres or approximately 16 percent of the planning
36	area. Current horse numbers have been attributed to riparian area damage on
37	springs and seeps.

Т

2

3

4

5

6

7

8

9

ILivestock grazing is the most noticeable management activity that occurs2throughout the planning area with 135 miles of fences and approximately 1173water developments related to livestock grazing having been built in the past.4However, of the 117 water developments, a small portion of them are springs5that have no records of being developed for livestock use. Many no longer6function, making the total for water developments being proportionately less7than the 117 recorded.

8 Fuels Management
9 There have been no fue

10

11

12

13

There have been no fuels reduction projects conducted within in the PPA. However, plans are being made to reduce juniper encroachment on the southern and eastern slopes of the Hay's Mountain Range in the near future. These treatments will take place outside of the WSA. In addition, no prescribed fires have been conducted in the PPA to date (see **Table 4-122**).

Priority	y Pı	riority l	Priority 2	Priority 3	Total
Miles		61.89	29.37	0	91.26
14					
15	There are	e few natural	fuel breaks within t	he PPA; however	r, there are several
16	roads that	it run throu	gh the PPA that	could be used	as fuels breaks if
17	improvem	ents were ma	de to them.		
18	First orde	r priority pha	se I and 2 juniper re	emovals include:	
19	•	Hay's Moun	tain Range		
20	First orde	r priority fuel	breaks include:		
21	•	Wall Canyc	on Road		
22	•	Highway 34			
23	•	Pinto Spring	gs road		
24	•	Chester Lyc	ons road		
25	•	Powerline			
26	Second or	der priority fu	uel breaks include:		
27	•	Any additio	nal roads that can	be improved upo	n to construct fuel
28		breaks			
29	Habitat Re	storation and F	Recovery		
30	Within th	e Wall Canyo	on planning area, th	ere have been no	o juniper reduction
31	projects t	hat have occu	rred. However, the	re is an opportuni	ty for some juniper
32	reduction	to take place	in the northweste	rn portion of the	planning area. The

Table 4-122Fuels Management Potential Treatments

development of an environmental assessment will have to be completed before any projects occur; however, development of a programmatic EA that would encompass this area and a large portion of the Bull Creek planning area has been discussed with some of the department heads and there is some support for developing this document.

6 With regards to ESR related seeding, broadcast seeding of sagebrush and hand 7 planting of sagebrush and bitterbrush seedlings have occurred within the 8 planning area. Success of the broadcast seeding was largely confined to areas 9 that received large amounts of sagebrush seed. No grass filler was used during 10 the seeding of the sagebrush seed which impacted sagebrush seed distribution 11 on designated seeding areas. Conversely, success of sagebrush and bitterbrush 12 seedlings were recorded to be above 60 percent in the clover creek drainage; 13 however, planting success of sagebrush and bitterbrush seedlings east of 14 Highway 34 were largely unsuccessful due to insufficient precipitation during the 15 winter and spring months. Just over 30,000 sagebrush and bitterbrush seeding's 16 have been planted on the Lost Fire to date. In addition to planting and broadcast 17 seeding, approximately 2624 acres of aerial seeding will be occurring on the 18 Lost Fire in February of 2015. Seeding rates will be approximately three lbs/ 19 acre over the entire area. Monitoring of this treatment is set to occur in the 20 summer of 2015 (see Table 4-123).

Table 4-123Habitat Restoration Potential Treatments

	Priority	Priority I	Priority 2	Priority 3	Total				
	Acres	58,693	1,539	0	60,232				
	Percent of PPA	22.93	0.60	0	23.53				
21									
22		South facings sl	opes within the planni	ng area are largely domir	nated by invasive				
23		annual grasses	and will likely not re	cover naturally. In areas	that have been				
24		recently disturb	ed, mainly on the Los	t Fire, south facing slopes	have converted				
25		primarily into a	annual grassland with	minor components of p	erennial grasses.				
26		However, north	However, north facings slopes remain largely dominated by perennial grasses						
27		and in relatively	and in relatively good ecological health, even on disturbed sites.						
28		The area within	and adjacent to Wall	Canyon Creek is extreme	ely important lek				
29		and brood rear	ing habitat for Greate	r GRSG. The Surprise Fie	eld Office staff is				
30		focused on ma	intaining and enhancir	ng connectivity within th	e planning area.				
31		Grazing systems	s that support perennia	l bunchgrass health could	be implemented				
32		as part of the re	ecovery of the habitat.	-					
33		Coordination o	f projects with goverr	nment agencies (primarily	the NRCS) and				
34		private landowi	ners in this area has	been frequent and this	coordination of				
35		efforts will be c	ontinued primarily in r	iparian areas that are not	meeting riparian				
36		health standards	5.						

Т

2

3

4

 High Priority for Suppression (see Tables 4-124 and 4-125) Wyoming Big sagebrush below 5500 ft. Wyoming Big sagebrush > 5500 ft. South Slopes Low resilience and resistance potential and not likely not recover. Moderate Priority for Suppression Lost Fire ESR area which is recovering well therefore, suppression is important so it can continue to recover. Higher elevations and North slopes with Big sagebrush. 	I	Fire Operations
 Wyoming Big sagebrush below 5500 ft. Wyoming Big sagebrush > 5500 ft. South Slopes Low resilience and resistance potential and not likely not recover. Moderate Priority for Suppression Lost Fire ESR area which is recovering well therefore, suppression is important so it can continue to recover. Higher elevations and North slopes with Big sagebrush. 	2	High Priority for Suppression (see Tables 4-124 and 4-125)
 Wyoming Big sagebrush > 5500 ft. South Slopes Low resilience and resistance potential and not likely not recover. Moderate Priority for Suppression Lost Fire ESR area which is recovering well therefore, suppression is important so it can continue to recover. Higher elevations and North slopes with Big sagebrush. 	3	Wyoming Big sagebrush below 5500 ft.
 South Slopes Low resilience and resistance potential and not likely not recover. Moderate Priority for Suppression Lost Fire ESR area which is recovering well therefore, suppression is important so it can continue to recover. Higher elevations and North slopes with Big sagebrush. 	4	 Wyoming Big sagebrush > 5500 ft.
 Low resilience and resistance potential and not likely not recover. Moderate Priority for Suppression Lost Fire ESR area which is recovering well therefore, suppression is important so it can continue to recover. Higher elevations and North slopes with Big sagebrush. 	5	South Slopes
 Moderate Priority for Suppression Lost Fire ESR area which is recovering well therefore, suppression is important so it can continue to recover. Higher elevations and North slopes with Big sagebrush. 	6	• Low resilience and resistance potential and not likely not recover.
 Lost Fire ESR area which is recovering well therefore, suppression is important so it can continue to recover. Higher elevations and North slopes with Big sagebrush. 	7	Moderate Priority for Suppression
 9 is important so it can continue to recover. 10 • Higher elevations and North slopes with Big sagebrush. 	8	Lost Fire ESR area which is recovering well therefore, suppression
 Higher elevations and North slopes with Big sagebrush. 	9	is important so it can continue to recover.
	10	Higher elevations and North slopes with Big sagebrush.

Table 4-124

Fire Operations Management Strategies

Priority	Priority I	Priority 2	Priority 3	Total
Acres	I 50,858	135,786	13,222	299,866
Percent of PPA	58.9	53.I	5.2	117.2

	Table 4-125
Fire	Operations Priority Areas

	Site Description	Fire Operations Priority Rating	Acreage	
	Cool/Moist >5500 ft. (2B)	Medium	14,816.5	
	North Slope > 5500 ft.	Medium	43,702.6	
	Wyoming Big Sagebrush < 5500 ft. (3C)	High	72,608.3	
	Low Sagebrush > 5500 ft.	Low	13,221.6	
	Wyoming Big Sagebrush > 5500 ft. (3B)	High	6,073.5	
	Lost Fire ESR	Medium	23,488.1	
	Mixed Sagebrush > 5500 ft.	Medium	51,049.1	
	South Slope > 5500 ft.	High	45,495.0	
12	· · ·			
13	Low Priority fo	or Suppression		
14	• Lo	w sagebrush, high elevation sites which are less lik	elv to burn and	
15	hav	ve high recovery potential.	,	
16	Post-Fire Rehabi	litation Management		
17	High Priority fo	or ESR		
18	• Big	Sagebrush greater than 5,500 ft. excluding souther	n aspects	
19	• W	yoming Big sagebrush		
20	Most of the h	nabitat in this planning area is Wyoming Big sag	ebrush at low	
21	elevations. The	ere is little chance for recovery here but ESR tre	atments should	

l 2	be implemented in the first year. Invasive grasses should be monitored and treated after the first year if necessary (see Tables 4-126 and 4-127).								
3	Moderate Priority for ESR								
4	• Areas less than 5,500 ft.								
5	Southern aspects								
6	Low Priority for ESR								
7	• Low Sagebrush greater than 5,500 ft.								
8	• Northern aspects greater than 5,500 ft.								
9 10	Low priority habitat is concentrated in the Northern region of the area and with a strong chance for natural recovery.								

Table 4-126Post-Fire Rehabilitation Management Strategies

Priority	Priority I	Priority 2	Priority 3	Total
Acres	138,474	69,232	48,249	255,955
Percent of PPA	54.1	27.0	18.9	100

П

Table 4-127Post-Fire Rehabilitation Priority Areas

Site Description	Priority	Acreage
Cool/Moist > 5500 ft.	High	14,816.5
North Slope > 5500 ft.	Low	43,702.6
Wyoming Big Sagebrush < 5500 ft.	High	72,608.3
Low Sagebrush > 5500 ft.	Low	13,221.6
Wyoming Big Sagebrush > 5500 ft. (3B)	Moderate	6,073.5
Lost Fire ESR > 5,500 ft.	Moderate	23,488.1
Mixed Sagebrush > 5500 ft.	High	51,049.1
South Slope > 5500 ft.	Moderate	45,495.0
North Slope > 5,500 ft.	Low	43,702.6

12 13

Proposed Management

14See Table 4-128 for projects that have been identified presently within the15NEPA planning process. See Figures 4-71 through 4-76 for a graphic depiction16of the proposed treatments and strategies in the PPA.

Treatm Descrip	ient tion	P	riori	ty		Thr Addr	eats essed		1	NEPA	•			Tr	eatment	ts			
						(I) se						Ti Fra	me Ime	Certa Effecti	inty of veness ¹	ame	me		
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³		
Wall Canyon Green Stripping	1,522	X						W			Ν	Р		LI		5-7	5+		
Wall Canyon Green Stripping	3,215		Х					W			Ν	P		LI		5-7	5+		
Wall Canyon Conifer Treatments	1,539		Х		С						Ν	Р		LI		10 to 20	5+		
Wall Canyon Weeds Treatments	54,993	X				I					Ν	Р		LI		5-7 if follow-up is necessary	5+		
Wall Canyon Green Stripping	1,522	X						W			Ν	Р		LI		5-7	5+		
¹ State if treatr l = 2 = 3 = 4 = ² Describe fre	ment, once site condit site condit continued Based upo equency of r	compl tions (s tions (s currer n profe mainter	eted, is oils, re oils, re nt mana essiona nance r	i likely silience silience gemen l opinio necessa	or unlil e, speci e, speci it (grazi on, trea iry to c	kely to es com es com ing, rec atment continu	be effe position position reation is likely e effect	ective. I on, dist on, dist n, or or y to be tivenes	Provide urbance urbance ther lan effectiv s (years	ration es) mal es) mal ed uses ve s)	iale usi ke trea ke trea) make	ing thes tment tment itment ikelih	e code effectiv effectiv ood of	es: veness like veness unli effectiven	ly kely ess low				

Table 4-128 **Project Planning Area Treatment Summary Table**

Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

I
2
3
4
5
6
7
8
9
10

П

12

13

4.2.16 Duck Flat

Project Planning Area Description

General Site Description

The Duck Flat PPA is located in northeastern Lassen County, California. The area is comprised of 129,089 acres of which 111,127 acres (86 percent) are administered by the BLM, 17,638 acres (14 percent) undetermined and 323 acres (greater than one percent) are private lands. The Duck Lake PPA encompasses the Cottonwood Mountains, Coppersmith Hills, Tuledad Valley, Duck Lake Valley, and numerous dry lake beds on the southern portion of the focal area. Mountain ranges are typically oriented north to south, with large, flat

I	valley bottoms between ranges. There is only one perennial stream located in
2	the northwestern corner of the PPA; however, most of the PPA contains
3	numerous ephemeral drainages. Springs and seeps commonly occur throughout
4	most of the mountains and hills within the planning area. According to
5	monitoring data gathered in the late 1980's a number of springs in the area were
6	at risk falling below riparian health standards. It is apparent that some of these
7	streams have fallen below the standards however; no monitoring data has been
8	collected in recent years. Elevations throughout the planning area generally
9	range from 4,629 feet in valley bottoms to approximately 8,028 feet near the
0	eastern slopes of the Warner Mountain range (see Table 4-129).

Matrix No IA IΒ IC 2**A** 2B 2C 3**A** 3B 3C Category Data Acres 5.437 4.064 2.222 228 23.665 13.877 0 4.745 37.475 37.377 2 0 11 0 29 Percent 4 3 18 4 29 of PPA 11 The majority of the Duck Flat PPA is comprised of 3A, 3B, and 3C habitat 12 13 classifications, meaning that a large portion of this planning area is of low 14 resistance and resilience to disturbances and invasive species. Portions of the 15 IA, IB, IC, 2A, 2B, and 2C habitat classifications can be found in the 16 Coppersmith Hills and Cottonwood Mountains which are located in the 17 Western and southern portions of the planning area. 18 Sage-grouse 19 The Duck Flat PPA is adjacent to the Wall Canyon Planning Area. The Duck Flat 20 PPA lies entirely within the Buffalo-Skedaddle PMU. The Duck Flat PPA contains 21 four known active GRSG leks and several historic lek sites. Leks within the 22 Duck Lake PPA are predominantly found on mountain benches or plateaus 23 adjacent to Duck Flat and Tuledad Valley with typical vegetation within the leks 24 consisting of low sagebrush and perennial grasses. GRSG that are utilizing these 25 leks tend to be observed strutting in sagebrush with an average height of less 26 than six inches. These leks are primarily located south of Duck Flat and North 27 of Tuledad Valley. Duck Flat is a large depression located in the eastern portion 28 of the planning area and Tuledad Valley is a long valley that is oriented in an 29 east-west direction and is located in the center of the planning area. Population 30 trends within the planning area are generally trending downward. The planning 31 area remains largely intact; however, a portion of the planning area was burned 32 during the 2012 Rush Fire. This area has largely been converted to annual 33 grassland with little or no chance of recovery. Connectivity is not thought to be 34 very good and could be non-existent between both the Duck Lake and Wall 35 Canyon planning areas. Although Duck Flat and Wall Canyon nearly "touch", 36 habitat at the adjacent peripheries in the Duck Flat proper area is barely 37 suitable. There is currently no GPS or radio telemetry data to show that GRSG

Table 4-129 Duck Flat Sage-Grouse Habitat Matrix Categories

within the Duck Lake PPA are interacting with GRSG populations within the Wall Canyon planning areas. Distribution patterns and movements are typical of the Great Basin with wintering occurring on valley bottoms and mountain bench locations. Brood rearing generally occurs within the riparian areas throughout the PPA. The PPA is known to be used by GRSG year round. Currently, fire, invasive weeds, and juniper encroachment in to sage-steppe ecosystems remain the biggest concerns within the Duck Flat PPA.

Vegetation

L

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Vegetation in the PPA consists of low elevation south facing slopes of Wyoming and Basin big sagebrush with juniper, valley bottoms of primarily greasewood and saltbush and mountain big sagebrush on north facing slopes with juniper. Small patches of curleaf mountain mahogany and aspen exist at higher elevations within the Cottonwood Mountains and Coppersmith Hills. In 2012 the Rush Fire burned approximately 315,500 acres. 10,617 acres composed primarily of low sagebrush and mountain big sagebrush were burned on the southernmost portion of the Duck Lake planning area. A large portion of this planning area is dominated by phase I and phase II juniper woodland sites, threatening the sagebrush-grass understory. No ESR was implemented after the fire and a heavy infestation of cheatgrass has developed. ESR treatments took place after the cottonwood fire in 1979 and antelope bitterbrush was seeded on 1,450 acres. In the 1980's 2,728 acres in the Tuledad allotment were seeded with crested wheatgrass, however, success was low.

> Cheatgrass and medusahead rye dominate a large portion of the southern region of the planning area. Other noxious weeds such as Scotch thistle, Canada thistle, perennial pepperweed and Russian knapweed have also been documented.

> > Fire

The PPA has had some impact from fire. Although most fires have been small there have been thirty five known fires that have occurred in this planning area. The largest is the 2012 Rush Fire which burned about 7,174 acres on the southern edge of the PPA. Several small fires occurred in the 1990's consuming less than 200 acres. In total all recorded fires have burned 7,386 acres within the planning area or about six percent of the PPA. These were all natural caused starts that burned within a very short time period. Prior to 1990s historical fire information is very limited however, the fires that did occur were likely small in size. There has been a higher occurrence of fires in the recent past and the potential for future fires is higher due to the conversion of cheatgrass coupled with higher amounts of recreational use (see **Table 4-130**).

Table 4-130 Summary of Burn Probability

High and Very High Burn Probability in PPA (acres)	89,475
High and Very High Burn Probability in PPA (percent)	69.7

Restoration on sites is generally better on northerly facing slopes and on sites at higher elevations, generally above 6,000 feet. Other than juniper and fuels reduction targeted projects, no fuel breaks have been accomplished within the planning area. Fire and invasive species such as cheatgrass remain the biggest concerns in this PPA with limited restoration success seen at elevations below about 5,500 feet. Juniper is also a concern in this planning area with numerous projects completed since the late 1990s and many still forthcoming.

- Fire regimes are a measure of historic fire return interval and fire severity, with condition class measuring an areas departure from that fire regime. Fire regimes within the Duck Flat PPA area are as follows: 52 percent in Fire Regime III, 35 percent in Fire Regime IV, 11 percent in Fire Regime V and the remaining in the other Fire Regimes. Three condition classes are largely present with 66 percent in condition class III, 17 percent in condition class II, 15 percent in condition class II, and the remaining not being classified.
 - Existing Treatments

16 There have been several ESR seeding treatments within the PPA. These seedings 17 have occurred in the southwestern portion of the planning area and were 18 primarily seeded with antelope bitterbrush using dozers and range drills. The 19 topography in this region of the planning area was suitable for such treatments. 20 In addition, there have been numerous seeding's in the Duck Lake basin to 21 improve livestock grazing. Principle species used for these treatments include 22 crested wheatgrass and Ladak alfalfa. Additionally, treatments have been used in 23 the PPA to reduce sagebrush cover and to increase perennial grass cover. These 24 treatments occurred periodically from the 1960's to the 1980's.

25Other ESR treatments in the area have been focused on the control of noxious26weeds and the spread of cheatgrass which is prevalent in the southern portion27of the PPA.

28 29

30

31

32

33

34

35

L

2

3

4

5

6

7

15

Management Strategies

Other Relevant Management Activities

- The Coppersmith and Buckhorn wild horse and burro HMAs fall within the southern portion of the PPA. These HMAs overlap most of the PPA, about 112,500 acres or approximately 96 percent of the planning area. Current horse numbers, exceeding established AMLs have been attributed to riparian area damage on springs and seeps.
- Livestock grazing is the most noticeable management activity that occurs
 throughout the PPA with 71 miles of fences and 77 total water developments
 related to livestock grazing having been built in the past.
- **39** Fuels Management
- 40Beginning in 1999 and continuing periodically to the present, numerous juniper41reduction projects have been completed. The projects are dispersed among the

I	northwestern, western, and south western portions of the PPA. There are
2	several additional habitat restoration projects that are in the process of being
3	implemented, primarily in the Tuledad valley area.
4	There are few natural fuel breaks that exist within the PPA; however, one fuel
5	break was constructed on the southern portion of the PPA in the Cottonwood
6	Mountains. Construction of the fuel break began in 2008 and was completed in
7	2009. Opportunities exist in the PPA to create additional fuel breaks using
8	existing roads present within the planning area (see Table 4-131).

	Priority	Priorit	y I	Priority 2	Priority 3	Total
_	Miles	15	.25	42.27	0	57.52
9 10		First order pric	ority phase I	and 2 juniper r	emovals include:	
11		• Up	per Tuledad			
12		• Wi	re Lakes			
13		• Bue	ckhorn			
14		First order pric	ority fuel brea	aks include:		
15		• Bar	e Creek roa	d		
16		• Tu	edad Canyor	n road		
17		• Buo	ckhorn road			
18		• Hig	hway 447			
19		• Re	d Rock Lake	road		
20		Second order p	priority fuel b	reaks include:		
21 22		• Ad bre	ditional road aks	ls that could b	e improved upon to co	nstruct fuel
23 24		• Ide juri	ntify opport sdictional bo	unities to util oundaries	ize a coordinated appro	ach across
25		Habitat Restorat	ion and Recov	/ery		
26		In this PPA, th	ie biggest co	oncern is Junip	er encroachment therefo	re the high
27		priority sites a	re the 3C ar	reas comprised	of big sagebrush and low	v sagebrush
29		Northwest. W	est. Southwe	est and Southe	rn region of the plannin	g area. The
30		next biggest co	ncern is the	loss of perenni	al grasses throughout the	A and 3B
31		territories how	vever, in gen	eral, previous	attempts to reduce sagel	orush cover
32		and seed with	both native	and nonnative	perennial grasses have l	oeen largely

Table 4-131
Fuels Management Potential Treatments

1	unsuccessful.	For 1	this	reason,	it	is	beneficial	to	protect	established	plant
2	communities.	The b	est c	opportun	ity f	for	treatment	in 1	the plann	ing area addı	resses
3	juniper encro	achme	ent, f	uel loadi	ng a	ınd	treating i	ivas	ive annua	als throughou	ut the
4	3A areas (see	Table	e 4-	I 32).							

Table 4-132Habitat Restoration Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Total
Acres	21,549	53,827	0	75,376
Percent of PPA	16.69	41.70	0	58.39
	There are oppo	ortunities to work with	permittees and the NRC	S to implement
	juniper reductio	on projects.		
	Fire Operations			
	High Priority fo	r Suppression (see Tal	bles 4-133 and 4-134)	
	3C and 3B habit	at except for the area	in and around the Rush Fir	e perimeter.
	• Low	ver elevations and sou	th facing slopes due to lov	v resilience and
	resi	stance potential and lo	w probability for recovery.	
	• Are	as in and around th	e Rush Fire perimeter	which contains
	che	atgrass.		
	Moderate Prior	ity for Suppression		
	• Elev	vations that exceed 550	00 ft. and North facing slop	es.
	• Gre	eater resistance and res	ilience potential.	
	Low Priority for	⁻ Suppression		
	• Low	v sagebrush above 5500) ft.	
	• Mos	st resistant and resilier	nt and high recovery poter	ntial. Also, least
	like	ly to burn.		

Table 4-133Fire Operations Priority Areas

Suppression Area Description	Fire Operations Priority Rating	Acreage
South slopes < 5500 ft.	High	16,707.71
North slopes > 5500 ft.	Medium	27,559.73
Rush Fire > 5500 ft.	High	7,176.744
South slopes > 5500 ft.	High	25,487.33
Low sagebrush > 5500 ft.	Low	12,467.86
Wyoming sagebrush < 5500 ft.	High	9,350.257
North slope < 5500 ft.	High	4,537.654
Mixed sagebrush < 5500 ft.	High	16,335.79
Mixed sagebrush > 5500 ft.	Medium	9,471.862

Priority	Priority I	Priority 2	Priority 3	Total
Acres	24,990	46,983	0	71,973
Percent of PPA	34.7	65.3	0	100
	Post-Fire Rehabilitation High Priority for ESR	Management (see Tables 4-135 ar	nd 4-136)	
	• Big Sage aspects.	brush species greater	⁻ than 5,500 ft. exclu	ıding southern

Table 4-134Fire Operations Management Strategies

Table 4-135Post-Fire Rehabilitation Priority Areas

Project Area Description	Priority	Acreage
South slopes < 5500 ft.	Moderate	16,707.7
North slopes > 5500 ft.	Low	27,559.7
Rush Fire > 5500 ft.	High	7,176.7
Wyoming Sagebrush >5500 ft.	High	12,467.9
Low sagebrush > 5500 ft.	Low	9,350.3
South Slope > 5500 ft.	Moderate	25,487.3
North slope < 5500 ft.	Moderate	4,537.7
Mixed sagebrush > 5500 ft.	High	9,471.9
Mixed sagebrush < 5500 ft.	Moderate	16,335.8

Table 4-136	
Post-Fire Rehabilitation Management Strategie	s

Priority	Priority I	Priority 2	Priority 3	Total		
Acres	37,980	58,682	32,429	129,091		
Percent of PPA	29.4	45.5	25.1	100		
	Wyoming Big sagebrush	1				
	These are some low lyi	ing areas in the north	western portion of th	e PPA and at		
	higher elevations in the South. Although recovery potential is low on most					
	Wyoming Big sagebrush sites, immediate and short term ESR actions should be					
	implemented to reduce	cheatgrass invasion. If	treatment is unsucces	ssful after the		
	first year then repeat treatments will be a lower priority. Treatments would					
	include seeding mostly native and possibly some nonnative grasses and planting					
	big sagebrush seedling islands.					
	Moderate Priority for E	SR				
	Areas less t	han 5,500 ft.				

Т This is the Northwestern region which is less resilient and resistant. The 2 potential for recovery is very low therefore it becomes less of a priority 3 compared to North aspects and higher elevations. 4 Low Priority for ESR 5 Low sagebrush greater than 5,500 ft. 6 Northern aspects greater than 5,500 ft. 7 Low Priority areas occur mainly throughout the Cottonwood mountain range 8 and Coppersmith hills. Natural recovery potential is high therefore ESR will not 9 be necessary in most cases. 10 **Proposed Management** 11 See **Table 4-137** for projects that have been identified presently within the 12 NEPA planning process. See Figures 4-77 through 4-80 for a graphic depiction 13 of the proposed treatments and strategies in the PPA.

Treatm Descrip	ent tion	Р	riori	t y		Thr Addr	eats essed		I	NEPA	L	Treatments					
						(I) si						Tir Fra	ne me	Certa Effectiv	inty of veness ¹	ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ¹	Likely	Unlikely	Maintenance Time Fr (Years)²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Duck Flat Green Stripping	799	Х						W			N	Р		LI		5-7	5+
Duck Flat Green Stripping	2,219		Х					W			N	Р		LI		5-7	5+
Duck Flat Conifer Treatments	75,376		Х		С						N	Р		LI		10 to 20	5+

 Table 4-137

 Project Planning Area Treatment Summary Table

State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

 2	4.2.17 High Rock
2 3 4	Project Planning Area Description
5	General Site Description
6	The High Rock PPA is located northwestern Washoe County, Nevada near the
7	Humboldt-Washoe county line. The area is comprised of 237,912 acres o
8	which 233,406 acres (98 percent) are administered by the BLM, 3,606 acres
9	(two percent) are under unknown administration, and 791 acres (greater than
10	one percent) are private lands. This area primarily encompasses the High Rock
11	canyon area and adjacent canyons that merge into High Rock canyon
12	Additionally, the PPA also encompasses all of the High Rock wilderness area, as
13	well as, the High Rock ACEC. There are two large dry lake beds within the
14	PPA. There are numerous ephemeral drainages within the area. Elevations
15	throughout the PPA generally range from 4,347 feet in valley bottoms to
16	approximately 7,192 feet (see Table 4-138).

Table 4-138High Rock Sage-Grouse Habitat Matrix Categories

	Matrix Category	No Data	IA	IB	IC	2 A	2B	2C	3A	3B	3C
	Acres	121	0	0	8,260	0	1,878	46,161	0	13,717	167,776
	Percent of PPA	0	0	0	3	0	I	19	0	6	71
18 19 20 21 22 23 24 25		The majority of the High Rock PPA is comprised of either 3B or 3C habitat which is characterized by a combination of big and low sagebrush plant communities occurring on a wide array of elevations and slopes. This habitat type is characterized by very low resistance and resilience to invasives and to disturbances making the majority of the PPA very fragile. Portions of the 3B habitat community may recover naturally over an extended period of time; however, majority of the area will not recover naturally in the event of a wildfire or other disturbance event.									
26			S	age-grous	e Book P		a dia aona	, ka kha M		d Mall Canva	n Dianning
27 79			1	roos In	ROCK F	tho S	adjacent boldon N	l to the Millational Wil	lassacre and Idlifo Rofuge	u vvali Canyoi	n Flanning
20 29			~	f the ol	anning i	init T	The High	Rock pla	nning area	lies entirely v	within the
30			ں ۲	lassacre	PMU. TI	he Hig	the fingh the Rock r	planning are	ea contains	seven known	active leks
31			ir	cluding	three lek	ks just	outside	of the plan	ning area b	oundary. Leks	within the
32			F	ligh Roc	k planni	ng are	ea are p	redominant	ly found c	on mountain b	enches or
33			Р	lateaus a	djacent 1	to Hig	h Rock C	Canyon and	the surrou	Inding tributari	es. Typical
34			v	egetatior	within	the l	eks cons	sists of lov	v sagebrusl	h and perennia	al grasses.
35			C	RSG that	it are ut	ilizing	these le	ks tend to	be observe	ed strutting in	sagebrush
36 37			v e	vith an av ast and v	verage h vest of H	eight (High R	ot less th .ock Cany	ian six inch yon. Popula	es. These lation trends	eks are primar within the pla	ily located nning area

L are generally trending downward. The planning area remains largely intact, with 2 very little of the planning area being impacted by fires or other disturbances. 3 Current radio and GPS data indicate that birds do move between the Sheldon 4 and this planning area and to smaller degrees Wall Canyon and Massacre 5 Planning Areas. Distribution patterns and movements are typical of the Great 6 Basin with wintering occurring on valley bottoms and mountain bench locations. 7 Brood rearing generally occurs within the riparian areas throughout the PPA. 8 The planning area is known to be used by GRSG year round. Currently, fire and 9 invasive weeds remain the biggest concerns within the High Rock planning area. 10 luniper encroachment into sage-steppe habitat is not an issue in this planning 11 area because juniper densities are low. The planning area is largely comprised of 12 vegetation communities that receive limited precipitation.

13 Vegetation

14 The majority of the area has a warm/dry soil temperature/moisture regime and 15 vegetation is comprised of mostly Wyoming big sagebrush and perennial bunch 16 grass plant communities. Low sagebrush dominates sites that are above 6000ft 17 whereas the Wyoming sites occur in lower elevations. In 2012 the Lost Fire 18 burned a total of approximately 41,000 acres, consuming approximately five 19 percent of the High Rock planning area. The area that burned was 20 predominately low sagebrush with perennial grass with a cool/dry soil 21 temperature regime and is currently recovering to its natural state.

> Minimal cheatgrass exists currently however, a large portion of this planning area is weakly resistant and should be protected from wildfire which would likely lead to cheatgrass invasion. Juniper woodlands exist but are not a major concern. No substantial noxious weed populations have been documented (see Table 4-139).

	Site Description	Fire Operations Priority Rating	Acreage
	Low Sagebrush > 6000 ft.	Low	25,234.0
	Wyoming Big Sagebrush < 6000 ft.	High	75,055.3
	Mixed Sagebrush < 6000 ft.	Medium	73,957.6
	Mixed Sagebrush > 6000 ft.	Medium	47,957.9
	Lost Fire > 6000 ft.	High	15,706.9
27			
28	Fire		
29	About	15,863 acres are known to have been burned since 19	80. Besides the
30	Nellie f	re, a 100 acre fire that burned in 1998, the only other	fire since 1980
31	was the	Lost fire that burned over 15,000 acres of the Wall C	Canyon planning
32	area. T	his equates to approximately about 5 percent of	the total area
33	encomp	assed by the High Rock planning area. These were all r	naturally caused
34	starts tl	nat burned within a very short time period. Prior to 199	8, this area had
35	very lin	nited fire history and most fires were small in size. Th	ere has been a
36	higher o	occurrence of fires in the recent past and the potential fo	or future fires is

Table 4-139 **High Rock Vegetation Categories**

4-128

22

23

24

25

26

high due to the conversion of light, flashy fuels such as cheatgrass coupled with higher amounts of recreational use. There have been no fuel breaks created within the High Rock planning area. In addition, none are currently planned because the High Rock planning area lies completely within the wilderness boundary (see **Table 4-140**).

Fire regimes are a measure of historic fire return interval and fire severity, with condition class measuring an areas departure from that fire regime. Fire regimes within the High Rock PPA are as follows: 81percent in Fire Regime III, 19 percent in Fire Regime IV, and the remaining in the other Fire Regimes. Two condition classes are largely present with 82 percent in condition class II, 17 percent in condition class I, with very little in condition class III, and the remaining not being classified.

Table 4-140 Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres) 12,340
	High and Very High Burn Probability in PPA (percent)5.2
13	
14	Existing Treatments
15	There have been several prescribed fires that have occurred within the High
16	Rock PPA. These prescribed fires began in the early 2000's and ended in 2007.
17	ESR treatments have taken place in 2013 and 2014 after the Lost Fire. Mountain
18	Big sagebrush and slender wheatgrass were seeded aerially and antelope
19	bitterbrush seedlings were hand planted. Due to the resilience of the site
20	natural and ESR recovery has been successful.
21	Management Strategies
22	
23	Other Relevant Management Activities
24	A portion of the PPA is readily accessible for the public and is visited due to the
25	fact that High Rock canyon once was part of the Emigrant Trail. Management of
26	noxious weeds will continue to be a management activity due to the fact that
27	this area is visited readily by tourists. Additional management activities in the
28	area include livestock management, wild horse management, and monitoring of
29	California bighorn sheep populations.
30	The High Rock Wild Horse HMA is within the western portion of the High
31	Rock PPA. Current herd numbers exceed established AMLs. It is estimated that
32	damage to remote riparian areas, springs and seeps are attributed to these high
33	numbers.
34	Livestock grazing is the most noticeable management activity that occurs
35	throughout the planning area. Approximately 95 miles of fence and over 75
36	water developments related to livestock grazing having been built.

Т

2

3

4

5

6

7

8

9

10

11

I	Fuels Management
2	Fuels treatments have occurred within the High Rock PPA. These treatments
3	have primarily been used to reduce sagebrush cover within the High Rock
4	Canyon drainage. Most of the PPA is within a wilderness boundary making the
5	construction of new fuel breaks difficult. However, existing roads could serve
6	this purpose (see Table 4-141).

Table 4-141Fuels Management Potential Treatments

	Priority	Priority I	Priority 2	Priority 3	Total
	Miles	28.95	102.88	0	131.83
7					
8		Habitat Restoration and	Recovery		
9		Seeding and hand plan	ting in the Lost Fire	generally has been succ	essful. There

Seeding and hand planting in the Lost Fire generally has been successful. There are opportunities to continue ESR treatment in this area where Big sagebrush has not recovered. The vast majority of the PPA is comprised of low elevation Wyoming Big sagebrush considered to have low resistance and resilience. For this reason, restoration potential is low and focus should be put on preservation of what exists (see **Table 4-142**).

Table 4-142Habitat Restoration Potential Treatments

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	3,218	381	0	3,599
	Percent of PPA	1.35	0.16	0	1.51
15					
16		Fire Operations			
17		Priority I for Su	ppression (see Table 4	-143)	
18		• Rec	overy is unlikely due to	low resistance and resilience	<u>.</u>
19		Priority 2 for Su	ppression		
20		• Moo	lerate resistance and re	esilience which is strongly de	ependent on
21		elev	ation and aspect.		
22		• The	NW and E side of	the planning area is a m	oderate fire
23		supp	pression area		
24		Priority 3 for Su	ppression		
25		• Low	v sagebrush sites above	6,000 ft. are highly resistant	and resilient
26		with	a strong potential to re	ecover naturally.	

10

П

12

13

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	119,913	91,308	26,691	237,912
	Percent of PPA	50.4	38.4	11.2	100
I					
2		Post-Fire Rehabilitation N	Aanagement		
3		Priority I for ESR			
4		 Big sagebr 	ush species greater	than 5,500 ft. exclud	ding southern
5		aspects.			-
6		Wyoming	Big sagebrush		
7		The majority of the a	rea is made up of V	Vyoming Big sagebrush	n habitat on a
8		warm/dry soil temper	ature/moisture regin	ne. The resistance and	d resilience is
9		low. Post-fire treatme	ents would likely be	unsuccessful however	r, due to the
10		importance of this ha	bitat ESR treatments	s should be implement	ed within the
11		first year. Invasive gras	sses are a major con	cern here and should I	be monitored,
12		followed by treatment	if necessary (see Tal	ole 4-144).	
13		Moderate Priority for	ESR		
14		Areas less	than 5,500 ft.		
15		• Southern a	spects		
16		Low Priority for ESR			
17		 Low sageb 	rush greater than 5,5	00 ft.	
18		Northern	aspects greater than	5,500 ft.	

Table 4-143Fire Operations Management Strategies

Table 4-144 Post-Fire Rehabilitation Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	90,762	121,915	25,234	237,912
	Percent of PPA	38.1	51.2	10.6	100
19					
20		Proposed Management			

21	See Table 4-145 for projects that have been identified presently within the
22	NEPA planning process. See Figures 4-81 through 4-85 for a graphic depiction
23	of the proposed treatments and strategies in the PPA.

Treatme Descript	ent ion	P	riorit	y		Thr Addr	eats essed		I	NEPA	1		Treatments				
						s (I)						Tir Fra	ne me	Certa Effectiv	rtainty of ctiveness ¹		me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasses Riparian (R) Wildfire (W)		Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³	
High Rock Fuel Break/Green Stripping	29	Х						W			N	Р		LI		5-7	5+
High Rock Fuel Break/Green Stripping	104		Х					W			N	Р		LI		5-7	5+
High Rock Lost Fire Active ESR Treatments	381		Х			I					N	Р		LI		10- 20	5+
High Rock Sagebrush Planting Treatment	3,218	X		14 1		1	"				N	P		LI		10- 20	5+

Table 4-145 **Project Planning Area Treatment Summary Table**

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

4.2.18 Massacre

Project Planning Area Description

General Site Description

The Massacre PPA is located in northwestern Washoe County, Nevada. The area is comprised of 116,234 acres of which 105,002 acres (90 percent) are administered by the BLM, 663 acres (one percent) are administered by the Sheldon Wildlife Refuge, and 10,569 acres are undetermined. The PPA primarily encompasses a large portion of Massacre Rim, the northern portion of Massacre Lake, and the Bitner Table area which is a large plateau. Mountain ranges are typically oriented north to south, with large valley bottoms between ranges. There are no perennial streams within the PPA; however, there are numerous ephemeral drainages within the PPA. Springs and seeps commonly occur throughout the PPA in the higher elevations; however most of these areas are

I	not meeting riparian health objectives due to livestock grazing and/or overuse
2	by wild horses. Elevations throughout the PPA generally range from 5512 feet in
3	valley bottoms to approximately 7028 feet on top of Massacre Rim (see Table
4	4-146).

Table 4-146Massacre Sage-Grouse Habitat Matrix Categories

	Matrix Category	No Data	IA	ΙB	IC	2 A	2 B	2 C	3A	3B	3C
	Acres	1,649	0	0	2,377	0	438	38,235	0	338	73,197
	Percent of	I	0	0	2	0	0	33	0	0	63
_	PPA										
5											
6			The	e majority	y of th	e Ma	ssacre F	PPA is co	mprised	of 3C habitat	which is
7			cha	racterized	by a o	combii	nation o	of big and	low sage	brush plant cor	nmunities
8			occ	urring or	n a wio	de arr	ay of e	elevations	and slop	es. This habita	t type is
9			cha	racterized	d by v	ery lo	ow resis	stance and	resilien	ce to invasives	and to
10			dist	urbances	making	the ma	ajority o	f the Massa	cre PPA	very fragile.	
П			Sag	e-grouse							
12			The	Massacr	e PPA is	s adjac	cent to t	he High an	nd Vya Pla	anning Areas. In	addition,
13			the	Sheldon I	Nationa	l Wild	life Refu	ge is locate	d directly	east of the plan	ining unit.
14			The	e Massacr	e Planni	ing Ar	ea over	laps onto t	he Vya a	and Massacre Pl	1Us. The
15			Mas	sacre pla	nning u	nit cor	ntains siz	k known a	ctive GRS	SG leks including	g one lek
16			just	outside	of the p	olannin	ng area p	oolygon bo	undary. l	eks within the	Massacre
17			plar	nning are	a are	predor	minantly	found on	mounta	in benches or	plateaus
18			adja	icent to	Massacr	e Lak	es with	vegetation	consistir	ng of low sageb	orush and
19			per	ennial gra	asses. C	GRSG	that are	e utilizing	these lel	ks tend to be	observed
20			stru	itting in s	agebrus	h with	an aver	age height	of less th	nan six inches. T	hese leks
21			are	primarily	located	above	e Massac	re Lakes w	hich con	sists of several la	arge alkali
22			lake	e beds tha	it are si	tuated	in the c	enter of th	e plannin	g area. Populatio	on trends
23			with	nin the pla	anning a	rea ar	e genera	lly trending	g downwa	ard; however, th	iere are a
24			few	leks that	t are tr	ending	ς in an ι	ipward dire	ection. T	he planning area	a remains
25			larg	ely intact	, with v	/ery li	ttle of t	he planning	g area be	ing impacted by	y fires or
26			oth	er disturt	oances.	Curre	nt radio	and GPS	data indi	cate that birds	do move
27			bet	ween the	Sheldor	n and t	his planr	ning area an	id to sma	ller degrees Vya	and High
28			Roc	k Plannin	g Areas	s. Dist	ribution	patterns a	ind move	ments are typic	cal of the
29			Gre	at Basin	with wi	interin	g occur	ring on val	ley botto	oms and mounta	ain bench
30			loca	ations. Br	ood rea	ring g	enerally	occurs wit	, hin the r	riparian areas th	roughout
31			the	PPA. Th	ne plani	ning a	rea is l	known to	be used	by GRSG yea	ar round.
32			Cur	rently, fi	re, invas	sive w	veeds, ar	nd juniper	encroach	, ment remain th	ie biggest
33			con	cerns wit	hin the	Massad	cre planr	ning area.			
34			Veg	etation							
35			Veg	etation ir	the pla	anning	area ge	nerally con	sists of lo	ow sagebrush an	nd juniper

Vegetation in the planning area generally consists of low sagebrush and juniper with small portions of big sagebrush communities. Wet meadows are prevalent

throughout and host a variety of obligate and facultative riparian species. Several wetland areas have been enclosed to allow for a vigorous composition of forbs providing quality habitat for GRSG. Several small sections of the planning area have received juniper reduction treatments to improve understory vegetation cover which has been lost throughout a significant portion of the area. Several crested wheatgrass seedings took place in the southernmost region of the planning area. In the 1960's approximately 425 acres of sagebrush were sprayed with herbicide and seeded. In addition, 481 acres were seeded in the 1980's. No wildfires or other major disturbances have been documented within the planning area.

- Elevation exceeds 5,500 feet throughout the entire planning area thus, there are few areas highly susceptible to cheatgrass invasion. No other significant noxious weed populations exist.
- 14 Fire

L

2

3

4

5

6

7

8

9

10

11

12

13

15

16

17

18

19

20

21

22

23

24

There have been approximately 15 fire ignitions in this planning area since 1980. All fires were naturally caused starts that burned within a very short time period. No large fires are known to have occurred in this planning area however, about 375 acres have burned since 1980. At elevations below about 5,500 feet heavy cheatgrass infestations are generally observed and will continue to be of a concern in the event of another fire. The Massacre planning area has remained largely intact with little to no habitat fragmentation occurring within the planning area. No fuel breaks have been created within the planning area. Juniper occurs along the northwestern boundary of the planning area. Future reduction projects are currently in the planning stages.

25	Fire regimes are a measure of historic fire return interval and fire severity, with
26	condition class measuring an areas departure from that fire regime. Fire regimes
27	within the Massacre PPA area are as follows: 81 percent in Fire Regime III, eight
28	percent in Fire Regime IV, five percent in fire Regime V, and the little that
29	remains in the other Fire Regimes. Two condition classes are largely present
30	with 51 percent in condition class I, 43 percent in condition class II, with very
31	little in within condition class III, six percent classified as barren and the
32	remaining not being classified (see Table 4-147).

Table 4-147Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres)	0.0
	High and Very High Burn Probability in PPA (percent)	0.0
33		
34	Existing Treatments	
35	There have been no major fires within the PPA However, sev	eral seeding's o
36	crested wheatgrass and ladak alfalfa have occurred within the	confines of the
37	PPA. These seeding have occurred during the late 60's to e	arly 70's. Brusł
38	management treatments and chemical treatments have also occ	urred within the

4-134

PPA during this same time period and extended into the early 80's. These vegetative treatments were aimed at reducing sagebrush cover and establishing feed for livestock grazing.

L

2

3

4

5 6

7

8

18

28 29

30

31

32

Management Strategies

- Other Relevant Management Activities
- Currently, the SFO staff is working on a joint wildlife and fuels management plan for the Massacre Rim to improve GRSG and California bighorn sheep habitat.
- 9The Bitner, Massacre, and Nut Mountain Wild Horse HMA's boundaries cover10much of the planning area, 90,280 acres or 78 percent of the planning area.11Current numbers of wild horses that exceed established AMLs have been12attributed to riparian area damage at springs and seeps within the area.
- 13There are no known current or planned mineral exploration projects in the14planning area. Some small gravel pits are present.
- I5Livestock grazing is the most noticeable management activity that occursI6throughout the planning area with approximately 90 miles of fence and over 40I7water developments having been built.
 - Fuels Management
- 19There are approximately 900 acres of fuel treatments proposed within the PPA.20These projects are designed to reduce juniper encroachment into sage steppe21habitats, as well as, to reduce juniper encroachment into riparian areas.

22Very few natural fuel breaks exist within the PPA. There are two major roads23that border the southern and western portions of the PPA and would serve as a24fuel break in the event of a wildfire. Development of additional fuel breaks in the25PPA would require extensive NEPA analysis as well as work. Because the PPA is26located within a Wilderness Study Area (WSA) few roads exist that can serve as27fuel breaks (see Table 4-148).

 Fuels Management Potential Treatments

 Priority
 Priority I
 Priority 2
 Priority 3
 Total

 Miles
 23.87
 44.18
 0
 68.05

 First order priority phase I and 2 juniper removals include:
 •
 Massacre Rim

 •
 Massacre Rim
 •
 Board Corral

 •
 Massacre Springs
 •
 Massacre Springs

Table 4-148Fuels Management Potential Treatments

I Habitat Restoration and Recovery

2 Within the Massacre planning area, there have been only one or two juniper 3 reduction projects to have occurred. These projects were not aimed at sage-4 steppe restoration, but to remove juniper trees from encroaching onto Native 5 American historical sites. However, there is an opportunity for some juniper 6 reduction to take place in the northwestern portion of the planning area, 7 primarily below and along Massacre Rim. The development of an environmental 8 assessment will have to be completed before any projects occur. Currently, a 9 plan is being developed to manage juniper encroachment into sage-steppe and 10 riparian areas. These treatments will improve GRSG general habitat and brood 11 rearing habitat, as well as, to improve habitat for California bighorn sheep.

12This area has not been impacted by major wildfires; therefore there have not13been any ESR projects recorded. As noted in a previous section, there have14been several seeding that have occurred in the southwestern portion of the15planning area aimed at improving livestock grazing (see Table 4-149).

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	4,622	37,008	2,817	44,447
	Percent of PPA	3.98	31.84	2.42	38.24
16					
17		Fire Operations			
18		High Priority fo	r Suppression (see Tabl	es 4-150 and 4-151)	
19		• Mo	untain and Wyoming Sag	gebrush sites in the SW hav	ve the highest
20		cha	nce of burning in this pla	nning area.	
21		• The	ere is a higher start pote	ntial along massacre rim to	the W.
22		• Lov	wer elevations on W a	and S aspects are the hig	shest priority
23		bec	ause they are the least r	esilient and resistant.	· • •
24		Moderate Prior	ity for Suppression		
25		• Mix	ed Big sagebrush sites	which are more likely to b	ourn than the
26		low	v sage sites.		
27		• W	and S aspects are a highe	er priority than N and E asp	ects.
28		Low Priority fo	r Suppression		
29		• Dry	y Lake Beds which are hi	ghly unlikely to burn	
30		• Lov	w sage sites and the gei	neral NE region which have	e a low burn
31		pro	bability.	-	

Table 4-149Habitat Restoration Potential Treatments

Site Description	Fire Operations Priority Rating	Acreage
Low Sagebrush > 5500 ft.	Low	41,013.7
Big Sagebrush > 5500 ft.	Medium	15,221.1
Dry Lake Bed > 5500 ft.	Low	9,962.9
Mixed Sagebrush > 5500 ft.	Medium	37,939.6
Mountain and Wyoming Sagebrush > 5500 ft.	High	120,70.8

Table 4-150Fire Operation Priority Areas

I

Table 4-151Fire Operations Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	12,071	53,180	50,983	116,234
	Percent of PPA	10.4	45.8	43.9	100
2					
3		Post-Fire Rehabilitation /	Management		
4		High Priority for ESR	8		
5		 Big sagebi 	rush species greater	than 5,500 ft. exclud	ling southern
6		aspects.			
7		Wyoming	Big sagebrush		
8		All habitat throughou	t this planning area is	s above 5,500 ft. there	efore it has a
9		strong chance of reco	overing after fire dep	pending on the aspect	and weather
10		conditions. Big sagebru	ush can be found prim	narily in the W and SW	/ (see Tables
11		4-152 and 4-153).	ľ	,	Υ.
12		Moderate Priority for	ESR		
13		Areas less	than 5,500 ft.		
14		Southern a	aspects		
15		There are no areas of	moderate priority for	ESR in the Massacre p	lanning area.
16		Low Priority for ESR			
17		 Low sageb 	rush greater than 5,5	00 ft.	
18		Northern	aspects greater than !	5,500 ft.	
19		There are low sageb	rush sites above 5,50	00 ft. throughout the	planning area
20		which have a strong o	chance of recovering	naturally after a fire. T	There are dry
21		lakebeds on the Wes	t side of the planning	area which are barre	n and do not
22		make suitable habitat f	or GRSG.		

		_	-	
Priority	Priority I	Priority 2	Priority 3	Total
Acres	2,07	53,181	50,977	116,229
Percent of PPA	10.4	45.8	43.9	100

Table 4-152									
Post-Fire Rehabilitation Management Strategies									

I

Table 4-153Post-fire Rehabilitation Priority Areas

Friority	Acreage
Low	41,013.7
High	15,221.1
Low	9,962.9
High	37,939.6
High	12,070.8
	Low High Low High High High

2	
3	Proposed Management
4	See Table 4-154 for projects that have been identified presently within the
5	NEPA planning process. See Figures 4-86 through 4-90 for a graphic depiction
6	of the proposed treatments and strategies in the PPA.

Table 4-154 Project Planning Area Treatment Summary Table

Treatment Description		Priority		Threats Addressed			NEPA			Treatments							
						s (I)						Tir Fra	ne me	Certain Effectiv	nty of eness ¹	tme	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Initiated (I) Completed (C)	Completed (C) Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Massacre Green Stripping	1,309	Х						W			N	Р		LI		5-7	5+
Massacre Green Stripping	2,301		Х					W			N	Р		LI		5-7	5+
Massacre Conifer Treatments	40,601		X		С						N	P		LI		10- 20	5+

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)
 ³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

1	4.2.19 Shinn
2	
3 4	Project Planning Area Description
5	General Site Description
6	The Shinn PPA is located in eastern Lassen County, CA and northwestern
7	Washoe County, NV. This area encompasses Skedaddle Mountain to the south
8	and Shinn, Spanish Springs and Observation Mountains in the north. All
9	individual mountains are eroded, remnant volcanos. Smoke Creek is the primary
10	perennial stream that occurs within the PPA. Springs and seeps commonly occur
11	throughout most of the mountains and plateaus. Elevations throughout the PPA
12	generally range from 4,800 feet in valley bottoms to approximately 8,000 feet on
13	top of Skedaddle Mountain (see Table 4-155).

Table 4-155 Shinn Sage-Grouse Habitat Matrix Categories

	Matrix Category	No Data	IA	IB	IC	2 A	2B	2 C	3A	3B	3C	Grand Total
	Acres	9,210	10,955	33	0	19,254	9,715	90	129,431	112,959	121,046	412,692
	Percent of PPA	2	3	0	0	5	2	0	31	27	29	100
14												
15			The majority of the 3C habitat encompasses the valley bottoms, low lying hills									
16			and volcanic plateaus. The resistance resilience model may be over estimating									
17			the amount of sagebrush returning to the burned areas, as there are									
18			reco	omme	ndatic	ons to a	ugment	past fir	es with sag	gebrush pl	antings. I	Mainly (90
19			perc	ent)	warm	/dry soi	l moistu	ire regi	me with c	ool/dry in	higher o	elevations.
20			Low	er ele	evatio	ns will be	e slow to	recove	er. GRSG ar	re living in	marginal l	habitat.
21			In 3	012	tha E	Duch Ein	o hurno	4 215 (000 acros	within th		Numerous
21			roba	bilita	tion a	nd rosto	ration D	rojects	wore com	with	e rra. i modora	
22			duri	ng th	JOII a	arowing		ofter th	o fino Evtr	omo droug	$h_{t} = 201$	2 covoroly
23 24			imp	ng un		gi Uwing ding and	season		ts in the sec	cond yoar	SIIC III 201	J severely
27			inpa	icteu	all see		i pianting	s pi ojec		cond year.		
25			The	Shinr	n PPA	is almos	t entirel	y withir	n the Twin	Peaks HM	A. The Fi	ield Office
26			did	not g	et app	oroval to	remove	horses	after the	Rush fire a	and, at pr	esent, the
27			AMI	_ with	in the	e PPA is	at least	three ti	mes over h	nigh end (A	AML = 45	0 to 750).
28			Seve	eral ba	ands c	of horses	have be	en site	d at remote	e springs a	nd in ripa	irian areas
29			beca	iuse t	hese a	are the f	irst place	es to re	cover from	fire. Soils	at these	sites have
30			beco	ome e	extren	nely com	pacted a	and vege	etation is li	mited due	to exces	sive horse
31			use.									
~~			_				.					
32			Port	ions	of the	souther	n Shinn	PPA ha	ve converte	ed to chea	tgrass bu	t continue
33			to i	maint	ain a	populat	ion of	GRSG.	The Rush	Fire has	further	expanded
34			chea	itgras	s and	medusa	head. Af	ter the	fire the a	rea had le	ss than 2	.5 percent
35			sage	brush	cove	r but wi	II remair	n a prioi	rity for rest	toration ar	nd recove	ry as long
36			as th	ne GR	SG po	opulation	is main	tained.				

At the end of 2014, USGS, USFWS, CDFW, NDOW and BLM received grant funding to initiate additional telemetry studies to help determine GRSG distribution after the Rush Fire.

Sage-grouse

Т

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

The eastern portion of the ELFO contains the majority of the leks within the Buffalo-Skedaddle Population Management Unit (PMU). Virtually all of the leks showed a significant decline over the past few years regarding number of males counted during annual counts. These leks were affected by the 315,000-acre Rush Fire which ignited in August 2012. The fire burned in various areas from low to high intensity, but resulted in the significant loss of sagebrush and other shrub, grass, and forb species within the fire perimeter. This in turn affected nesting and hiding cover for GRSG, which ultimately increases visibility of adults, and particularly young, to predators. The loss of the majority of beneficial vegetation, including riparian vegetation and associated insects further affected populations and recruitment of young grouse into the adult population. Although natural regrowth of some vegetation has occurred, and rehabilitation efforts included approximately 30,000 acres of reseeding, sagebrush and other brush and browse species are slow to regrow and recover. It is still unknown what long-term effects the fire will have on GRSG and other wildlife species, but results of some post-fire surveys have shown that annual invasive plants are prevalent within the fire perimeter. Multiple fires have occurred in the last 30 years in this area, repeatedly burning the same lands, particularly in the Observation Mountain area. More known noxious or invasive weed sites occur in this area; annual treatments of these infestations occur, and most do not occur in close proximity to known GRSG leks. The 1998-2001 and 2007-2009 GRSG telemetry studies were again very consistent in results; most of the detections occurred in the immediate and surrounding vicinities of known leks. Water sources occur mostly as creeks and springs, and include Smoke Creek, Deep Creek, Rush Creek, Stony Creek, Skedaddle Creek, and numerous springs and ephemeral creeks and drainages.

31 Vegetation

The Rush Fire of 2012 burned approximately 300,000 acres, consuming large stands of sagebrush and western juniper, much of which was located in the Shinn PPA. In addition, much of this landscape had been designated Preliminary Priority GRSG Habitat (PPH). These areas are now predominately annual grasslands dominated by cheatgrass and tumble mustard. In areas where clay soils are present medusahead is often the dominant species. Noxious weeds are also present and are discussed further in the Existing Treatments section.

39Prior to the Rush Fire the Shinn PPA supported large expansive stands of40sagebrush. Wyoming big sagebrush plant communities are present in the lower41elevations and mountain big sagebrush communities and scattered aspen stands42can be found in the higher elevations. Some areas with deeper soils support43basin big sagebrush and Great Basin wild rye stands. Some areas have very
shallow rocky soils, it is common to find low sagebrush and shallow rooted grasses and forbs growing in these places.

The Wyoming and mountain sagebrush plant communities consist of the respective sagebrush species, bitterbrush and rabbit brush shrubs. Perennial grasses such as bluebunch wheatgrass, bottle brush squirrel tail and Thurber's needlegrass and annual and perennial forbs make up most of the understories. In low sagebrush plant communities the common understory grass species is Sandberg's bluegrass. Several small annual and perennial forbs can also be found in these areas.

- 10 The Rush fire burned large swaths of sagebrush stands, but left some stands unburned. The fire burned in a mosaic, consuming more than it spared. Areas 12 where sagebrush is missing are now large expansive stands of annual invasive 13 nonnative species. Many of the unburned stands are decadent with low seed 14 production and recruitment of other species.
- 15 Riparian areas in the Shinn PPA consist mostly of perennial and ephemeral 16 streams and small remote springs and seeps. Smoke Creek, Buffalo Creek, Stony 17 Creek, Rush Creek and Deep Creek are the perennial streams and Skedaddle 18 Creek and South Fork Wash are intermittent waterways. Vegetative 19 communities along these waterways consist mainly of perennial bunch grasses, 20 willow, carex, juncus and various wetland obligate and wetland facultative 21 species. Small springs and seeps dot the landscape and support many of the 22 same wetland obligate and facultative species that are found along the perennial 23 waterways.

Fire

The PPA was heavily impacted by fire over the last 15 years with over 400,000 acres of wildfire within the Shinn PPA. These were all natural caused starts that burned within a very short time period. Prior to 1999 this area had limited fire occurrences and what fires did occur were small in size. There has been a higher occurrence of fires in the recent past and the potential for future fires is high due to the conversion to cheatgrass that has occurred within many of the fire perimeters.

32 Fire regimes characterize the historic fire frequency, severity, and resulting 33 landscape pattern, and correspond to specific vegetation types. Within the Shinn 34 PPA, fire regimes are highly altered. The predominant Fire Regime Group (FRG) 35 is FRG III with a smaller but significant area of FRG IV and lesser areas of FRGs I 36 and V. There are also significant areas of Fire Regime group IV with less 37 amounts of Fire Regime group I (see Table 4-156).

Т

2

3

4

5

6

7

8

9

11

24

25

26

27

28

29

30

Table 4-156 Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres) 377,950
	High and Very High Burn Probability in PPA (percent)91.7
I	
2	Management Strategies
4	Treatments
5	Large ESR seeding efforts have occurred over a majority of the PPA followin
6	the 2012 fire season. The majority of these treatments were aerial and dri
7	seeded using native species. The main objective was to impede cheatgras
8	expansion and stabilize sites. In areas where terrain allowed drill seeding
9	treatments occurred within areas that cheatgrass and other invasives were likel
10	to invade. Small areas have been hand planted with bitterbrush seedlings. Th
11	main objective is to establish perennial vegetation for wildlife habitat. These
12	reseeding efforts have occurred with varied success. Although livestock grazin
13	was suspended for two growing seasons, free-roaming horses and burro
14	occupy these sites and were not gathered after the Rush Fire. Due to excessive
15	horse and burro populations restoration and rehabilitation efforts have been
16	degraded.
17	Several remote springs have been fenced off using Liberty Pipe fencing. Thi
18	style of fencing is wildlife friendly and keeps livestock and free-roaming horse
19	and burros out of the spring sources and wet meadows.
20	The control of noxious weeds continues throughout most of the PPA b
21	government agencies and local Weed Conservation Districts. BLM treat
22	noxious weeds on federal land using methods discussed in the Eagle Lak
23	Integrated Invasive Plant Management Plan. Known species in the Shinn PPA ar
24	perennial pepperweed, yellow starthistle Canada thistle, Scotch thistle, Russia
25	knapweed and Dyers woad. The area is surveyed annually and know
26	populations are currently being monitored and treated.
27	Previous fires and restoration efforts that began in the 1950s have altered the
28	landscape from its historical vegetative state. Shinn and Observation mountain
29	have both burned several times in recent years. In an effort to stabilize soils an
30	to increase forage production, burned areas were aerial seeded with crester
31	wheat grass and intermediate wheat grass. Most of these treatments occurre
32	on and around Shinn Mountain. There is evidence that big sagebrush species an
33	associated native understory plants are currently present in these sites.
34	The Rush Creek project began in 2014 and is protecting approximately 20
35	acres of riparian and upland vegetation along the South Tributary of Rus
36	Creek. This project is also replacing and repairing nine troughs within a 20mil
37	radius and fencing any associated riparian areas. The objective of this project i
38	to protect the South Tributary of Rush Creek and to provide dispersed wate

I	sources to encourage wildlife, livestock, horse and burro circulation across the
2	landscape. So far success has been good with this project. Vegetation along the
3	South Tributary of Rush Creek is responding positively and several wildlife
4	species, burros and horses have been sighted at the new troughs.
5	Other Relevant Management Activities
6	Other management activities in the PPA are: primitive recreation, seasonal
7	hunting, sheep and cattle grazing, previous wind energy testing applications and
8	discussions about solar energy potential.
9	The Shinn PPA falls within The Twin Peaks HMA. Twin Peaks was last gathered in
10	2010 with approximately 1600 animals being removed at that time. AML for the
11	HMA is 450 to 750 animals. At present projected animal numbers are approximately
12	1800. Under present Wild Horse and Burro guidance there is no mechanism to reduce
13	numbers down to acceptable AML levels.Fuels Management
14	The priority fuel management areas for the Shinn PPA are to create green strips
15	around the remaining sagebrush islands within the Rush Fire perimeter. These
16	areas are critical to the GRSG population that remains within the area. The
17	secondary priority is to create green strips along east/west oriented linear
18	features within the area to aid in suppression of future wildfires. Primarily, roads
19	would be utilized including the Buckhorn Byway, Smoke Creek, and Ramhorn
20	roads. The next priority is to remove juniper, using both mechanical and manual
21	methods, along and north of Buckhorn Byway followed by creation of green
22	strips.
23	There is a need for additional analysis to consider flammability of plantings and
24	use for fuel breaks (some plant species retain moisture and are less flammable).
25	Additional fuels management treatments to consider are targeted use of grazing
26	and chemical treatments for control of invasives. Treatments not considered in
27	the PPA are prescribed fire, biological or mechanical treatments on south slopes
28	below 6,000 feet (see Table 4-157).

Table 4-157Fuels Management Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Total					
Miles	62.69	65.62	13.93	142.24					
	Habitat Restoration and	l Recovery							
	In general, restoratior	In general, restoration and rehabilitation has been successful at higher elevations							
	but significantly less s	but significantly less successful in lower elevations and south slopes. The area is							
	dominated by sagebru	dominated by sagebrush with some areas experiencing low to medium density							
	juniper encroachment	•		-					

I	Treatments
2	The area surrounding Smoke Creek Road burned thoroughly and there are very
3	large areas that lack shrubs or perennial vegetation. Some areas did not burn
4	but are decadent. This area would be ideal to establish some greenstripping
5	sites. Medusahead is currently present and will require treatment prior to
6	planting. Treatment in the existing sagebrush stands can include planting fire
7	resistant vegetation around the existing stands and hand planting sagebrush
8	seedlings within the stands (see Table 4-158).

Table 4-158										
Habitat Restoration Potential Treatments										

	Priority	Priority I	Priority 2	Priority 3	Total								
	Acres	54,120	69,930	26,378	150,427								
-	Percent of PPA	3.	16.94	6.39	36.45								
9													
10		Liberty pipe fer	ncing has been installed	l at various riparian locat	ions within the								
11		Rush Fire perin	neter. Liberty pipe fend	e is heavy gauge pipe tha	t is installed to								
12		prevent horses,	prevent horses, burros and livestock from accessing riparian areas. The fencing										
13		is designed to	is designed to allow riparian access to wildlife. As funding becomes available										
14		Liberty pipe fei	Liberty pipe fencing can be purchased and installed at more springs and seep										
15		areas. As circu	nstances arise riparian	areas can receive vegetat	ion treatments								
16		to expand and i	mprove their condition										
17		Work is ongoir	g and would be a cont	inuance of ESR. Treatmen	ts using a long-								
18		term perspectiv	e need to continue.										
19		Free-roaming h	orses and burro use is	a continuing problem and	will negate any								
20		success gained	from treatment. Fenc	ing may not be effective	, especially for								
21		burros.											
22		Existing restora	tion of aerial, broadcas	t, and drill seeding need to	be maintained								
23		and enhanced.	Ongoing planting of bitt	erbrush and sagebrush see	dlings needs to								
24		be funded for l	ong term recovery. La	rge understory areas of i	nvasive annuals								
25		need to be cher	nically treated before so	eeding.									
26		Restoration an	d recovery would fo	ocus priority on north-s	lope and high								
27		elevation where	e there is a higher prot	bability for restoration and	l could provide								
28		birds with at l	east some habitat. Th	e concept is to provide	better habitat								
29		(cover) surrour	nding the leks for nesti	ng and brood rearing. Se	eding on south								
30		slopes and low	elevation is a viable m	echanism but would be a	lower priority.								
31		(with the excep	tion of greenstripping).										
32		In brood rearin	g habitat, there is a nee	d to ensure that riparian a	reas have good								
33		recovery. Fenci	ng will be used to prote	ct sensitive riparian areas.	There are only								
34		a few springs in	the southern portion	. There is more water in	the north, but								
35		there is a need	to monitor for grazing i	n those areas.									

- L The West/northwest areas of the PPA would be targeted for conifer reduction. 2 There are large areas of phase I and 2 juniper in the Buckhorn area. Conifer 3 treatments would be prioritized around the leks and work outward from there 4 in stages. 5 There would continue to be a focus on maintaining and improving success of 6 existing projects, especially those in riparian areas. Repair existing exclosures, 7 repair water troughs, clean out head boxes and/or repair pipes. 8 In low elevation and warm/dry soils, active restoration would need to be very
- 8 In low elevation and warm/dry soils, active restoration would need to be very
 9 selective and would need to be followed by chemical treatments. These areas
 10 are not a priority for mechanical treatments.
- IICoordination of projects with other government agencies (NRCS, CDFW,I2USFWS) and private landowners in this area has been frequent and coordinationI3efforts will be continued. The Shinn PPA falls within the Buffalo-Skedaddle PMUI4and is governed by the conservation plan developed by the Buffalo-SkedaddleI5working group.
- 16 Fire OperationsThe entire area is high priority for fire suppression; however, 17 protection of the remaining sagebrush islands within the Rush Fire perimeter 18 would take precedence for suppression activities. The Wildland Fire Decision 19 Support System will be updated to reflect these priorities and identify the areas 20 to the decision maker during a wildfire event. Given a scenario with two fire 21 starts, resources would be evenly split among north and south areas. It is all 22 priority. The message to fire crews (incident commander) in this area under this 23 scenario would be to talk to resource advisor(s) for advice. Coordination of 24 Fire Suppression activities would be conducted under the current dispatch 25 system (see Table 4-159).

	Priority	Priority I	Priority 2	Priority 3	Total							
	Acres	304,351	108,341	0	412,692							
	Percent of PPA	73.7	26.3	0	100							
26												
27		Opportunities to enh	Opportunities to enhance or improve suppression activities include preloading									
28		contracts with private landowners. This is currently a regulatory issue that										
29		needs to be address	needs to be addressed as it can only be done once a year. Prepositioning									
30		suppression resource	suppression resources at Ravendale during high fire danger periods and									
31		considering the possib	oility of increasing th	e volume of current wa	ater sources in							
32		the southern part of	the PPA can reduce	the turn-around time to	o refill engines							
33		and/or water tenders.	and/or water tenders.									
34		The use of wildfire for	or resource benefits	would not be used wi	ithin the Shinn							
35		PPA due to the urger	icy of protecting the	limited amount of GRS	G habitat that							
36		remains.	_									

Table 4-159 Fire Operations Management Strategies

March 2015

4-145

l 2	The Rush fire area and intact sagebrush stands adjacent to the fire area are high priorities to prevent from burning again.
3	Use of resource advisors during any incidents in the PPA is critical. Contracts
4	with private landowners could be preloaded to develop a new water sources in
5	the south. This would be a regulatory change.
6	Post-Fire Rehabilitation ManagementAreas of high priority for post-fire
7	rehabilitation would be to reestablish and improve habitat connectivity (see
8	Table 4-160 These areas would be prioritized by:
9	• Greater than 6,000ft and north slopes.
10	Along the Smoke Creek Road
П	 Areas of existing drill seedings in burn area (protecting
12	investments). (include existing stands as part of mosaic burn?
13	Consider areas with higher success as being higher priority as data
13	• Consider areas with higher success as being higher priority, as data
17	Decomes available
15	Previous seedings on the low elevation south slopes were not effective; focus
16	should be higher elevation in the future.
17	Opportunities to improve fuel breaks and implement green stripping along linear
18	features will be analyzed during the Post-Fire Rehabilitation Analysis
19	Coordination of projects with other government agencies (NRCS, CDFW,
20	USFWS) and private landowners in this area has been frequent and coordination
21	efforts will be continued. The Horse Lake PPA falls within the Buffalo-Skedaddle
22	PMU and is governed by the conservation plan developed by the Buffalo-
23	Skedaddle working group.

Table 4-160Post-Fire Rehabilitation Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Total						
	Acres	310,278	102,413	0	412,690						
	Percent of PPA	75.2	24.8	0	100						
24											
25		Proposed Management									
26		See Table 4-161 for projects that have been identified presently within the									
27		NEPA planning process. See Figures 4-91 through 4-96 for a graphic depiction									
28		of the proposed treatments and strategies in the PPA.									

Treatme Descripti	ent ion	Р	riorit	y		Thr Addr	eats essed		I	NEPA	A Treatments			5			
						s (I)						Tiı Fra	me Ime	Certa Effectiv	inty of veness ¹	ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years)²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Shinn Green Stripping	3,253	Х						W			N	Р		LI		5-7	5+
Shinn Green Stripping	3,414		Х					W			N	Р		LI		5-7	5+
Shinn Green Stripping	717			Х				W			N	Р		LI		5-7	5+
Shinn Conifer Treatments	36,777		Х		С						N	Р		LI		10 to 20	5+
Shinn Invasive Weeds Treatments	87,179	x		11 1		1	. "				N	P		LI		5-7 if follow- up is neces- sary	5+

Table 4-161 **Project Planning Area Treatment Summary Table**

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

4.2.20 Horse Lake

Project Planning Area Description

General Site Description

The Horse Lake PPA is located in Lassen County. This area encompasses the Fredonyer Mountain area which is oriented north/south with the GRSG habitat occupying the eastern slope. The PPA encompasses the eastern slope of the mountain, dry lakes beds and volcanic table lands. Springs and seeps commonly occur throughout most of the area. The two main drainages are Pete's and Snowstorm Creeks. Elevations throughout the PPA generally range from 4300 feet on the lower plateaus of Horse Lake to approximately 7,200 feet on Fredonyer Mountain. See Table 4-168, Project Planning Area Treatment Summary Table.

T 2

3 4

5 6

7

8

9

10 Ш

12

13

14

The PPA is dominated by warm/dry soils except in high ele	vation areas, such as
Pete's Creek and Snowstorm, which are warm/moist. Co	ol/moist soils types
exist in the northwest and in higher elevation areas (see Ta	ble 4-162).

Table 4-162Horse Lake Sage-Grouse Habitat Matrix Categories

	Matrix Category	No Data	IA	ΙB	IC	2 A	2B	2C	3A	3B	3C	Grand Total
	Acres Percent of PPA	1,845 2	5,988 6	9,229 10	I,474 2	0 0	371 0	0 0	484 I	32,265 35	41,694 45	93,351 100
4 5			The m	ajority c	of the ha	bitat is	s within	the wa	arm/dry ((3C) soil ty	ypes excer	pt for the
6			higher	elevatio	ns. The	habita	it is defi	ned by	intact sa	agebrush s	tands with	n a native
7			grass a	and forb	unders	story i	n the h	igher o	elevation	s grading	to invasiv	e grasses
8			unders	tory in	the low	ver ele	vations.	The a	area falls	within a	10 to 12	inch/year
9			precipi	precipitation zone.								
10			Sage-gr	rouse					<u> </u>			
11			The H	orse Lak		ty curr	ently su	ipports	s five acti	ve GRSG	leks. Thes	
12			Horse	Lake, L	ittle Bla	CKS I™I0 · ⊂	ountain	North	, Little B	acks Mou	intain Res	Satellite,
13			Little	BIACKS	i iounta	in so	utn, an Janks I	a Pet	es Cree Creation	ek. Annua	и ек со	unts are
14			of mal	cted on		eks, an	a only r	(14)	Creek sh Tolomoti	owed an i	ncrease in	n number
15					2013 (i 2007 /		co 2014	(1 4). in vor	relemen v similar	roculter f	n studies	
17			0.00-2	od in th	n Black	ε Μου	ntain ar		y sirinai I ovon m	ore heavi	v to the	southeast
18			near B	iscar th	e Table	lands a	and to t	he area	a of the S	Shaffer lek	Vegetati	on within
19			the are	ea is typ	ical of t	he sag	ebrush	comm	unity, and	d includes	big sage.	low sage.
20			bitterb	rush an	id othe	r brov	wse sp	ecies.	and a v	ariety of	native an	inual and
21			perenr	nial grass	and fo	rb spe	cies. Th	e majo	ority of t	he area is	classified	as GRSG
22			value F	R-I (area	as with	, poten	tial to p	roduce	e sagebru	ısh plant c	ommuniti	es with a
23			good i	indersto	ry of gr	asses a	and forb	s, but	lacks suff	ficient sage	brush car	10py) and
24			R-4 (a	reas wit	h poten	itial to	produc	ce sage	ebrush pl	ant comm	unities, b	ut whose
25			unders	tories a	re curr	ently o	dominat	ed by	annual g	rass, forbs	, or bare	ground).
26			Water	sources	s are ple	entiful,	and inc	ude Pe	ete's Cre	ek, Snows	torm Cree	ek, Biscar
27			Reserv	oirs, C	raemer	Rese	rvoir, `	Willow	v Creek,	and mu	ltiple spr	ings and
28			ephem	eral dra	inages. T	These	provide	impor	tant ripai	rian habita	t for GRS	G brood-
29			rearing	g by sup	plying t	penefic	ial forb	s and i	insects to	o nesting	females a	nd young
30			broods	s. Severa	al locati	ons of	noxiou	is wee	ds are k	nown with	nin the vio	inity and
31			are tre	eated an	nually; ł	nowev	er the o	lensity	of these	sites is s	parse com	pared to
32			other	areas wi	thin the	ELFO	, and no	one oc	cur in the	e immedia	te vicinity	of GRSG
33			leks. B	ird usag	e on tal	ole lan	ds is mo	ore for	connect	ivity and l	ess for ne	esting and
34			brood	rearing.								

| 2 3

Vegetation

L

2

3

4

5

6

7

8

9

10

П

27

28

29

30

31

32

33

34

35

36

37

38

39

The topography of the Horse Lake PPA area can be considered Basin and Range. The dominate vegetation consists of mountain big, Wyoming and low sagebrush plant communities. Associated shrub species include antelope bitterbrush and rabbit brush. Buckwheat is the common shrub association found in the low sagebrush sites. Perennial and annual grass and forb species make up the understories. Curleaf mountain mahogany is present in the rocky outcrops and ridges and there are a few aspen stands scattered in the higher elevations. In addition, western juniper, cheatgrass and in some areas medusahead are also present. Noxious weeds are present and further discussed in the Existing Treatments section of this document.

- Western juniper, is actively encroaching onto the sagebrush rangeland. These
 sites are predominately dominated by phase I and phase 2 encroachments as
 described by Miller, et al. (2005). Cheatgrass dominates portions of past fires
 and disturbed areas throughout the PPA. Medusahead has also been
 documented in small patches where clay soils are present.
- 17 Riparian areas in the Horse Lake PPA consist mostly of perennial streams and 18 small remote springs and seeps. Pete's Creek and Snowstorm Creek are both 19 perennial streams that flow through the center of the habitat area. Pine Creek 20 and Shoal's Creek are also perennial streams that are located in the northern 21 end of the PPA and at higher elevations. Vegetative communities along these 22 waterways consist mainly of perennial bunch grasses, willow, carex, juncus and 23 various wetland obligate and wetland facultative species. Small springs and seeps 24 dot the landscape and support many of the same wetland obligate and facultative 25 species that are found along the perennial waterways.
- 26

Fire

Fire regimes characterize the historic fire frequency, severity, and resulting landscape pattern, and correspond to specific vegetation types. Within the Horse Lake PPA, fire regimes are moderately altered. The dominant vegetation in the PPA is mountain big sagebrush, which falls within Fire Regime group III based upon a historic fire frequency of 20 years with stand-replacement severity (source: LANDFIRE biophysical settings model). There are also significant areas of Fire Regime group IV with less amounts of Fire Regime group I. Most of the Horse Lake PPA has experienced too little recent fire leading to expansion of western juniper and the establishment of phase I and II juniper woodlands (see **Table 4-163**).

Several small fires have occurred in the general area; one in 1987 for approximately 1,100 acres, and two in 2002 for a total of approximately 1,200 acres. These fires all occurred just south of Horse Lake and Craemer Reservoir.

Table 4-163 Summary of Burn Probability

High and Very High Burn Probability in PPA (acres)	78,811
High and Very High Burn Probability in PPA (percent)	84.9

Existing Treatments

Horse Mountain was the site of an expansive multi-year juniper reduction that began in 2008. Rehabilitation treatments consisted of small efforts to seed associated landings and skid rows. The objective of these efforts was to get some native vegetation reestablished in the disturbed areas. Treatments consisted of broadcast and drill seeding native perennial grasses, forbs and shrubs. Treatments occurred in 2010, 2011 and 2013. Success rates have varied, for example, north slopes at higher elevations have had better success than south slopes. Treatments that occurred in 2011 were more successful than 2013 because precipitation levels were higher in 2011.

- 12The control of noxious weeds continues throughout most of the PPA by13government agencies and local Weed Conservation Districts. BLM treats14noxious weeds on federal land using methods discussed in the Eagle Lake15Integrated Invasive Plant Management Plan. Known species in the Horse Lake16PPA are perennial pepperweed, hoary cress, yellow starthistle and17Mediterranean sage. These populations are currently being monitored and18treated.
- 19Existing vegetative treatments within the PPA include 564 acres of juniper hand20thinning and 600 acres of mechanical juniper thinning. There are 1,642 acres of21additional juniper reduction treatments currently planned within the PPA. The22original objectives of these treatments were to reduce hazardous fuels and23improve sage-steppe habitat.
- 24In 2014 a low impact phase I juniper removal project treated 500 acres in the25Horse Lake PPA. This project consisted of people hiking to encroachment trees26and cutting them with chainsaws, loppers or hand saws. The trees were left27where they fell. At this time it is too early to measure the success rate.
- 28 29

30

31

32

33

34

35

36

37

1 2

3

4

5

6

7

8

9

10

11

Management Strategies

Other Relevant Management Activities

Traditional use activities for the area includes: grazing, hunting and non-invasive recreation. Summer grazing occurs in the Horse Lake PPA. Adjacent to the west side of the PPA is a wind energy plan of development application that has been accepted but is deferred until the ongoing GRSG EIS is signed and implemented.

- Fuels Management
- The priority fuels management area within the Horse Lake PPA is to the south and east of Blacks Mountain due to the generally lower elevation and its

 2 3 4	susceptibility to cheatgrass encroachment following disturbance and fall within the 3C category (warm/dry soils, >65 percent sagebrush cover). Fuels treatments within this area would primarily be focused on hand treatment of phase L and phase II juniper encroachment areas along linear features (roads
5	pipe and power lines) followed by green stripping with suitable species.
6	Coordination of projects with other government agencies (NRCS, CDFW,
7	USFWS) and private landowners in this area has been frequent and coordination
8	efforts will be continued. The Horse Lake PPA falls within the Buffalo-Skedaddle
9	PMU and is governed by the conservation plan developed by the Buffalo-
10	Skedaddle working group.

11 Areas of higher elevation receive more moisture, theoretically these areas 12 recover quicker and have a higher rate of success. These areas would be lower 13 priority for fuels management projects.

Skedaddle working group.

- 14 Mechanical treatments in the southeastern area, at lower elevations and on 15 south facing slopes would be avoided due to high probability of conversion to 16 cheatgrass.
- 17 Other treatments to continue and to consider in the future are: prescribed fire, 18 chemical treatments at lower elevations, mechanical at higher elevations and on 19 north slopes and targeted grazing (see Table 4-164).

Priority	Priority I	Priority 2	Priority 3	Total		
Miles	20.97	33.00	0	53.97		
	Habitat Resta	pration and Recovery				
	In general, r	estoration and rehabil	itation has been succ	cessful on north slopes at		
	higher eleva	tions but significantly	/ less successful or	n south slopes in lower		
	elevations. The area is dominated by sagebrush with areas of low to medium					
	density junip	er encroachment (see	Table 4-165).			

Table 4-164 **Fuels Management Potential Treatments**

Table 4-165 Habitat Restoration Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Tota
Acres	19,792	52,349	0	72,141
Percent of PPA	21.20	56.08	0	77.28
	Noxious weeds	will be inventoried, t	treated, and monitored. T	There will be a
	Noxious weeds special emphasis	s will be inventoried, t s on roadsides, landing	treated, and monitored. T is and skid-rows within th	There will be a e North Horse
	Noxious weeds special emphasis Stewardship pro	will be inventoried, t s on roadsides, landing oject area. Focus on roa	treated, and monitored. T is and skid-rows within th adside and known infestati	There will be a e North Horse ons sites within

The focus of the Eagle Lake Field Office is to protect intact habitat, improve degraded habitat and to restore connectivity. Juniper encroachment will only be treated when in phase I and phase 2. Phase 3 sites are present but will not receive priority treatment because the cost necessary for successful rehabilitation often outweighs the benefits. The benefits of hand treating encroachment trees that are in phase I and 2 outweighs the cost, provides low impacts to surrounding vegetation and wildlife species and will be a priority method of treatment over mechanical treatments. If it is decided that mechanical juniper treatments will occur they will be restricted to north slopes and elevations above 6000 feet.

- 11 The Horse Lake PPA supports leks and brood rearing habitat. There are several 12 water sources that support desirable vegetation for GRSG. Some areas can be 13 fenced to protect these areas from grazing impacts.
- 14 Coordination of projects with other government agencies (NRCS, CDFW, 15 USFWS) and private landowners in this area has been frequent and coordination 16 efforts will be continued. The Horse Lake PPA falls within the Buffalo-Skedaddle 17 PMU and is governed by the conservation plan developed by the Buffalo-18 Skedaddle working group.
- 19 The Tablelands in the southeast portion of the PPA are important for 20 connectivity to the Shaffer Connectivity PPA and Shinn PPA to the east. A large 21 percent of the area has converted to invasive grasses. As this area continues to 22 be used by GRSG a plan to prevent cheatgrass from spreading into good habitat 23 would be appropriate. Grazing systems that support perennial bunchgrass health 24 could be implemented as part of the recovery of the habitat. NRCS could 25 initiate the process on private lands and assist with infrastructure on public 26 lands as this area is prioritized.
- 27 Fire Operations 28 29

The priority areas for fire suppression operations coincide with those for fuels treatments (Tablelands to the south and east of Blacks Mountain). The management of wildfire for resource benefit would not be utilized in this PPA due to the high risk of cheatgrass encroachment following disturbance (see Table 4-166).

F	Priority	Priority I	Priority 2	Priority 3	Total
A	Acres	26,428	66,923	0	93,351
F	Percent of PPA	28.3	71.7	0	100
33					
84		There have been few	historic fires and acce	ss to and within the PP	A is adequate

Table 4-166 **Fire Operations Management Strategies**

L

2

3

4

5

6

7

8

9

10

30

31

l 2	The coordination of Fire Suppression activities within the PPA is already in place.
3	Post-Fire Rehabilitation Management
4	The table lands and uplands areas would be targeted first after a fire or other
5	disturbance. The uplands would recover quickest and provide suitable habitat as
6	the other, less resilient, areas would be targeted for treatments (see Table
7	4-167).
8	Opportunities for fuel breaks and green stripping will be analyzed during the
9	post-fire rehabilitation assessment process.

Table 4-167 Post-Fire Rehabilitation Management Strategies

Priority	Priority I	Priority 2	Priority 3	Total
Acres	26,428	66,923	0	93,351
Percent of PPA	28.3	71.7	0	100
			•	

10	
11	Proposed Management
12	See Table 4-168 for projects that have been identified presently within the
13	NEPA planning process. See Figures 4-97 through 4-101 for a graphic
14	depiction of the proposed treatments and strategies in the PPA.

Table 4-168 Project Planning Area Treatment Summary Table

Treatment Priority Description		Threats Addressed			NEPA			Treatments									
						Ś						Tir Fra	ne me	Certa Effectiv	inty of veness ¹		me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse (I)	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Frame (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Horse Lake Green Stripping	۱,090	Х						W			Ν	Р		LI		5-7	5+
Horse Lake Green Stripping	1,703		Х					W			Ν	Р		LI		5-7	5+
Horse Lake Conifer Treatments	40,188		Х		С						N	Р		LI		10- 20	5+
Horse Lake Conifer Treatments Existing	4,531				С					С			I	LI		10- 20	0

March 2015

Treatm Descript	reatment Priority		ty		Threats Addressed			NEPA			Treatments						
						S						Tiı Fra	me Ime	Certa Effecti	inty of veness ¹		me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse (I)	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Frame (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Horse Lake Conifer Currently Proposed Treatments	992		Х		С					С			Ι	LI		10- 20	0-2

Table 4-168 Project Planning Area Treatment Summary Table

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

4.2.21 Shafer Mountain Connectivity

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

3	
4	Project Planning Area Description
5	
6	General Site Description
7	The Shaffer Mountain Connectivity PPA is located in Lassen County. This area
8	starts on the north slope of Shaffer Mountain down to the Tablelands to the
9	north. Springs and seeps commonly occur throughout most of the area.
10	Elevations throughout the PPA generally range from 4,200 feet on the lower
11	plateaus to approximately 6,700 feet.
12	The majority of the habitat is within the warm/dry (3C) soil types except for the
13	higher elevations. The habitat is defined by intact sagebrush stands with a native
14	grasses and forbs understory in the higher elevations grading to invasive grasses
15	understory in the lower elevations. The area falls within a 10 to 12 inch/year
16	precipitation zone (see Table 4-169).

Table 4-169
Shafer Connectivity Corridor Sage-Grouse Habitat Matrix Categories

Matrix Category	No Data	IA	IB	IC	2 A	2B	2C	3A	3B	3C	Grand Total
Acres	993	0	23	865	0	0	0	0	1,135	16,200	19,216
Percent of PPA	5	0	0	5	0	0	0	0	6	84	100

17

4-154

Sage Grouse

L

П

The Shaffer connectivity PPA currently supports two active GRSG leks. These include Shaffer Mountain and Shaffer 2003 Satellite. Annual lek counts are conducted on these leks and only Shaffer 2003 Satellite showed an increase in number of males from 2013 (eight) to 2014 (11). Telemetry data from studies done in 1998-2001 and 2007-2009 resulted in very similar results; frequent detections occurred on the Tablelands and near the Shaffer lek. The majority of the area is classified as GRSG value R-4 (areas with potential to produce brush plant communities, but whose understories are currently dominated by annual grass, forbs, or bare ground). Water sources include Butte and Shaffer wells, Gilman Springs, Snowstorm Creek, Secret Creek, and Deep Creek. These provide important riparian habitat for GRSG brood-rearing by supplying beneficial forbs and insects to nesting females and young broods. Several small fires have occurred in the general area; one in 1985 and one in 2001 for a total of approximately 1,022 acres.

Vegetation

The dominate vegetation consists of mountain big, Wyoming and low sagebrush plant communities. Associated shrub species include antelope bitterbrush and rabbit brush. Buckwheat is the common shrub association found in the low sagebrush sites. Perennial and annual grass and forb species make up the understories. Curleaf mountain mahogany is present in the rocky outcrops and ridges. In addition, western juniper, cheatgrass and in some areas medusahead are also present. Noxious weeds are present and further discussed in the Existing Treatments section of this document.

Fire

Few historic fires have occurred within the Shaffer Connectivity PPA. Fire regimes characterize the historic fire frequency, severity, and resulting landscape pattern, and correspond to specific vegetation types. The dominant vegetation in the PPA is mountain big sagebrush, which falls within Fire Regime group III based upon a historic fire frequency of 20 years with stand-replacement severity (source: LANDFIRE biophysical settings model). There are also significant areas of Fire Regime group IV with less amounts of Fire Regime group I. The area has experienced too little recent fire leading to expansion of western juniper and the establishment of phase I and II juniper woodlands (see **Table 4-170**).

This planning area is accessible for firefighting. The coordination of Fire Suppression activities within the PPA is already in place.

Table 4-170 Summary of Burn Probability

High and Very High Burn Probability in PPA (acres)	19,023
High and Very High Burn Probability in PPA (percent)	99.7

2 The control of noxious weeds continues throughout most of the PPA by 3 government agencies and local Weed Conservation Districts. BLM treats 4 noxious weeds on federal land using methods discussed in the Eagle Lake 5 Integrated Invasive Plant Management Plan. Known species in the PPA area are 6 perennial pepperweed, Russian Knapweed, halogeton, yellow starthistle, bull 7 thistle, Canada thistle and Mediterranean sage. These populations are currently 8 being monitored and treated. 9 Management Strategies 10 11 Other Relevant Management Activities 12 NRCS has proposed juniper removal along a riparian area north of Karlo Road 13 as well as water developments on the tablelands to help potentially facilitate 14 grazing pressure on annual grasses. 15 Traditional use activities for the area include: grazing, hunting and non-invasive 16 recreation. Summer grazing occurs in the PPA. 17 Fuels Management 18 The priority fuels management area within the Shaffer Mountain Connectivity 19 PPA is the lower elevations which are susceptible to cheatgrass encroachment 20 following disturbance and fall within the 3C category (warm/dry soils, > 65 21 percent sagebrush cover). Areas of higher elevation and moisture would be 22 quicker and more successful to recover and would be lower priority for fuels 23 management projects. 24 Treatments to continue and to consider in the future are: prescribed fire, 25 chemical treatments at lower elevations, mechanical at higher elevations and on 26 north slopes and targeted grazing (see Table 4-171). 27 Coordination of projects with other government agencies (NRCS, CDFW, 28 USFWS) and private landowners in this area has been frequent and coordination

Existing Treatments

efforts will be continued. The Shaffer Mountain Connectivity PPA falls within the
 Buffalo-Skedaddle PMU and is governed by the conservation plan developed by
 the Buffalo-Skedaddle working group.

Priority	Priority I	Priority 2	Priority 3	Total
Miles	9.13	7.41	0	16.54
	Habitat Restoration a	and RecoveryIn gene	eral, restoration and reh	abilitation has
	been successful on	north slopes at hi	gher elevations but sig	nificantly less
	successful on south	slopes in lower el	evations. The area is o	dominated by
		· · · · · · · · · · · · · · · · · · ·		

Table 4-171 Fuels Management Potential Treatments

L

	Priority	Priority I	Priority 2	Priority 3	Total		
	Acres	15,578	0	0	15,578		
	Percent of PPA	81.07	0	0	81.07		
 2 3		The focus of the Eagle Lake Field Office is to protect intact habitat, improve degraded habitat and to restore connectivity.					
4		The Tablelar	nds in the north portion of t	he PPA are an important c	connectivity		
5		corridor bet	ween the western Horse La	ke PPA and the eastern Sh	inn PPA. A		
6		large percer	nt of the area has converte	ed to invasive grasses. As	s this area		
7		continues to	be used by GRSG and a plan	i to prevent cheatgrass from	n spreading		
8		into good ha	bitat would be appropriate. C	razing systems that suppor	rt perennial		
9		bunchgrass h	health could be implemented	as part of the recovery of	the habitat.		
		on public lan	ds as this area is prioritized.	ite lands and assist with inf	rastructure		
12		The Karlo R	oad area is an important bro	ood-rearing area for GRSG	. There are		
13		many stringe	er meadows and springs wit	h adjacent shrub cover. A	\necdotally,		
14		reports have been that hundreds of grouse use this area in the summer. Grazing					
15		management	could be improved to provi	de more perennial grass co	over in this		
16		area and to l	keep the meadow and spring a	areas healthy.			
17		Coordinatio	n of projects with other g	overnment agencies (NRC	S, CDFW,		
18		USFWS) and	private landowners in this ar	ea has been frequent and co	oordination		
19		efforts will b	e continued. The Shaffer Mou	Intain Connectivity PPA falls	s within the		
20		Buffalo-Sked	addle PMU and is governed t	by the conservation plan de	eveloped by		
21		the Buffalo-S	kedaddle working group.				
22		Fire Operation	ns				
23		High Priority	ofor Suppression (see Tables	; 4-173 and 4-174)			
24		• ,	Areas with low resistance a	nd resilience which are no	ot likely to		
25		I	recover				
26		•	Mud Flat region of the connec	tivity north of Shaffer Mour	ntain.		
27		•	The Tablelands to the south a	nd east of Black Mountain.			
28		Moderate Pr	iority for Suppression				
29		•	TBD				

Table 4-172Habitat Restoration Potential Treatments

Site Description	Fire Operations Priority Rating	Acreage
Shaffer Mountain Connectivity	Moderate	5,682.1
Mud Flat Connectivity	High	13,529.4

	Table 4-173	}
Fire	Operations Prio	rity Areas

L	
L	

	Fire Operations Management Strategies					
	Priority	Priority I	Priority 2	Priority 3	Total	
	Acres	11,362	7,853	0	19,215	
2	Percent of PPA	59.1	40.9	0	100	
2		Dest Fire Dalashilitation /	A +			
		Post-Fire Renabilitation /	vianagement Teologia 175 or	4 174)		
4		High Priority for ESK (see I adies 4-175 ar	10 4-1 / 0)		
5 6		 Areas with 12 years) 	n a short burn interva	l (burned more than tw	ice in the last	
7		Areas unb	urned in the last 30 y	ears		
8		Elevations	> 6.000 ft			
Ū			0,000 10.			
9		The North slopes and	Balls Canyon in the S	W corner of the planni	ng area.	
10		Moderate Priority for	ESR			
П		Recently E	ourned sites			
12		Elevations	< 6,000 ft.			
13		North Slo	Des			
14		 Areas with 	high levels of invasiv	e annuals in the underst	ory	
15		The Tablelands Rest	oration Area which	n makes up the mai	ority of the	
16		connectivity area.				
		,				
17		Low Priority for ESR				
10		A	high laugh of invious	ad awar lawd		
18		 Areas with 	i high levels of irrigate	ed crop land		
19		There are no areas that	it meet this description	on.		
20		Opportunities for fue	l breaks and green s	trioning will be analyze	d during the	
21		post-fire rehabilitation	assessment process.			
		F 200 0				

Table 4-174Fire Operations Management Strategies

Priority	Priority I	Priority 2	Priority 3	Total
Acres	11,358	7,857	0	19,214
Percent of PPA	59.1	40.9	0	100

Table 4	4-175
Post-Fire Rehabilitation N	Management Strategies

L

3

4

5

6

	Table 4-176	
Post-fire	Rehabilitation Price	ority Areas

Site Description	Priority	Acreage
North Slopes and Balls Canyon	High	3,155.0
Tablelands Restoration Area	Moderate	16,764.1

Proposed Management See **Table 4-177** for projects that have been identified presently within the NEPA planning process. See **Figures 4-102** through **4-105** for a graphic depiction of the proposed treatments and strategies in the PPA.

	Table 4-177								
-			•	-	_				

Treatm Descrip	Treatment Description Priority			Threats Addressed			I	NEPA			Treatments						
				í		(I) s					Time Frame		Certainty of Effectiveness ¹		ame	me	
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Shaffer Mountain Green Stripping	481	X						W			Ν	Р		LI		5-7	5+
Shaffer Mountain Green Stripping	381		Х					W			N	Р		LI		5-7	5+
Shaffer Mountain Weeds Treatments	15,578		Х		С						N	Р		LI		10- 20	5+

Project Planning Area Treatment Summary Table

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

l 4.2.22	Madeline Plains
3	Project Planning Area Description
5	General Site Description
6	The Madeline Plains PPA is located in Lassen County, California. Elevation is
7	around 5,300 feet on the Madeline Plains to approximately 7,000 feet on
8	Whitinger Mountain. The majority of the land within in the PPA, 58,994 acres
9	(81 percent) is owned and managed by private landowners, while the remaining
10	13,916 acres (19 percent) interconnecting the private land public lands in the
11	higher elevations to the north west is managed by the BLM.
12	The majority of the PPA is within the warm/dry (2b, 2C) soil types. The habitat
13	is a mixture of agricultural lands (typically alfalfa) and intact acreages of
14	mountain big sagebrush stands with a native grass and forb understory in the
15	higher elevations grading to Wyoming big sagebrush with invasive grasses
16	understory in the lower elevations (see Table 4-178).

Table 4-178
Madeline Plains Sage-Grouse Habitat Matrix Categories

	Matrix Category	No Data	IA	ΙB	IC	2 A	2B	2C	3 A	3B	3C	Grand Total
	Acres	6	3,007	5,369	356	617	2,265	346	1,909	35,442	23,677	72,992
	Percent of	0	4	7	0	I	3	0	3	49	32	100
17												
10			Saa	o Crouse								
19			Jug The	Madali		curront	ly suppor	ts ono a	ctivo lok	Spanish S	Springs R	ocont lok
20				nts sho	11e 11 A	Dorcont	doclino i	in malo	attondan	spanish s	ing the 2	
20			Eirc	Tolon	wa Ju netrv c	lata from	m studios	n maie	ctod in	1998_200	l and 2	007_2009
21			rosi	ultod in	verv	similar	rosults	frequent	detectiv		irred ve	ar round
22			thr		the M	adolino I	Plains Th	e maior	ity of the	area is d	rlassifiad	
23			valı		areas t	hat have	crossed	the thr	eshold fr	om sageh	rush con	nmunities
25			into		l grassl	ands for	rhs or h	are gro	und) Lar	om sageb røe alfalfa	fields o	n private
26			Dro	nerty n	rovide v	valuable	brood-re	aring hal	hitat hv si	oc ununu Iving i	nsects for	r foraging
27			GR	SG chic	ks Sev	eral sma	all fires h		urred in	the gene	eral area	and two
28			rec	ent larg	re fires	have bu	irned soi	itheast	of the PI	PA. in 20	01 appro	oximately
29			67.3	790 acre	es burn	ed and i	in 2012 o	ver 315	.000 acre	s. Howe	ver. the l	PPA itself
30			has	not bur	nt in th	ie 30 yea	ars.		,000 4010			
						,						
31			Veg	etation								
32			The	e domir	nate ve	getation	consists	of mou	untain big	g sagebru	ısh, Wyc	oming big
33			sage	ebrush	and lo	w sageb	orush pla	nt com	munities.	Associat	ed shrut	o species
34			incl	ude an	telope	bitterbr	ush and	rabbit	brush wi	ith snow	berry an	d desert
35			cur	rant at	the hig	gher ele	vations. F	Rock bu	ckwheat	is the co	ommon s	sub-shrub
36			asso	ociation	found i	n the lo	w sagebru	ush sites	. Perennia	al and anr	nual grass	and forb
37			spe	cies ma	ike up	the und	lerstories	; native	perennia	l grasses	are dor	ninant at

l 2 3 4 5	elevations above 6,000 feet. Curleaf mountain mahogany is present in the rocky outcrops and ridges and there are a few aspen stands scattered in the higher elevations. In addition, western juniper and cheatgrass are also present. Noxious weeds are present and further discussed in the Existing Treatments section of this document.
6 7	Western juniper is actively expanding into the sage-steppe plant communities within the PPA. As described by Miller, et al. (2005), there are three transitional
8	phases of juniper woodland development.
9 10 11	 Phase I - trees are present but shrubs and herbs are the dominant vegetation that influence ecological processes (hydrologic, nutrient, and energy cycles) on the site;
2 3	 Phase II - trees are co-dominant with shrubs and herbs, and all three vegetation layers influence ecological processes on the site;
14 15	• Phase III - trees are the dominant vegetation and the primary plant layer influencing ecological processes on the site.
16 17	The juniper woodland successional phases are predominately in phase I and phase II for the PPA.
18	Fire
19	Fire regimes characterize the historic fire frequency, severity, and resulting
20	landscape pattern, and correspond to specific vegetation types. The dominant
21	vegetation in the PPA is mountain big sagebrush, which falls within Fire Regime
22	group III based upon a historic fire frequency of 20 years with stand-
23	replacement severity (source: LANDFIRE biophysical settings model).
24	Agricultural development limits fire spread (see Table 4-179).

Table 4-179 Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres)	64,634
	High and Very High Burn Probability in PPA (percent)	89.0
25		
26	Existing Treatments	
27	The control of noxious weeds continues throughout the	e PPA by government
28	agencies, local Weed Management Areas and Resource	Conservation Districts.
29	Known species in the Madeline Plains PPA are Sco	otch thistle, perennial
30	pepperweed, Russian knapweed, hoary cress, and (Canada thistle. These
31	populations are currently being treated and evaluated ann	ually.
32	Management Strategies	
33		
34	Other Relevant Management Activities	
35	Traditional use activities for the area includes: agricultur	re, grazing, hunting and
36	recreation.	

I	Fuels Management
2	New fuel break opportunities are limited. Agriculture use has established a
3	network of dirt roads that could be used during a fire (see Table 4-180).
4	Juniper reduction would be refocused for sagebrush habitat since prior
5	treatments were done for a different purpose.
6	Coordination of projects with state and government agencies (NRCS, CDFW,
7	USFWS) and private landowners in this area has been frequent and coordination
8	of efforts will be continued. The Madeline Plains PPA falls within the Buffalo-
9	Skedaddle PMU and is governed by the conservation strategy developed by the
10	Buffalo-Skedaddle working group.
11	Areas of higher elevation and moisture would be quicker and more successful to
12	recover and would be lower priority for fuels management projects.

	Priority	Priority I	Priority 2	Priority 3	Total
	Miles	0	6.66	8.63	15.29
13					
14		Habitat Restoration	and RecoveryGRSG	typically stay or	n private lands.
15		Restoration and rec	overy would focus on j	uniper reduction, i	mainly of phase I
16		and II. Mechanical u	se would be considere	d for late phase II	treatments (see
17		Table 4-181).			
18		Prior juniper treatm	nents have used chemic	al treatments follo	wing mechanical
19		treatments.			
20		Coordination of pro	jects with state and gov	ernment agencies (NRCS, CDF&W,
21		USFWS) and private	landowners in this area	has been frequent	and coordination
22		of efforts will be co	ontinued. The Madeline	Plains PPA falls w	ithin the Buffalo-
23		Skedaddle PMU and	is governed by the con	servation strategy (developed by the
24		Buffalo-Skedaddle wo	orking group.		

Table 4-180Fuels Management Potential Treatments

Table 4-181Habitat Restoration Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Total
Acres	2,648	16,557	0	19,205
Percent of PPA	3.63	22.68	0	26.3 I

l	Fire Operations
2	High Priority for Suppression (see Tables 4-182 and 4-183)
3	Warmer/Drier sites at low elevations
4	Moderate Priority for ESR
5	 Cool/Moist soil temperature/moisture regimes at higher elevations
6	which are more resilient and resistant with a higher potential to
7	recover.

Table 4-182Fire Operations Priority Areas

Site Description	Fire Operations Priority Rating	Acreage
Madeline Flat (SE)	Moderate	39,959.1
Madeline Flat Uplands (NW)	High	33,033.2

8

Priority	Priority I	Priority 2	Priority 3	Tota
Acres	19,094	13,939	39,959	72,992
Percent of PPA	26.2	19.1	54.7	100
	Post-Fire Rehabilitation I	Management		
	High Priority for ESR (see Table 4-184)		
	• Warm/coo	ol dry soils (3A, 3B, 30	C) < 6,000 ft.	
	Warm mo	ist soils (2A, 2B, 2C)	< 6,000 ft.	
	Moderate Priority for	ESR		
	• Warm/coo	ol dry soils (3A, 3B, 30	C) > 6,000 ft.	
	Cool/cold	moist soils (IA, IB, I	C) < 6,000 ft.	
	Recently E	Burned		
	Areas with	n high levels of irrigate	ed crop land	
	Low Priority for ESR			
	• Warm mo	ist soils (2A, 2B, 2C)	> 6,000 ft.	
	Cool/Cold	I moist soils (IA, IB,	IC) >6.000 ft.	

Table 4-183Fire Operations Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Total		
	Acres	27,301	0	45,691	72,992		
	Percent of PPA	37.4	0	62.6	100		
1							
2		Proposed Manageme	nt				
3		See Table 4-185 for projects that have been identified presently within the					
4		NEPA planning proces	s. See Figures 4-1	06 through 4-109 fo	or a graphic		
5		depiction of the proposed treatments and strategies in the PPA.					

Table 4-184Post-Fire Rehabilitation Management Strategies

Table 4-185 Project Planning Area Treatment Summary Table

Treatme Descript	ent ion	Р	riorit	ÿ		Thro Addro	eats essed		I	NEPA	1	Treatments					
						(I) s:						Tiı Fra	ne me	Certai Effectiv	inty of veness ¹	ame	ıme
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ¹	Likely	Unlikely	Maintenance Time Fr (Years) ² Completion Time Fr (A.2, 3.5, 5+ vears) ³	Completion Time Fra (0-2, 3-5, 5+ years) ³
Madeline Plains Green Stripping	343	Х						W			N	Р		LI		5-7	5+
Madeline Plains Green Stripping	444		Х					W			N	Ρ		LI		5-7	5+
Madeline Plains Conifer Treatments	19,205		X		C						N	Р		LI		10- 20	5+

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

6 7

8 9

10 11

12

13

14

15

4.2.23 Madeline Plains Connectivity

Project Planning Area Description

General Site Description

The Madeline Plains Connectivity PPA is located mostly in Lassen County with some acreage in Modoc County, California. Elevation is around 5200 feet and is a paleo lakebed. The PPA is mostly private lands interconnected with public lands.

1	The majority of the habitat is within the warm/dry $(3C)$ soil types. The habitat is
2	a mixture of agricultural lands (typically alfalfa) and intact acreages of sagebrush
3	(see Table 4-186).

 Table 4-186

 Madeline Plains Connectivity Corridor Sage-Grouse Habitat Matrix Categories

M	latrix Category	No Data	IA	ΙB	IC	2 A	2 B	2C	3A	3B	3C	Grand Total
A Pe Pl	cres ercent of PA	9,990 7	3,349 9	9,721 7	8,778 6	1,610 I	269 0	l,291 I	6,894 5	25,314 18	63,372 45	140,589 100
4												
5			Sage	-Grouse		_						
6			The	Madelin	e Plains	Connect	tivity PF	PA curre	ently supp	oorts one	active le	k, Spanish
7			Sprii	ngs. Re	cent lek	counts	s show	a 50Pe	ercent d	lecline in	male a	ttendance
3			tollo	wing th	e 2012	Rush Fir	e. Lelei	metry da	ata from	studies o	done in I	998-2001
7			and	2007-20	JU9 resu	lited in	very si	milar re	sults, fre	equent de	etections	occurred
J			year	round	through	out the r	Madelin	e Plains.	The maj	ority of t	he area is	classified
ן ר			as C		alue X-4	+ (areas	that n	ave cro	ssed the	thresho	Id from	sagebrusn
2			com	municles	s into an	nuai gras	ssiands,	iorbs, o	r Dare gr	OUND). La	irge anana	
2 1			form	ate prop	SC chiel		uable b	l fires ha		read in th	ippiying i	larea and
т 5			two	recent	large f	(s. Jever fires hav	ai sinan ve burr		th of the		one in	2001 for
, ,			200	recent	al ge 1	nies nav	and one	in 2012	for 315	000 area		2001 101
			upp:	0, and a co		0 401 00 0				, • • • • • • • • • • • • •		
7			Vege	etation								
3			The	domina	te veget	ation coi	nsists o	f mount	ain big, V	Vyoming	and low	sagebrush
9			plan	t comm	unities.	Associat	ed shru	ub speci	es incluc	le anteloj	oe bitterl	orush and
)			rabb	oit brusł	n. Buckv	vheat is	the co	mmon s	shrub as	sociation	found in	the low
I			sage	brush s	ites. Pe	rennial a	and an	nual gra	ss and	forb spe	cies mak	e up the
2			unde	erstories	s. Curlea	af mount	ain mah	nogany is	s presen	t in the r	ocky out	crops and
3			ridge	es and t	here ar	e a few	aspen s	stands so	cattered	in the hi	gher elev	ations. In
4			addi	tion, we	estern ju	iniper, c	heatgra	ss and i	n some	areas me	edusahead	l are also
5			pres	ent. No	oxious v	weeds a	re pres	sent and	further	discusse	ed in the	e Existing
5			Trea	atments	section	of this do	ocumer	nt.				
7			Fire									
, R			Fire	regime	s charac	rterize t	he hist	oric fire	freque	ncv seve	rity and	resulting
, ,			land	scape p	attern, a	and corr	espond	to spec	ific vege	tation ty	nes. The	dominant
)			Vege	tation i	n the PP	A is mo	untain l	hig saget	orush. wi	hich falls	within Fir	re Regime
-			grou	ום III h	ased ur	oon a k	nistoric	fire fr	equency	of 20	vears wi	th stand-
2			repl	acement	severit	y (sourc	e: LAN		biophysic	al setting	s model)). In 2001
3			the	Observa	ation fire	e occurr	ed con	suming s	some of	the SE D	ortion of	the PPA.
,			Port	ions of	the are	a was co	onsume	d by th	e Rush f	ire in 20	12. Acce	ss to and
			with	in the	PPA is	adequat	te for	fighting	fire and	d he co	ordinatio	n of Fire
)			Supp	pression	activitie	s within	the PP/	A is alrea	ady in pla	ice (see T	able 4-1	87).

Table 4-187 Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres) I16,532
	High and Very High Burn Probability in PPA (percent)83.3
I	
2	Existing Treatments
3	The control of noxious weeds continues throughout most of the PPA by
4	government agencies and local Weed Conservation Districts. Known species in
5	the PPA area are perennial pepperweed, hoary cress, yellow starthistle and
6	Mediterranean sage. These populations are currently being monitored and
7	treated.
8	Management Strategies
9	
10	Other Relevant Management Activities
11	Traditional use activities for the area include: agriculture, grazing, hunting and
12	non-invasive recreation.
13	Fuels Management
14	Coordination of projects with other government agencies (NRCS, CDF&W,
15	USFWS) and private landowners in this area has been frequent and coordination
16	of efforts will be continued. The Madeline Plains Connectivity PPA falls within
17	the Buffalo-Skedaddle PMU and is governed by the conservation plan developed
18	by the Buffalo-Skedaddle working group.
19	Areas of higher elevation and moisture would be quicker and more successful to
20	recover and would be lower priority for fuels management projects (see Table
21	4-188).

Table 4-188						
Fuels	Management Potential	Treatments				

	Priority	Priority I	Priority 2	Priority 3	Total
	Miles	7.59	17.45	16.64	41.68
22					
23		Habitat Resta	ration and Recovery		
24		In general, r	estoration and rehabil	itation has been suc	cessful on north slopes at
25		higher eleva	tions but significantly	less successful or	n south slopes in lower
26		elevations. T	he area is dominated	by sagebrush and an	nual invasives (see Table
27		4-189).			

Table 4-189
Habitat Restoration Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Total
Acres	26,927	15,453	0	42,380
Percent of PPA	19.15	10.99	0	30.14

 2	As this area continues to be used by GRSG a plan to prevent cheatgrass from spreading into good babitat would be appropriate
2	spi cading into good nabiat would be appropriate.
3	Coordination of projects with other government agencies (NRCS, CDF&W,
4	USFWS) and private landowners in this area has been frequent and coordination
5	of efforts will be continued. The Madeline Plains Connectivity PPA falls within
6	the Buffalo-Skedaddle PMU and is governed by the conservation plan developed
7	by the Buffalo-Skedaddle working group.
8	Fire Operations
9	Moderate/High Priority for Suppression (see Tables 4-190 and 4-191)
10	• Areas in the SW and S with cool/moist soil temperature/moisture
11	regimes which have high resistance and resilience however,
12	repeated burning and threat from lower elevation annual grasses
13	decreases overall resistance.
14	Low/Moderate Priority for Suppression
15	Mostly large scale agricultural land below 5,500 ft. which makes up
16	the majority of this PPA. This is important habitat but it is not likely
17	to burn.

Table 4-190Fire Operations Priority Areas

Site Description	Fire Operations Priority Rating	Acreage
< 5,500 ft.	Low-Moderate	105,853.8
Cool/Moist	Moderate-High	34,727.4

18

Priority	Priority I	Priority 2	Priority 3	Tota
Acres	0	104,578	89,522	194,100
Percent of PPA	0	74.4	63.7	38.
	Post-Fire Rehabilitation	Management		
	High Priority for ESR	-		
	l2 years)			
	12 years)			
	• Areas tha	t have not been burne	ed in the last 50 years	
	Elevations	s > 6,000 ft.		
	Areas that have beer	n frequently burned i	n the SE and SW are	high priority,
	aspacially the area the	t was consumed by th	a Ruch fina and Obcam	instian fina

Table 4-191 Fire Operations Management Strategies

I	Moderate Priority for ESR
2	Recently Burned
3	• Elevations < 6,000 ft.
4	North Slopes
5	High levels of invasive annuals in the understory
6	There are no areas in the PPA that meet this description.
7	Low Priority for ESR
8	Areas with high levels of irrigated crop land
9	The majority of this PPA is irrigated crop land.
10 11	Opportunities for fuel breaks and green stripping will be analyzed during the post-fire rehabilitation assessment process (see Table 4-192).

Table 4-192Post-Fire Rehabilitation Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	27,301	0	45,691	72,992
	Percent of PPA	37.4	0	62.6	100
12					
12		Proposed Management			

13	Proposed Management
14	See Table 4-193 for projects that have been identified presently within the
15	NEPA planning process. See Figures 4-110 through 4-113 for a graphic
16	depiction of the proposed treatments and strategies in the PPA.

Table 4-193Project Planning Area Treatment Summary Table

Treatme Descript	ent ion	Priority		Priority			Priority Threats Addressed			NEPA			Treatments					
						s (I)						Ti Fra	me Ime	Certa Effecti	inty of veness ¹	ame	me	
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fra (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³	
Madeline Plains Connectivity Green Stripping	395	X						W			N	Р		LI		5-7	5+	

Treatme Descript	ent tion	Priority		Priority Addre			eats essed		I	NEPA	1	Treatments						
						s (I)						Tir Fra	ne me	Certa Effectiv	inty of veness ¹	ame	me	
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Conifer (C) Invasive annual grasses	Riparian (R)	tiparian (R) Vildfire (W)	iparian (R) Vildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Madeline Plains Connectivity Green Stripping	907		Х					W			N	Р		LI		5-7	5+	
Madeline Plains Connectivity Green Stripping	856			Х				W			N	Р		LI		5-7	5+	
Madeline Plains Connectivity Conifer Treatments	19,205		X		C						N	Р		LI		10- 20	5+	

Table 4-193 **Project Planning Area Treatment Summary Table**

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low 4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)
 ³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

2	4.2.24 Cold Springs
4 5	Project Planning Area Description
6	General Site Description
7	The Cold Springs PPA is located in Lassen County, California. This area
8	encompasses the McDonald Mountain/Cold Springs Mountain area. The PPA is
9	typically higher elevation and higher moisture zones, with many north slope
10	areas.
11	Springs and seeps commonly occur throughout most of the area. Elevations
12	throughout the PPA generally range from 5,300 feet on the Madeline Plains to
13	approximately 7,000 feet on McDonald Mountain.

I

In general, this PPA contains a diverse vegetation composition with a low frequency of invasives and moist soils. Cool/moist soils types exist in the higher elevation PPA.

The majority of the PPA is within the warm/dry (3A, 3B, 3C) and cool/moist (1A, 1B) soil types. The habitat is defined by intact mountain big sagebrush stands with native grasses and forbs understory in the higher elevations grading to Wyoming big sagebrush with invasive grass understory in the lower elevations. The area falls within a 10 to 12 inch/year precipitation zone (see **Table 4-194**).

Matrix No Grand IA I B IC 2C 3**A** 3B 3C 2A 2B Category Data Total 506 25,097 12,916 0 2,998 15,019 6,741 4,116 2,208 71,973 Acres 2,372 Percent of 0 3 35 18 4 21 9 6 3 100 Т PPA

Table 4-194	
Cold Springs Sage-Grouse Habitat Matrix (Categories

Sage-Grouse

There are 15 leks identified within the Cold Springs PPA. Currently only two leks are documented as being active by CDFW. These include the Dodge Spring and Dill Field leks. Since 2009, no birds have been documented at either lek during annual lek counts. However, GRSG use has been documented yearround within the PPA. Vegetation within the area is typical of the mountain big sagebrush community, and includes mountain big sagebrush, Wyoming big sagebrush, low sagebrush, bitterbrush and other browse species, and a variety of native annual and perennial grass and forb species. Water sources include seeps and springs, stock ponds and stock reservoirs. The seeps and springs provide important riparian habitat for GRSG brood-rearing by supplying beneficial forbs and insects to females and young broods.

Vegetation

The dominate vegetation consists of mountain big sagebrush, Wyoming big sagebrush and low sagebrush plant communities. Associated shrub species include antelope bitterbrush and rabbit brush with snowberry and desert currant at the higher elevations. Rock buckwheat is the common sub-shrub association found in the low sagebrush sites. Perennial and annual grass and forb species make up the understories; native perennial grasses are dominant at elevations above 6,000 feet. Curleaf mountain mahogany is present in the rocky outcrops and ridges and there are a few aspen stands scattered in the higher elevations. In addition, western juniper and cheatgrass are also present. Noxious weeds are present and further discussed in the Existing Treatments section of this document.

Т

2

3

4

5

6

7

8

9

10 11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

l 2 3	Western juniper is actively expanding into the sage-steppe plant communities within the PPA. As described by Miller, et al. (2005), there are three transitional phases of juniper woodland development.
4 5 6	 Phase I - trees are present but shrubs and herbs are the dominant vegetation that influence ecological processes (hydrologic, nutrient, and energy cycles) on the site;
7 8	 Phase II - trees are co-dominant with shrubs and herbs, and all three vegetation layers influence ecological processes on the site;
9 10	• Phase III - trees are the dominant vegetation and the primary plant layer influencing ecological processes on the site.
 2	The juniper woodland successional phases are predominately in phase I and phase II for the PPA.
3 4 5	Riparian areas in the Cold Springs PPA consist mostly of perennial and intermittent streams and small remote springs and seeps. Vegetative communities along these waterways consist mainly of perennial bunch grasses.
16	willows, sedges, rushes and various wetland obligate and wetland facultative
17	species. Small springs and seeps dot the landscape and support many of the
18 19	same wetland obligate and facultative species that are found along the perennial waterways.
20	Fire
21	Fire regimes characterize the historic fire frequency, severity, and resulting
22	landscape pattern, and correspond to specific vegetation types. Within the Cold
23	Springs PPA, fire regimes are moderately altered. The dominant vegetation in
24	the PPA is mountain big sagebrush, which falls within Fire Regime group III based
25	upon a historic fire frequency of 20 years with stand-replacement severity
26	(source: LANDFIRE biophysical settings model). There are also significant areas
27	of Fire Regime group IV with less amounts of Fire Regime group I (see Table
28	4-195).

Table 4-195 Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres) 61,013
	High and Very High Burn Probability in PPA (percent) 85.5
29	
30	One large fire, the McDonald Fire (2010, 9,500 acres) and several small fires
31	have occurred in the general area. Recovery within the McDonald Fire has been
32	good. Monitoring should continue.
33	Existing Treatments
34	The control of noxious weeds continues throughout the PPA by government
35	agencies, local Weed Management Areas and Resource Conservation Districts.
36	Known species in the Cold Springs PPA are Scotch thistle, perennial

- pepperweed, spotted knapweed, hoary cress, and Canada thistle. These populations are currently being treated and evaluated annually.
- Existing vegetative treatments within the assessment area include over 4,500 acres of juniper removal by manual and mechanical methods. There are approximately 2,500 acres of additional juniper reduction treatments currently planned within the PPA. The original objectives of these treatments were to improve GRSG habitat.
- Following the McDonald Mountain fire in 2010, three acres were planted with
 2,000 Mountain big sagebrush seedlings and 67 acres were drill seeded with
 bottlebrush squirreltail (Elymus elymoides), a native perennial grass species.). An
 additional 8,200 seedlings (18 acres) were planted in 2012.

12

13

15

16

L

2

Management Strategies

- 14 Other Relevant Management Activities
 - Traditional use activities for the area includes: grazing, hunting and recreation. Summer/Fall grazing occurs in the Cold Springs PPA.
- 17 Fuels Management
- 18 Fuels treatments within this area would primarily be focused on hand treatment
 19 of phase I and phase II juniper encroachment areas followed by green stripping
 20 with suitable species, however opportunities for new fuel breaks are limited.
- 21Coordination of projects with government, state agencies (NRCS, CDF&W,22USFWS) and private landowners in this area has been frequent and coordination23of efforts will be continued. The Cold Springs PPA falls within the Buffalo-24Skedaddle PMU and is governed by the conservation strategy developed by the25Buffalo-Skedaddle working group.
- 26Other treatments to continue and to consider in the future are: prescribed fire,27chemical treatments at lower elevations, mechanical at higher elevations and on28north slopes and targeted grazing.

29	Habitat Restoration and Recovery
30	Restoration and recovery would focus on juniper reduction, mainly of phase I
31	and II. Mechanical use would be considered for late phase II treatments (see
32	Table 4-196).

Priority	Priority I	Priority 2	Priority 3	Tota
Miles	65.97	16.18	0	82.1
	Noxious weeds will c	continue to be inven	toried, treated, and eva	luated. The

Table 4-196 Fuels Management Potential Treatments

- IMcDonald Mountain/Cold Springs Mountain Complex project area. Focus on2roadside and known infestations sites within the Cold Springs PPA.
- 3The Cold Springs PPA supports leks and early and late brood-rearing, fall, and4winter habitats. There are several water sources that support desirable5vegetation for GRSG. Some areas can be fenced to protect these areas from6grazing impacts.
- Coordination of projects with government, state agencies (NRCS, CDFW,
 USFWS) and private landowners in this area has been frequent and coordination
 of efforts will be continued. The Cold Springs PPA falls within the BuffaloSkedaddle PMU and is governed by the conservation strategy developed by the
 Buffalo-Skedaddle working group.
- Fire Operations
 High Priority for Suppression (see Tables 4-197 and 4-198)
- The whole PPA is high priority GRSG habitat and should be high priority for suppression.
 Burned areas are high priority especially islands, and where the
 - Burned areas are high priority especially islands, and where the McDonald and Mendinboure Fires took place.

Table 4-197Fire Operations Priority Areas

Site Description	Fire Operations Priority Rating	Acreage
Cold Springs Unburned	High	61,223.1
Cold Springs Burned Area	High	10,750.2

Table 4-198

18

17

Fire Operations Management Strategies										
Priority	Priority I	Priority 2	Priority 3	Total						
Acres	24,990	46,983	0	71,973						
Percent of PPA	34.7	65.3	0	100						
	Habitat Restoration									
	See Table 4 100									
	Priority Acres Percent of PPA	Priority Priority I Acres 24,990 Percent of PPA 34.7 Habitat Restoration See Table 4-199 .	Priority Priority I Priority 2 Acres 24,990 46,983 Percent of PPA 34.7 65.3 Habitat Restoration See Table 4-199 .	Priority Priority I Priority 2 Priority 3 Acres 24,990 46,983 0 Percent of PPA 34.7 65.3 0 Habitat Restoration See Table 4-199.						

Table 4-199 Habitat Restoration Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Total
Acres	5,485	49,754	0	55,239
Percent of PPA	7.62	69.13	0	76.75

l 2	Post-Fire Rehabilitation Management High Priority for ESR (see Tables 4-200 and 4-201)
3	• Warm/cool dry soils (3A, 3B, 3C) < 6,000 ft.
4	• Warm moist soils (2A, 2B, 2C) < 6,000 ft.
5	Moderate Priority for ESR
6	• Warm/cool dry soils (3A, 3B, 3C) > 6,000 ft.
7	 Cool/cold moist soils (IA, IB, IC) < 6,000 ft.
8	Recently Burned
9	• Areas with high levels of irrigated crop land
10	Low Priority for ESR
11	• Warm moist soils (2A, 2B, 2C) > 6,000 ft.
12	• Cool/Cold moist soils (IA, IB, IC) >6,000 ft.

Table 4-200Post-fire Rehabilitation Priority Areas

Site Description	Priority	Acreage
McDonald and Mendinboure Fire	Moderate	10,546.4
Cold Springs Fire, Cold Springs Prescribed Burn	Moderate	1,557.1
North and East Slopes > 6,000 ft.	Low	12,154.3
South and West Slopes > 6,000 ft.	Low	12,870.7
North and East Slopes < 6,0000 ft.	High	9,047.8
South and West Slopes < 6,000 ft.	Moderate	8,283.7
South and West Slopes < 6,000 ft.	High	7,760.1

13

Table 4-201
Post-Fire Rehabilitation Management Strategies

Priority	Priority I	Priority 2	Priority 3	Total
Acres	24,990	0	46,983	71,973
Percent of PPA	34.7	0	65.3	100
14				

15	Proposed Management
16	See Table 4-202 for projects that have been identified presently within the
17	NEPA planning process. See Figures 4-114 through 4-118 for a graphic
10	

18 depiction of the proposed treatments and strategies in the PPA.

<u> </u>		-							1								
Treatm Descrip	ent tion	P	riorit	y		Thr Addr	eats essed	I	I	NEPA	•	Treatments					
						(I) se						Tiı Fra	ne me	Certa Effectiv	inty of veness ¹	ame ume	
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ¹	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Cold Springs Green Stripping	778	Х						W			Ν	Р		LI		5-7	5+
Cold Springs Invasive Weeds Treatments	31,531	X				I					N	Р		LI		5-7 if follow- up is neces- sary	5+
Cold Springs Conifer Treatments	17,941		Х		С						Ν	Р		LI		10-20	5+
Cold Springs Green Stripping	378	X						W			N	Р		LI		5-7	5+
Cold Springs Green Stripping	830	compl	X eted. is	likely	or unlik	elv to	be effe	W	Provide	ration	N ale usi	P	e code	FI FI		5-7	5+
	.,		. ,	- /		1						3	~ .				

 Table 4-202

 Project Planning Area Treatment Summary Table

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

4.2.25 Hart Mountain NWR

Project Planning Area Description

General Site Description

Hart Mountain National Antelope Refuge PPA is located in the northwestern corner of the Great Basin, located in Lake County, Oregon. The lands adjacent to the Refuge are primarily managed by the BLM Lakeview and Burns Districts. The total area within the Refuge's borders is 277,893 acres and >75 percent of the Refuge is sagebrush-steppe habitat. Elevations range from 4455 feet in the valleys to 8012 feet at the highest mountain peak.

1 2

3 4

5 6

7

8

9

10

11

The majority of the PPA ranges from cool/moist at higher elevations to cool/dry at lower elevations. Cool/moist ecological types on the Refuge consist of mountain big sagebrush, mountain shrub, and low sagebrush habitats, and generally exhibit moderately high resilience and moderate resistance. Cool/dry ecological types are more common at lower elevations along the northeastern edge of the Refuge, are dominated by Wyoming big sagebrush, and exhibit low resilience and moderate resistance. In these habitats, effective precipitation limits site productivity and the climate is more suitable to invasive annual grasses (Chambers et al. 2014).

10 Within Hart Mountain Refuge, the soils generally range from cool/moist at 11 higher elevations to cool/dry at lower elevation with sagebrush cover >75 12 percent. Within the Refuge, roughly 221,760 acres (80 percent) is Greater 13 GRSG habitat (Table I, highlighted; Figure I). Current invasive or exotic plant 14 cover is low, estimated at 1.2 percent. Western juniper encroachment into 15 GRSG habitat currently occurs at relatively low to moderate levels within 16 scattered mountain big sagebrush habitats mainly along the western and 17 southern portions of the Refuge (see Table 4-203).

Table 4-203Hart NWR Sage-Grouse Habitat Matrix Categories

	Matrix Category	No Data	IA	IB	IC	2 A	2 B	2 C	3 A	3B	3C	Grand Total
	Acres	10,721	0	15,481	28,289	0	14,717	165,620	0	2,319	4,531	241,678
	Percent of PPA	4	0	6	12	0	6	69	0	I	2	100
18												
19		Sage-Grouse										
20			Ha	art Mount	tain Refu	ge lies	s within	the Weste	ern Gre	eat Basin I	PAC and	the entire
21		Refuge has been designated a GRSG "core area" by the Oregon Department of										
22			Fis	sh and G	ame. Th	ne ent	ire Refu	ige has als	o bee	n designa	ted as P	reliminary,
23			Pr	iority (G	RSG) H	abitat	(PPH);	PPH rep	resents	s the hab	oitat desi	ignated to
24			m	aintain di	stributio	n and	sustaina	ble GRSC	і рори	lations (M	lanier et	al. 2013).
25			Tł	ne Refuge	provide	s bree	ding, bro	ood rearin	g, and	winter ha	bitat for	GRSG. As
26			of	2013, th	ere were	e3Ik	known le	ek complex	kes co	mprised o	of 72 indi	vidual leks
27			dis	stributed	across tl	he Ref	fuge; rou	ighly 61 pe	ercent	of the kn	own lek	complexes
28			ar	e current	ly active	e. The	GRSG	populatio	n is s	table to i	increasing	g and is a
29			sti	ronghold	populatio	on.						
30			Ve	getation								
31			La	rge, intei	connect	ed, ar	nd intact	t stands c	of nativ	ve upland	shrub a	nd steppe
32			ha	bitats cor	nprise >	75 pe	rcent of	Hart Mou	ntain F	Refuge. Th	ne major	vegetation
33			ty	pes are \	Nyoming	g big s	sagebrus	h (Artemisi	a tride	ntata ssp.	wyoming	ensis), Iow
34			sa	gebrush (A. arbusc	:ula), r	nountain	n big sageb	rush (A.t. ssp. v	aseyana),	and Basin
35			big	g sagebru	sh (A. <i>t</i> . s	sp. trie	dentata)	communit	ies, all	are speci	es most	commonly
36			as	sociated	with GR	SG (M	lanier et	al. 2013).	Elevat	ional diffe	rences a	re evident,

Т

2

3

4

5

6

7

8
with Wyoming big sagebrush and Basin big sagebrush being more dominant along the lower elevation, northeastern edge of the Refuge. As the elevation increases to the south and west, the habitat becomes primarily dominated by mountain big sagebrush / mountain shrub and low sagebrush. Western juniper is most common along the western portion of the Refuge and the Hart Mountain escarpment, although there are scattered stands throughout the Refuge.

The native perennial grass understory is intact, and common species include Idaho fescue (Festuca idahoensis), bluebunch wheatgrass (Pseudoroegneria spicata), Thurber's needlegrass (Achnatherusm thurberianum), squirreltail (Elymus spp.), Sandberg's bluegrass (Poa secunda), and needle-and-thread (Hesperostipa comata). A wide variety of native forbs also occurs, and includes Phlox spp., Lomatium spp., Crepis spp., and Lupinus spp.

Invasive Plants

Approximately 30 species of introduced, nonnative, and often noxious plants have been documented on Hart Mountain Refuge. However, the combined invasive species cover is currently estimated to be roughly one percent of the total Refuge area (less than 2,770 acres), and substantial infestations remain generally confined to road corridors and other sites of disturbance (e.g., campgrounds, burned areas). Cheatgrass (*Bromus tectorum*) is the most common species, and other species include knapweed (*Centaurea spp.*), kochia (*Bassia scoparia*), hoary cress (*Cardaria draba*), yellow sweetclover (*Melilotus officianalis*), bull thistle (*Cirsuim vulgare*), scotch thistle (*Onopordum acanthium*), and Russian thistle (*Salsola* spp.) (see **Table 4-204**).

Table 4-204

Classified Vegetation Cover Types and Estimated Percentage of Total Area (Greater GRSG habitat is highlighted in gray)

Vegetation Type	Estimated Percent of Total Area
Invasive annual grasses and forbs	1.2
Open water/emergent marsh	1.6
Barren and sparse vegetation	4.0
Woodlands (juniper, aspen, mountain mahogany)	2.3
Semi-desert grassland	2.5
Salt desert scrub/Greasewood flat	6.7
Mesic wet meadow	2.8
Basin big sagebrush steppe	8.9
Mountain big sagebrush steppe/Mountain shrub	19.7
Low sagebrush shrubland and steppe	20.3
Wyoming big sagebrush shrubland	31.9

Source: Hart Mountain National Antelope Refuge 2010

24 25

L

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

26

27 28

29

Fire

The historic role of fire in sagebrush ecosystems has been difficult to accurately estimate. Recently revised estimates of fire return intervals describe 200-350 year fire-return intervals in Wyoming sagebrush, 150-300 years in mountain sagebrush, and more than 200 years for low sagebrush (Manier et al. 2013).

March 2015

There is little evidence that fire will enhance GRSG habitat in Wyoming big sagebrush communities, especially where there is already a balance of native shrubs, perennial grasses, and forbs. There is also a growing body of evidence that suggests that on the current landscape, even prescribed fire designed to enhance brood-rearing habitat values does not have a positive effect on herbaceous habitat conditions and can cause demonstrable decline in valuable sagebrush cover (Manier et al. 2013).

8 Although relatively infrequent, the majority of lightning fires occur in the 9 assessment area from June through September, with some fires occasionally 10 starting as early as mid-May or as late as mid-October. Historically all fires have 11 been aggressively suppressed throughout Hart Mountain Refuge. Prescribed fire 12 activities have been typically conducted September through April, with limited 13 use beginning in the 1960s and continuing through the early 1980s. The use of 14 prescribed fire then increased substantially in the late 1980s through the 2000s. 15 In the mid-1990s, the Refuge set a target to significantly reduce shrub cover on 16 over 75 percent of the Refuge's upland habitats via prescribed burning. As a 17 result, roughly 22,000 acres were treated between 1990 and 2011, 18 predominantly upland shrub habitats dominated by Wyoming and mountain big 19 sagebrush. In addition, the majority of riparian meadow habitats available on 20 Hart Mountain Refuge were also treated with prescribed fire, some multiple 21 times over the 20-year period, with the objective of improving brood-rearing 22 habitat for GRSG. Wildfires also burned approximately 8,645 acres between 23 1990 and 2011, and then an additional 4,200 acres were burned by wildfire 24 between 2011 and 2014. The approximate total of Hart Mountain Refuge 25 affected by either wild or prescribed fire since 1990 is over 35,000 acres or 26 roughly 13 percent of the total acreage (see Table 4-205).

Preliminary information suggests that shrub cover in Wyoming big sagebrush and mountain shrub communities burned on Hart Mountain Refuge in the 1980s have recovered to pre-burn conditions in the roughly 20+ years following treatment (Ellsworth et al. unpublished data). This is substantiated by others that found recovery may take 10-15 years or longer for shrubs, and up to 20-30 years for biological soil crusts to recover at most sites following treatment (Mclver et al. 2014).

Table 4-205Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres)	73,821
	High and Very High Burn Probability in PPA (percent)	30.6
34		
35	Management Strategies	
36		
37	Treatments	
38	On Hart Mountain Refuge, mountain big sagebrush comr	nunities have beer
39	found to be significantly more productive than Wyom	ning big sagebrush

4-178

L

2

3

4

5

6

communities and have a higher site potential which could respond more favorably to management actions (Davies and Bates 2010). Additional findings suggested that not all plant functional groups can be increased with management actions (e.g., mowing), and that the abundance of sagebrush may either not be the limiting factor for some herbaceous plants or that they respond very slowly to sagebrush-removing disturbances (Davies et al. 2012). Plant diversity was found to be increased with prescribed fire in the first post-burn year, but decreased by the third post-burn year. However, burning can create spatial and temporal heterogeneity in sagebrush communities, and long-term maintenance of mountain big sagebrush communities may need to consider infrequent burning (Davies et al. 2014).

Other Relevant Management Activity

Livestock grazing (including feral horses) began on Hart Mountain Refuge in the 1870s and continued after the Refuge was established in 1936. Between 1994 and 1999, both feral horses and livestock were removed after it was determined that grazing was not compatible with the purposes of the Refuge. In the absence of feral horse and livestock grazing, substantial habitat recovery, particularly within severely deteriorated riparian habitats, has been documented on the Refuge. In the roughly two decades following livestock exclusion from Hart Mountain Refuge, riparian and snowpocket aspen, native forb cover, and mesic shrub cover have all significantly increased, whereas sagebrush encroachment into riparian areas has decreased (Earnst et al. 2012). Additionally, measurements of riparian health, including bank stability, stream morphology, greenline, and ecological stability all increased following the removal of livestock (Ballard 2010). Increases in native forb and riparian shrub cover, with a concomitant decrease in sagebrush cover, also indicated an improved depth to groundwater functioning and riparian condition (Dobkin et al. 1998). In uplands, removal of livestock has resulted in decreases in bare ground, and increases in shrub, native bunchgrass, and biological soil crust cover (Ellsworth et al., unpublished data).

31 Fuels Management

Т

2

3

4

5

6

7

8

9

10

П

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

41

32 The primary fuels management activities would be focused on fire breaks and 33 control of invasive annual grasses to prevent large-scale, catastrophic fires. 34 Specific activities include creating fire breaks to minimize fire risk. This can be 35 done by implementing strategic fuel break networks to provide anchor points 36 for suppression that will reduce losses when wildfires escape initial attack. 37 Continue to maintain existing fire breaks along established roads via mowing. 38 Identify additional established roads for consideration as potential fuel break 39 treatment areas while minimizing GRSG habitat fragmentation. Finally, 40 coordinate with adjacent land-management agencies (i.e., BLM) to identify established roads and treatments outside of Refuge-lands which may be 42 appropriate to incorporate as fire breaks (see **Table 4-206**).

	Priority	Priority I	Priority 2	Priority 3	Total
	Miles	26.32	82.18	0	108.5
 2		In addition Refuge m	anagement will cont	inue to implement appro	priate public
2		restrictions including	anagement will cond	es during high-fire risk tim	priate public
4		reduce fire risk from	n vehicles Continu	e to minimize fire risk	from public
5		campgrounds by redu	cing fuel at campsite	e to minimize me risk is (e.g. mowing herbicide	application)
6		and restricting camp	fires during high-ri	sk time periods. Consid	ler installing
7		additional fire breat	s and conducting	fuels treatments arou	nd high-use
8		campgrounds (e.g., Ca	mp Hart Mountain,	Hot Springs).	
9		Invasive annual grass	control methods w	vill include implementing	a proactive
10		approach by emphasi	zing herbicide treat	ment along road corrido	rs and early
П		detection and eradic	ation of small infe	stations. Aggressively co	ntrol newly
12		detected small infesta	tions of noxious wee	eds and other highly invasiv	ve nonnative
13		plants using a variety	of tools and method	ls, primarily mowing, rese	eding native
14		species (aerial and	drill), and the use	of herbicides. Slow the	spread of
15		established population	is of invasive plants	(i.e., cheatgrass) by limiting	g prescribed
16		burning and other dis	turbances in highly s	susceptible areas and thro	ugh pre and
17		post project monitori	ng, reseeding native	species (aerial and drill), a	nd herdicide
18		treatments following o	listurbances.		
19		Habitat Restoration and	Recovery		
20		In the Northern Grea	t Basin, habitat loss	and fragmentation due to	wildfire and
21		conifer encroachmen	t have been identifi	ed as the primary threat	ts to GRSG
22		(Manier et al. 2013).	Conifer expansion	results in declines in sage	Drush cover
25 74		increases (see summa	ry by Chambors of a	\sim and lords as conner can \sim	anopy cover
2 1 25		leks is severely comp	comised when conife	and 2014). The ability to ha	
26		and habitats containi	ng most active lek	s average greater than (one percent
27		conifer canopy cover	. Nonnative annual	grasses and forbs also	reduce both
28		habitat quality and qua	antity for GRSG. Fur	ther, due to repeated fire	s, some low-
29		to mid-elevation nativ	e sagebrush commu	nities can permanently sh	ift to annual
30		grassland states resul	ting in habitat loss	that may be irreversible v	with current
31		technologies (see sum	mary by Chambers	et al. 2014). Most GRSG le	ek sites have
32		very little annual grass	sland cover, and lek	use becomes progressivel	y less as the
33		cover of invasive a	nnual species incr	eases contributes to re	ductions in
34		recruitment and annu	al survival (see summ	nary by Chambers et al. 20) 4) .
35		Treatments			
36		On Hart Mountain Re	efuge, western junipe	er (Juniperus occidentalis) is	encroaching
37		into some stands of m	ountain big sagebrus	sh, mountain shrub, aspen,	and riparian
38		habitats. Juniper trea	tment of phases I	and II has been shown 1	to be highly

Table 4-206Fuels Management Potential Treatments

39

effective at maintaining native shrubs and understories, while functionally

1	restoring sagebrush landscapes on many ecological sites. Efforts are ongoing to
2	quantify the extent of juniper encroachment on Hart Mountain NAR and
3	prioritize areas for treatment in relation to GRSG habitats. Ongoing treatments
4 F	will continue to be conducted primarily via mechanical methods supported by
5	limited prescribed fire. Recommended activities include (in part from Chambers
6	et al. 2014):
7	Other activities include using prescribed fire and mechanical treatments to
8	remove trees, decrease woody fuels, and release native understories in cool and
9	moist big sagebrush ecosystems with relatively high resistance to annual invasive
10	grasses that are in early to mid-phases of juniper expansion. Actively monitor
11	and manage post-treatment areas to minimize secondary weed infestation.
2 3	Recovery after wildfire includes implementing recommended activities, in part from Chambers et al. 2014:
14	• Within areas of the Refuge with high resilience to disturbance and
15	resistance to invasive annual grasses (e.g., mountain big sagebrush,
16	mountain shrub, low sagebrush habitats; Figure 1), natural sagebrush
17	recovery is likely and perennial herbaceous species are sufficient for
18	recovery.
19	– Restoration is typically passive and designed to increase or
20	maintain perennial herbaceous species, biological soil crusts,
21	and landscape cover of sagebrush.
22	– Post-fire rehabilitation is generally a low priority with the
23	exception of areas where native understory is inadequate
24	for recovery, where seeding or transplanting sagebrush is
25	needed to maintain habitat connectivity, or where there are
26	steep slopes and soils with erosion potential.
27	– Treatment options include aerial and ground herbicide
28	application, and reseeding of native species via either aerial
29	or ground techniques.
30	• For areas of the Refuge with moderate to low resilience to
31	disturbance and resistance to invasive annuals (e.g., Wyoming big
32	sagebrush habitats; Figure 1), natural sagebrush recovery is less
33	likely and perennial herbaceous species are typically inadequate for
34	recovery.
35	– Restoration is typically active. Areas with >65 percent
36	landscape cover of sagebrush are the first order priority for
37	post-fire rehabilitation and restoration, especially if they are
38	part of a larger, contiguous area of sagebrush. Seeding
39	and/or transplanting sagebrush may be necessary and
40	success will likely depend on more than one intervention
41	due to low and variable precipitation. Repeat restoration

l	treatments if they fail initially to ensure success especially in
2	warm and dry soil temperature regimes where weather is
3	often problematic for establishment.
4	 Other priority areas for restoration activities include
5	relatively warm and dry areas where annual invasives are
6	expanding.
7	 Treatment options include aerial and ground herbicide
8	application, and reseeding of native species via either aerial
9	or ground techniques.
10 11	• Actively monitor and manage post-fire areas to minimize secondary weed infestation.
2 3	• Explore options to partner with other agencies to develop and maintain supplies of locally adapted seed banks.
14	Restoration of wet meadow habitats
15 16 17 18 19 20 21 22 23 24 25	 Early management activities on Hart Mountain Refuge focused on the development of water resources to increase water availability for livestock. Ponds were dug in seeps and wet meadows, spring flow diverted to watering troughs, and stock ponds built. Wet meadow habitats in particular are important brood-rearing habitats for GRSG. However, many wet meadow habitats on Hart Mountain Refuge have been altered by these activities. The goal of the Refuge is to restore these habitats to naturally functioning hydrological processes for the benefit of a diverse assemblage of native species including GRSG. Activities to include: Removal of water control structures, dugouts, or other
26	developments that alter natural hydrology.
27	 Where necessary, investigate and employ wetland
28	restoration techniques (e.g., plantings, bank stabilization).
29	 Where appropriate, use mechanical or prescribed fire
30	treatments to mimic natural disturbances, reduce litter, and
31	increase herbaceous vigor.
32	Landscape connectivity
33	 Explore options to work with partners to restore and
34	maintain GRSG habitats across the larger landscape,
35	including connectivity with Sheldon National Wildlife
36	Refuge.
37	Habitat Maintenance
38	Sagebrush-steppe habitats within Hart Mountain NAR are currently in Good to
39	High condition (as defined by Manier et al. 2013) with intact, native understories

I as a 2 and 3 nat 4 div 5 hig 6 inta 7 and 8 Red 9 4-2	as a result of largely passive restoration following the elimination of feral horse and livestock grazing. The goal of the Refuge is to protect and/or maintain the natural condition and processes throughout these habitats for the benefit of a diverse assemblage of native species, including GRSG. For habitats in good to high condition, minimal action is recommended: maintain status and protect intact shrub stands, monitor and treat invasive species, monitor productivity, and adjust management if condition decline is documented (Manier et al. 2013). Recommended activities are (in part from Chambers et al. 2014) (see Table 4-207):									
10 11	• Continue to exclude feral horses and livestock from Hart Mountain Refuge.									
12	• Suppress fire in moderate to low resilience and resistance sagebrush									
13	(e.g., Wyoming big sagebrush habitats, Figure 1) and wooded									
14	shrublands to prevent an invasive annual grass-fire cycle. Large									
15	sagebrush patches are high priority for protection from wildfires.									
16	• Use prescribed fire and mechanical treatments to remove trees,									
17	decrease woody fuels, and release native understories in cool and									
18	moist big sagebrush ecosystems with relatively high resistance to									
19	annual invasive grasses that are in early to mid-phases of juniper									
20	expansion.									
21	• Where appropriate, use mechanical or prescribed fire treatments to									
22	mimic natural disturbances, reduce litter, and increase herbaceous									
23	vigor in wet meadow habitats.									
24	• Implement strategic fuel break networks to provide anchor points									
25	for suppression and reduce losses when wildfires escape initial									
26	attack (Figure 2).									
27	• Limit anthropogenic activities that can cause surface disturbance,									
28	invasion, and fragmentation, e.g., road and utility corridors, OHV									
29	use.									
30	• Detect and control new exotic weed infestations.									

Table 4-207	
Habitat Restoration Potential Treatments	

	Priority	Priority I	Priority 2	Priority 3	Total						
	Acres	0	33,826	0	33,826						
	Percent of PPA	0	14.00	0	14.00						
31											
32		Fire Operations									
33		Fire operations	are primarily focused	l on adequate early detec	tion and initial						
34		attack efforts, as	well as prevention of	additional introductions o	f invasive plants						
35		to Refuge lands	. Fire Operations at	the Refuge will continue	to work with						
36	partners to explore the potential for a strategically located interagency "wee										

1	wash" station as well as the establishment of a station at the Hart Mountain
2	NAR Field Headquarters. Vehicles used in or around sites with prevalent
3	invasive plants would be washed before entering and leaving the Refuge (see
4	Table 4-208).

Table 4-208Fire Operations Management Strategies

	Priority	Priority I	Priority 2	Priority 3	l otal
	Acres	24,990	46,983	0	71,973
	Percent of PPA	34.7	65.3	0	100
5					
6		Efforts to explore the	ne potential to impro	ove initial attack effor	ts include re-
7		evaluation of water	use agreement for	Jacob's Reservoir lo	cated in the
8		southeast portion of	Hart Mountain Ref	uge in order to conse	erve sufficient
9		water availability duri	ng a fire event. Work	with adjacent landowi	ners on water
10		use agreements. Expl	ore opportunities for	water storage tanks (ne	on-potable) at
11		the Refuge Field He	adquarters. Increase	availability of suppressi	ion resources
12		(i.e., SEATs and wat	er tenders) for initia	l attack. Increase capa	ability to pre-
13		position resources ac	ross agencies. Explor	e opportunities to impl	rove early fire
14		detection. Investigate	e potential to install	remote cameras at	existing radio
15		repeater sites (e.g., H	lart Mountain/Warner	repeater) to serve as	lookout sites.
16		Increase interagency a	vailability of aircraft fo	or detection flights.	
17		Efforts to improve t	he function of Fire (Operations include the	possibility of
18		expanding the numbe	r of available interage	ncy Resource Advisors	. Increase the
19		availability of intera	gency fire preventic	on programs and staf	f, to include
20		educational, patrollin	ig, and sign posting	capabilities. Maintain	current fire
21		dispatch capabilities.	Add resources and	preposition resource	es specifically
22		identified to protect	GRSG habitat through	n use of "Step-Up" plan:	s that are tied
23		to the unit Fire Da	nger Operating Plan	, local/regional prepar	edness levels,
24		potential for ignitions	, and or key weather	events. Type III to V I	C delegations:
25		provide clear leaders	intent to IC's and first	st responders that supp	orts the Land
26		, Management Plan dire	ection and that in the	Fire Management Plan	as it pertains
27		to protection of GRS	G habitat. Ex. "To th	ne extent it can safely t	be performed,
28		retain unburned fing	ers and islands that	do not pose a signific	ant threat of
29		escape." Duty Officer	rs should become fam	iliar with priority areas	within GRSG
30		habitat that are more	e or less resistant/res	silient, any pre-attack p	lan generated
31		for a specific area, t	reatment locations, a	and or advantages on	the landscape
32		engineered to aid in c	ontainment (Initial At	tack prioritization and e	fficiency).
33		Establish a "Pre-Attac	ck Plan" specific to ea	ach juniper control trea	atment. While
34		added fuel hazard is	present, utilize a pre-	attack plan as the mea	ns to mitigate
35		wildfire spread poten	tial until treatment is	complete/hazard remov	ved. Examples
36		include: improved ac	cess, creating/plannin	g control lines, creati	ng temporary
37		water sources, i	mproved detection	cycles/methods,	preestablished
38		authorizations to ut	ilize heavy equipmer	nt (if applicable), con	tact lists and

notifications specifically needed, etc. Load PAC areas into a CAD system at Dispatch. Front load this resource value and set it as a priority area for action and notifications. Look at existing dispatch run cards "Block Cards" to modify and or create new cards for GRSG PAC areas in an effort to best provide for habitat protection. Resource Advisors kits should be updated with treatment areas, site data of GRSG landscape and ability to advise fire mangers and IC's of areas more and less resilient/resistant. This provides knowledge to better prioritize localized incident suppression action (extended attack).

L

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

- Post-Fire Rehabilitation Management Within areas of the Refuge with high resilience to disturbance and resistance to invasive annual grasses (e.g., mountain big sagebrush, mountain shrub, low sagebrush habitats; Figure 1), natural sagebrush recovery is likely and perennial herbaceous species are sufficient for recovery. Restoration is typically passive and designed to increase or maintain perennial herbaceous species, biological soil crusts, and landscape cover of sagebrush. Post-fire rehabilitation is generally a low priority with the exception of areas where native understory is inadequate for recovery, where seeding or transplanting sagebrush is needed to maintain habitat connectivity, or where there are steep slopes and soils with erosion potential. Treatment options include aerial and ground herbicide application, and reseeding of native species via either aerial or ground techniques (see **Table 4-209**).
- 22 For areas of the Refuge with moderate to low resilience to disturbance and 23 resistance to invasive annuals (e.g., Wyoming big sagebrush habitats; Figure 1), 24 natural sagebrush recovery is less likely and perennial herbaceous species are 25 typically inadequate for recovery. Restoration is typically active. Areas with 26 >65% landscape cover of sagebrush are the first order priority for post-fire 27 rehabilitation and restoration, especially if they are part of a larger, contiguous 28 area of sagebrush. Seeding and/or transplanting sagebrush may be necessary and 29 success will likely depend on more than one intervention due to low and 30 variable precipitation. Repeat restoration treatments if they fail initially to 31 ensure success especially in warm and dry soil temperature regimes where 32 weather is often problematic for establishment.
- 33 34

35

36

37

38

39

40

- Other priority areas for restoration activities include relatively warm and dry areas where annual invasives are expanding.
- Treatment options include aerial and ground herbicide application, and reseeding of native species via either aerial or ground techniques.
- Actively monitor and manage post-fire areas to minimize secondary weed infestation.
- Explore options to partner with other agencies to develop and maintain supplies of locally adapted seed banks.

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	176,397	65,266	0	241,663
	Percent of PPA	73.0	27.0	0	100
'					
2		Proposed Manageme	nt		
3		See Table 4-210 for	projects that have be	een identified presen	tly within the
1		NEPA planning proces	ss. See Figures 4-1	19 through 4-123 f	for a graphic
5		depiction of the propos	ed treatments and str	ategies in the PPA.	

Table 4-209Post-Fire Rehabilitation Management Strategies

Table 4-210Project Planning Area Treatment Summary Table

Treatm Descrip	nent tion	Priority			Threats Addressed			NEPA			Treatments						
						(I) sa						Tir Fra	ne me	Certainty of Effectiveness ¹		ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Hart Mountain NAR - Poker Jim Conifer Removal	6153 ac	X			С	I		W		С			I	Ι		5+	0-2
Hart Mountain NAR - Rock Creek Conifer Removal	2485 ac	×			С	Ι		<		С		Ρ		Ι		5+	3-5
Hart Mountain NAR – Guano Creek Conifer Removal	8452 ac		X		С	I		W		С		Р		Ι		5+	3-5
Hart Mountain NAR – East Desert South Conifer Removal	3521 ac			X	С	Ι		W		С		P		Ι		5+	5+

Treatment Description		Priority			Threats Addressed		NEPA		Treatments								
						(I) s						Time Frame		Certainty of Effectiveness ¹		ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years)³
Hart Mountain NAR - Poker Jim Conifer Removal	6153 ac	X			С	I		W		С			I	I		5+	0-2
State if tre	 State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes: I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely 2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely 3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low 4 = Based upon professional opinion, treatment is likely to be effective 																

Table 4-210 Project Planning Area Treatment Summary Table

Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

4.2.26 Sheldon NWR

Project Planning Area Description

General Site Description

Sheldon National Wildlife Refuge PPA is located in the northwestern corner of the Great Basin, located in Humboldt and Washoe Counties, Nevada. The lands adjacent to the Refuge are primarily managed by the BLM Lakeview, Burns, Northern California, and Winnemucca Districts. The total area within the Refuge's borders is 575,000 acres and >80 percent of the Refuge is sagebrushsteppe habitat. Elevations range from 4544 feet in the valleys to 7290 feet at the highest mountain peak.

- 14The Sheldon NWR did not have the detailed soil data available to update the15resistance/resilience layer from the original assessment work in the fall of 2014.16This lack of data is apparent in the regional and PPA scale maps.
- 17The majority of the PPA area ranges from cool/moist at higher elevations to18cool/dry at lower elevations. Cool/moist ecological types on the Refuge consist19of mountain big sagebrush and low sagebrush habitats, and generally exhibit20moderately high resilience and moderate resistance. Cool/dry ecological types21are more common at lower elevations and in higher densities along the

1 2

3 4

5 6

7

8

9

10

11

12

I	northeastern edge of the Refuge, are dominated by Wyoming big sagebrush, and
2	exhibit low resilience and moderate resistance. In these habitats, effective
3	precipitation limits site productivity and the climate is more suitable to invasive
4	annual grasses (Chambers et al. 2014) (see Table 4-211).

Table 4-21 ISheldon NWR Sage-Grouse Habitat Matrix Categories

	Matrix	No	ΙΔ	IB	IC	2∆	2B	20	30	3B	30	Grand Total
	Category	Data	17				10	10	54	50		
	Acres	535	0	0	34	0	39	355,366	0	225	66,453	422,650
	Percent of PPA	0	0	0	0	0	0	84	0	0	16	100
	Sheldon NW	R not upd	ate to	the nev	v soil n	noistur	e – tem	perature map	due to the	e lack of data.		
5												
6				Withi	n She	ldon	Refug	e, the soil	s genera	lly range fro	m cool/m	ioist at higher
7				elevat	ions 1	to co	ol/dry	at lower	elevation	with sagebr	ush cover	· >80 percent.
8				Withi	n the	Refu	ige, ro	oughly 471	,500 acr	es (82 perce	ent) are <i>'</i>	GRSG habitat.
9				Curre	ent inv	vasive	or ex	otic plant	cover is	low, estima	ted at gre	ater than one
10				perce	nt. W	ester	n junip	er encroad	hment ir	ito GRSG ha	bitat curre	ently occurs at
11				relativ	ely lo	w lev	vels wi	thin scatte	red mou	ntain big sage	ebrush ha	bitats confined
12				along	the no	orthw	restern	third of th	e Refuge			
13				Sage-C	Grouse							
14				Sheldo	on Re	efuge	lies v	vithin the	Wester	n Great Bas	sin PAC	and has been
15				design	ated	as a	GRS	G "core"	(80 pe	ercent) or '	'priority"	(12 percent)
16				manag	gemen	it area	as by 1	the State o	of Nevada	a's GRSG co	nservation	ı plan. Roughly
17				90 pe	rcent	of the	e Refug	ge, therefoi	re, is prel	iminary, prio	rity (GRSC	G) habitat PPH;
18				PPH r	repres	ents	the ha	bitat desig	nated to	maintain dist	tribution a	and sustainable
19				GRSG	і рорі	ulatio	ns (Ma	nier et al.	2013). T	he Refuge p	rovides bi	reeding, brood
20				rearin	g, and	l wint	er hab	itat for GR	SG. As of	f 2014, there	were 26 l	<nown lek="" sub-<="" td=""></nown>
21				compl	lexes	comp	orised	of 60 in	dividual l	eks distribu	ted acros	s the Refuge;
22				rough	ly 76	perce	ent of	the knowr	ı lek sub	-complexes a	ire curren	tly active. The
23				GRSG	і рорі	ulatior	n is sus	taining and	is a stro	nghold popul	ation.	
24				Vegeta	ition							
25				Large,	inter	conn	ected,	and relativ	vely intac	t stands of	native upl	and shrub and
26				steppe	e habi	tats c	ompri	se >80 per	cent of S	heldon Refug	ge. The ma	ajor vegetation
27				types	are	low	sagebr	rush (A. a	rbuscula),	mountain l	big sagebr	rush (A.t. ssp.
28				vaseya	ına), N	Nyon	ning bi	g sagebrus	h (Artem	isia tridentata	i ssp. wyoi	mingensis), and
29				Basin	big sa	igebru	ish (A.:	t. ssp. tride	ntata) co	mmunities (T	able I; Fig	gure I); all are
30				specie	es mo	st cor	nmonl	y associate	d with G	RSG (Manier	[.] et al. 20	13). Elevational
31				differe	ences	are e	vident	, with Wy	oming bi	g sagebrush	and Basin	big sagebrush
32				being	more	dom	inant a	at lower el	evations	and are at h	igher dens	sities along the
33				easter	n por	tion o	of the l	Refuge. As	the eleva	tion increase	s to the s	outh and west,
34				the ha	abitat	beco	mes p	rimarily do	minated	by mountair	ı big sagel	brush and low
35				sagebi	rush c	on the	tablel	ands. Wes	ern junip	er is mainly o	constricte	d to within the
36				north	weste	rn po	rtion o	of the Refu	ge (Figure	e I).		

1	The native perennial grass understory is relatively intact, and common species
2	include Idaho fescue (Festuca idahoensis), bluebunch wheatgrass (Pseudoroegneria
3	spicata), Thurber's needlegrass (Achnatherusm thurberianum), squirreltail (Elymus
4	spp.), Sandberg's bluegrass (Poa secunda), and needle-and-thread (Hesperostipa
5	comata). A wide variety of native forbs also occurs, and includes Phlox spp.,
6	Lomatium spp., Crepis spp., and Lupinus spp. (see Table 4-212).

Table 4-212Classified Vegetation Cover Types and Estimated Percentage of Total Area(Greater GRSG habitat is highlighted in gray)

Vegetation Type	Estimated Percent of Total Area
Invasive annual grasses and forbs	<
Open water/emergent marsh	0.2
Barren and sparse vegetation	1.7
Woodlands (juniper, aspen, mountain mahogany)	2.3
Semi-desert grassland	7.8
Salt desert scrub/Greasewood flat	5.9
Mesic wet meadow	0.5
Basin big sagebrush steppe	5.1
Wyoming big sagebrush shrubland	20.7
Mountain big sagebrush steppe/Mountain shrub	26.5
Low sagebrush shrubland and steppe	29.2

Source: Sheldon National Wildlife Refuge 2010

Invasive Plants

Approximately 30 species of introduced, nonnative, and often noxious plants have been documented on Sheldon National Wildlife Refuge. However, the combined invasive species cover is currently estimated to be less than one percent of the total Refuge area (less than 5,750 acres), and substantial infestations remain generally confined to road corridors and other sites of disturbance (e.g., campgrounds, burned areas). Cheatgrass (*Bromus tectorum*) is the most common species, and other species include knapweed (*Centaurea* spp.), kochia (*Bassia scoparia*), hoary cress (*Cardaria draba*), yellow sweetclover (*Melilotus officianalis*), bull thistle (*Cirsuim vulgare*), scotch thistle (*Onopordum acanthium*), and Russian thistle (*Salsola* spp.).

Fire

The historic role of fire in sagebrush ecosystems has been difficult to accurately estimate. Recently revised estimates of fire return intervals describe 200-350 year fire-return intervals in Wyoming sagebrush, 150-300 years in mountain sagebrush, and more than 200 years for low sagebrush (Manier et al. 2013). There is little evidence that fire will enhance GRSG habitat in Wyoming big sagebrush communities, especially where there is already a balance of native shrubs, perennial grasses, and forbs. There is also a growing body of evidence that suggests that on the current landscape, even prescribed fire designed to enhance brood-rearing habitat values does not have a positive effect on herbaceous habitat conditions and can cause demonstrable decline in valuable sagebrush cover (Manier et al. 2013).

7

8 9

10

Ш

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Although relatively infrequent, the majority of lightening fires occur in the PPA
from June through September, with some fires occasionally starting as early as
mid-May or as late as mid-October. Between the 1930s and early 1980s, all fires
were aggressively suppressed throughout Sheldon Refuge. Between 1985 and
2007, roughly 57,500 acres were burned during wildfire events. The largest
wildfires in recent history were the Badger Fires which burned over 45,000
acres in 1994 and 1999 (see Table 4-213).

Table 4-213 Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres) High and Very High Burn Probability in PPA (percent)	215,050 51.1
8 9	Management Strategies	
10	Treatments	
17	Prescribed fire activities have been typically conducted	September through
12	April with limited use beginning in the 1960s and continui	ng through the early
14	1980s. The use of prescribed fire then increased in the	late 1980s Between
15	1991 and 2012 roughly 22.950 acres were treated	by prescribed fire.
16	predominantly in habitats dominated by Wyoming, mou	ntain, and Basin big
17	sagebrush and as well as meadow habitats.	
18	The approximate total of Sheldon Refuge affected by eithe	r wild or prescribed
19	fire since 1985 is over 80,450 acres or roughly 14 percent o	f the total acreage.
20	Other Relevant Management Activity	
21	Livestock grazing (including feral horses and burros) began	on Sheldon Refuge in
22	the 1870s and continued after the Refuge was established in	the 1930s. Between
23	1990 and 1994, domestic livestock were removed after al	l grazing permits on
24	Sheldon Refuge were purchased and retired. However, fer	al horses and burros
25	continued to graze uncontrolled on the Refuge and their	population numbers
26	substantially increased. Between 2007 and 2012, feral hors	ses and burros were
27	determined to be significantly impeding any potential for	ecological recovery
28	following the removal of livestock. Research indicated that	it, in the absence of
29	cattle, feral horses were decreasing sagebrush density	and plant species
30	diversity, impacting the recovery of important soil surface	e characteristics, and
31	were affecting the ecological function of the semi-arid rang	gelands (Davies et al.
32	2014). In addition, grazing by horses was found to be a st	rong determinant of
33	how vegetative productivity was sustained during the grow	ring season and even
34	small numbers of horses had a proportionally greater ef	fect on productivity
35	compared to native ungulates, particularly during drought	years (Zeigenfuss et
36	al. 2014). As a result, the remaining feral horses and burros	were removed from
37	Sheldon Refuge between 2013 and 2014 in accordance wit	h existing policy, the
38	mission of the Refuge System and the Service, and the p	urposes for Sheldon
39	Refuge.	

Т Fuels Management 2 The primary fuels management activities would be focused on fire breaks and 3 control of invasive annual grasses to prevent large-scale, catastrophic fires. 4 Specific activities include creating fire breaks to minimize fire risk. This can be 5 done by implementing strategic fuel break networks to provide anchor points 6 for suppression that will reduce losses when wildfires escape initial attack. 7 Continue to maintain existing fire breaks along established roads via mowing. 8 Identify additional established roads for consideration as potential fuel break 9 treatment areas while minimizing GRSG habitat fragmentation. Finally, 10 coordinate with adjacent land-management agencies (i.e., BLM) to identify 11 established roads and treatments outside of Refuge-lands which may be 12 appropriate to incorporate as fire breaks (see Table 4-214).

Table 4-214Fuels Management Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Total
Miles	104.38	81.06	0	185.44
13				
14	In addition, Refuge ma	nagement will cont	inue to implement approp	oriate public
15	restrictions including s	easonal road closure	es during high-fire risk time	e periods to
16	reduce fire risk from	vehicles. Continue	e to minimize fire risk	from public
17	campgrounds by reduc	ing fuel at campsite	s (e.g., mowing, herbicide	application)
18	and restricting campf	ires during high-ris	sk time periods. Consid	er installing
19	additional fire break	s and conducting	fuels treatments arour	ıd high-use
20	campgrounds (e.g., Virg	gin Valley Campgrou	ınd, Badger Campground).	
21	Invasive annual grass	control methods w	vill include implementing	a proactive
22	approach by emphasiz	ing herbicide treatr	ment along road corridor	s and early
23	detection and eradica	ation of small infe	stations. Aggressively co	ntrol newly
24	detected small infestati	ions of noxious wee	ds and other highly invasiv	e nonnative
25	plants using a variety o	of tools and method	ls, primarily mowing, rese	eding native
26	species (aerial and d	rill), and the use	of herbicides. Slow the	spread of
27	established populations	s of invasive plants ((i.e., cheatgrass) by limiting	g prescribed
28	burning and other dist	urbances in highly s	usceptible areas and thro	ugh pre and
29	post project monitorin	g, reseeding native s	species (aerial and drill), ar	nd herbicide
30	treatments following d	isturbances.		
31	Habitat Restoration and	Recovery		
32	In the Northern Great	: Basin, habitat loss :	and fragmentation due to	wildfire and
33	conifer encroachment	have been identifie	ed as the primary threat	s to GRSG
34	(Manier et al. 2013). (Conifer expansion r	esults in declines in sage	orush cover
35	and reductions in per	ennial native grasse	s and forbs as conifer ca	nopy cover
36	increases (see summar	y by Chambers et a	I. 2014). The ability to ma	intain active
37	leks is severely compre	omised when conife	r canopy cover exceeds fo	our percent,
38	and habitats containin	ng most active leks	s average greater than c	one percent
39	conifer canopy cover.	Nonnative annual	grasses and forbs also r	educe both

habitat quality and quantity for GRSG. Further, due to repeated fires, some lowto mid-elevation native sagebrush communities can permanently shift to annual grassland states resulting in habitat loss that may be irreversible with current technologies (see summary by Chambers et al. 2014). Most GRSG lek sites have very little annual grassland cover, and lek use becomes progressively less as the cover of invasive annual species increases contributes to reductions in recruitment and annual survival (see summary by Chambers et al. 2014).

Treatments

L

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

26

27

28

29

38

39

- On Sheldon Refuge, western juniper (Juniperus occidentalis) is encroaching into some stands of mountain big sagebrush, aspen, and riparian habitats but is currently confined to the very northwestern edge of the Refuge. Juniper treatment of phases I and II has been shown to be highly effective at maintaining native shrubs and understories, while functionally restoring sagebrush landscapes on many ecological sites. Efforts are ongoing to quantify the extent of juniper encroachment on Sheldon Refuge and prioritize areas for treatment in relation to GRSG habitats. Ongoing treatments will continue to be conducted primarily via mechanical methods supported by limited prescribed fire. Recommended activities include (Chambers et al. 2014):
- 19Other activities include using prescribed fire and mechanical treatments to20remove trees, decrease woody fuels, and release native understories in cool and21moist big sagebrush ecosystems with relatively high resistance to annual invasive22grasses that are in early to mid-phases of juniper expansion. Actively monitor23and manage post-treatment areas to minimize secondary weed infestation.
- 24Recovery after wildfire includes implementing recommended activities, in part25from Chambers et al. 2014:
 - Within areas of the Refuge with high resilience to disturbance and resistance to invasive annual grasses (e.g., mountain big sagebrush, low sagebrush habitats; Figure 1), natural sagebrush recovery is likely and perennial herbaceous species are sufficient for recovery.
- 30-Restoration is typically passive and designed to increase or
maintain perennial herbaceous species, biological soil crusts,
and landscape cover of sagebrush.
- Post-fire rehabilitation is generally a low priority with the exception of areas where native understory is inadequate for recovery, where seeding or transplanting sagebrush is needed to maintain habitat connectivity, or where there are steep slopes and soils with erosion potential.
 - Treatment options include aerial and ground herbicide application, and reseeding of native species via either aerial or ground techniques.

I 2 3 4 5	 For areas of the Refuge with moderate to low resilience to disturbance and resistance to invasive annuals (e.g., Wyoming big sagebrush habitats; Figure 1), natural sagebrush recovery is less likely and perennial herbaceous species are typically inadequate for recovery.
6 7 8 9 10 11 12 13 14 15	Restoration is typically active. Areas with >65 percent landscape cover of sagebrush are the first order priority for post-fire rehabilitation and restoration, especially if they are part of a larger, contiguous area of sagebrush. Seeding and/or transplanting sagebrush may be necessary and success will likely depend on more than one intervention due to low and variable precipitation. Repeat restoration treatments if they fail initially to ensure success especially in warm and dry soil temperature regimes where weather is often problematic for establishment.
16 17 18	 Other priority areas for restoration activities include relatively warm and dry areas where annual invasives are expanding.
19 20 21	 Treatment options include aerial and ground herbicide application, and reseeding of native species via either aerial or ground techniques.
22 23	• Actively monitor and manage post-fire areas to minimize secondary weed infestation.
24 25	• Explore options to partner with other agencies to develop and maintain supplies of locally adapted seed banks.
26 Re	storation of wet meadow habitats
27	• Early management activities on Sheldon Refuge focused on the
28	development of water resources to increase water availability for
29	livestock. Ponds were dug in seeps, spring flow diverted to watering
30	troughs, and stock ponds built. Currently there are over 180 such
31	water developments on Sheldon Refuge, including: reservoirs, stock
32	ponds, pit reservoirs, gabions, diversion canals, and water control
33	structures. Wet meadow habitats in particular are important brood-
34	rearing habitats for GRSG. However, the majority of the wet
35	meadow habitats on Sheldon Refuge have been altered both by
36	water diversion and by extensive grazing by feral horses and burros.
37	This has resulted in soil compaction, altering of plant diversity and
38	abundance, and headcutting all leading to a lowered water table and
39	meadow drying. The goal of the Refuge is to restore these habitats
40	to naturally functioning hydrological processes for the benefit of a

Activities to include:

diverse assemblage of native species including Greater GRSG.

l	 Continued exclusion of feral horses and burros from
2	Sheldon Refuge.
3 4	 Removal of water control structures, diversions, or other developments that alter natural hydrology.
5 6	 Investigate and employ wetland restoration techniques (e.g., plantings, bank stabilization).
7	 Where appropriate, use mechanical or prescribed fire
8	treatments to mimic natural disturbances, reduce litter, and
9	increase herbaceous vigor.
10	Landscape connectivity
	 Explore options to work with partners to restore and
2	maintain GRSG habitats across the larger landscape,
3	including connectivity with Hart Mountain National
4	Antelope Refuge.
15	Habitat Maintenance
16	Sagebrush-steppe habitats within Sheldon Refuge are currently in Moderate to
17	Good condition (as defined by Manier et al. 2013) with potentially under-
18	represented native understories and invasive plants which are common but not
19	dominant as such that natives have been entirely displaced as a result of past
20	grazing pressure by feral horses and burros. The goal of the Refuge is to
21	enhance, protect and/or maintain the natural condition and processes
22	throughout these habitats for the benefit of a diverse assemblage of native
23	species, including GRSG. For habitats in Moderate to Good condition, passive
24	restoration with small, localized treatments or restoration actions are
25	recommended: rest from grazing to avoid a sudden change in disturbance
26	regime and/or exotic species invasion, and consideration of increasing active
27	restoration if habitat conditions are not improved (Manier et al. 2013).
28	Recommended activities are (in part from Chambers et al. 2014) (see Table
29	4-215):
30	 Continue to exclude domestic livestock, feral horses, and feral
31	burros from Sheldon Refuge.
32 33 34 35	• Suppress fire in moderate to low resilience and resistance sagebrush (e.g., Wyoming big sagebrush habitats, Figure 1) and wooded shrublands to prevent an invasive annual grass-fire cycle. Large sagebrush patches are high priority for protection from wildfires.
36	 Use prescribed fire and mechanical treatments to remove trees,
37	decrease woody fuels, and release native understories in cool and
38	moist big sagebrush ecosystems with relatively high resistance to
39	annual invasive grasses that are in early to mid-phases of juniper
40	expansion.

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	0	3,647	0	3,647
	Percent of PPA	0	0.86	0	0.86
I 2 3 4		•	Where appropriate, use n mimic natural disturbance vigor in wet meadow habi	nechanical or prescribed fire as, reduce litter, and increa tats.	e treatments to ase herbaceous
5 6 7		•	Implement strategic fuel for suppression and rec attack (Figure 2).	break networks to provide luce losses when wildfires	anchor points escape initial
8 9 10		•	Limit anthropogenic activ invasion, and fragmentati use.	vities that can cause surfaction, e.g., road and utility c	ce disturbance, orridors, OHV
11		•	Detect and control new e	xotic weed infestations.	
12		Fire Operati	ons		
13		Fire opera	tions are primarily focuse	d on adequate early detec	tion and initial
14		attack effoi	rts, as well as prevention o	f additional introductions of	f invasive plants
15		to Refuge	lands. Fire Operations at	the Refuge will continue	to work with
16		partners to	explore the potential for	a strategically located inte	ragency "weed
17		wash" stat	ion as well as the establis	hment of a station at the	Sheldon NWR
18		Field Head	quarters. Vehicles used ir	or around sites with pre	evalent invasive
19		plants wou	Ild be washed before ent	ering and leaving the Refu	ge (see Table
20		4-216).			

Table 4-215 Habitat Restoration Potential Treatments

Table 4-216Fire Operations Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Total				
	Acres	422,651	0	0	422,65 I				
	Percent of PPA	100	0	0	100				
21									
22		Efforts to explore the	e potential to impro	ve initial attack effort	s include re-				
23		evaluation of water	use agreement for	Jacob's Reservoir loo	cated in the				
24		southeast portion of	Sheldon Refuge in	order to conserve suf	fficient water				
25		availability during a fire	e event. Work with	adjacent landowners of	on water use				
26		agreements. Explore opportunities for water storage tanks (non-potable) at the							
27		Refuge Field Headquar	ters. Increase availa	bility of suppression re	esources (i.e.,				
28		SEATs and water tend	lers) for initial attack	. Increase capability to	pre-position				
29		resources across age	encies. Explore opp	ortunities to improv	e early fire				
30		detection. Investigate	potential to install	remote cameras at e	existing radio				
31		repeater sites (e.g., Ha	rt Mountain/Warner	repeater) to serve as l	lookout sites.				
32		Increase interagency av	ailability of aircraft fo	r detection flights.					

Efforts to improve the function of Fire Operations include the possibility of expanding the number of available interagency Resource Advisors. Increase the availability of interagency fire prevention programs and staff, to include educational, patrolling, and sign posting capabilities. Maintain current fire dispatch capabilities. Add resources and preposition resources specifically identified to protect GRSG habitat through use of "Step-Up" plans that are tied to the unit Fire Danger Operating Plan, local/regional preparedness levels, potential for ignitions, and or key weather events. Type III to V IC delegations: provide clear leaders intent to IC's and first responders that supports the Land Management Plan direction and that in the Fire Management Plan as it pertains to protection of GRSG habitat. Ex. "To the extent it can safely be performed, retain unburned fingers and islands that do not pose a significant threat of escape." Duty Officers should become familiar with priority areas within GRSG habitat that are more or less resistant/resilient, any pre-attack plan generated for a specific area, treatment locations, and or advantages on the landscape engineered to aid in containment (Initial Attack prioritization and efficiency).

17 Establish a "Pre-Attack Plan" specific to each juniper control treatment. While 18 added fuel hazard is present, utilize a pre-attack plan as the means to mitigate 19 wildfire spread potential until treatment is complete/hazard removed. Examples 20 include: improved access, creating/planning control lines, creating temporary 21 improved detection cycles/methods, water sources, preestablished 22 authorizations to utilize heavy equipment (if applicable), contact lists and 23 notifications specifically needed, etc. Load PAC areas into a CAD system at 24 Dispatch. Front load this resource value and set it as a priority area for action 25 and notifications. Look at existing dispatch run cards "Block Cards" to modify 26 and or create new cards for GRSG PAC areas in an effort to best provide for 27 habitat protection. Resource Advisors kits should be updated with treatment 28 areas, site data of GRSG landscape and ability to advise fire mangers and IC's of 29 areas more and less resilient/resistant. This provides knowledge to better 30 prioritize localized incident suppression action (extended attack).

31 Post-Fire Rehabilitation Management

Within areas of the Refuge with high resilience to disturbance and resistance to invasive annual grasses (e.g., mountain big sagebrush, mountain shrub, low sagebrush habitats; Figure 1), natural sagebrush recovery is likely and perennial herbaceous species are sufficient for recovery. Restoration is typically passive and designed to increase or maintain perennial herbaceous species, biological soil crusts, and landscape cover of sagebrush. Post-fire rehabilitation is generally a low priority with the exception of areas where native understory is inadequate for recovery, where seeding or transplanting sagebrush is needed to maintain habitat connectivity, or where there are steep slopes and soils with erosion potential. Treatment options include aerial and ground herbicide application, and reseeding of native species via either aerial or ground techniques (see **Table 4-217**).

4-196

L

2

3

4 5

6

7

8

9

10

|| |2

13

14

15

16

32

33

34

35

36

37

38

39

40

41

42

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	422,65 l	0	0	422,651
-	Percent of PPA	100	0	0	100
		_			
2		For areas	of the Refuge with mo	derate to low resilie	nce to disturbance and
3		resistance	to invasive annuals (e.g.	, Wyoming big sagebi	rush habitats; Figure I),
4 r		natural sag	ebrush recovery is less	likely and perennial	nerbaceous species are
5		cypically in	adequate for recovery.	Restoration is typic	any active. Areas with
0 7		robabilitati	scape cover of sagebru	sil are the first orde	of a larger contiguous
, 8		area of sag	ebrush Seeding and/or t	ransplanting sagebrus	h may be necessary and
9			Il likely depend on mo	ore than one interve	ntion due to low and
10		variable pr	recipitation. Repeat res	toration treatments	if they fail initially to
		ensure suc	cess especially in warr	n and dry soil temp	erature regimes where
12		weather is	often problematic for es	tablishment.	
13		•	Other priority areas	for restoration activ	vities include relatively
14			warm and dry areas wh	ere annual invasives a	re expanding.
15		•	Treatment options inc	lude aerial and groun	d herbicide application,
16			and reseeding of na	tive species via eit	her aerial or ground
17			techniques.	c	
18 19		•	Actively monitor and n weed infestation.	nanage post-fire areas	to minimize secondary
20 21		•	Explore options to pa	artner with other ag	encies to develop and
21			maintain supplies of loc	any adapted seed ban	
22		Proposed	Management		
23		See Table	4-218 for projects th	at have been identifie	ed presently within the
24		NEPA plar	nning process. See Fig	ures 4-124 through	• 4-127 for a graphic
25		depiction c	of the proposed treatment	nts and strategies in th	e PPA.
26 27	4.2	2.27 Virginia R	anges		
27		Project Pl	anning Area Descriptio	n	
29		riojectri	inning Area Descriptio		
30		General Site	Description		
31		The Virgini	a Ranges (VR) PPA is loo	cated in Washoe Cou	nty in northern Nevada.
32		Pyramid La	ake is adjacent to the	East of the PPA. Th	e area is comprised of
33		98,675 acr	es of which 71,614 acre	s (73 percent) are ad	ministered by the BLM,
34		1849 acres	(two percent) are adm	ninistered by the BIA	, and 25,152 acres (25
35		percent) ar	re private lands. A high	proportion (59,498 a	cres, 60 percent) of the
36		PPA is pre	sently categorized as 3A	habitat, with 19,096	acres of designated IA
37					

Table 4-217Post-Fire Rehabilitation Management Strategies

Treatr Descri	ment ption	Р	riorit	у		Thr Addr	eats essed		I	NEPA	•			Treat	ments		
	-					(I) si						Tiı Fra	ne me	Certai Effectiv	nty of eness ¹	ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Sheldon NWR – Bitner Butte Confer Removal	7,000 ac	X			С	I		W		С			I	Ι		5+	0-2
Sheldon NWR – Little Sheldon Phase I Conifer Removal	7,000 ac		x		С	I		W		С		Ρ		Ι		5+	3-5
Sheldon NWR – Little Sheldon Phase II Conifer Removal	7,000 ac			x	С	I		W		С		Р		I		5+	5+
Sheldon NWR Spring Run/Wet Meadow Restoration	To be deter- mined (180+ sites on Refuge)	X			Ι		R			С		Р		4		5+	5+
Sheldon NVVR Feral Horse and Burro Removal	575,000 acres	X			Ι		R			С			I	Ι		3-5	0-2

Table 4-218 Project Planning Area Treatment Summary Table

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

I

and IB habitats existing in higher elevations of the Fort Sage Mountains and the Virginia Range. understory conversion to annual grasslands in the event of fire is a major reason for the prevalence of 3A and IA habitats, as 55,352 Acres (56 percent) of the PPA has burned within the last I5 years.

5 This PPA encompasses the Fort Sage Mountains and portions of the Virginia 6 Range and nearby valley bottoms. The Flanigan Playa borders the northern edge 7 of the area, with HWY 395 and Pyramid Lake bracketing the PPA on the West 8 and East, respectively. Springs and seeps commonly occur throughout most of 9 the mountains; however most of these areas are not meeting riparian health 10 objectives. Elevations throughout the PPA range from 4,500 feet in valley 11 bottoms to approximately 7,990 feet on top of Stateline Mountain (see Table 12 4-219).

*Total acreage variance due to aggregation methods required by remote sensing data

	Matrix Category	No Data	IA	IB	IC	2 A	2B	2 C	3 A	3B	3C	Grand Total
	Acres	6,232	5,743	1,086	0	12,074	7,059	0	55,958	10,522	0	98,675
	Percent of PPA	6	6	Ι	0	12	7	0	57	11	0	100
15 16 17 18 19 20			Sage-Gr The Vin consist rehabili recove	Gage-Grouse The Virginia Ranges PPA is approximately 98,702 acres and has one lek complex consisting of three active leks. Leks are located in resilient habitat that was rehabilitated post-fire in 1999 and 2001. These leks are displaying strong signs of recovery.								
21 22 23 24 25 26 27 28			The PP and inv GRSG Large a reestab corrido Great location	A has t vasive w populat reas ne lishmer ors. Dis Basin w ns and t	veeds. ions r ar the nt of tribut vith w prood	ne degrad Reestab north of e PPA are sagebrus ion patte vintering rearing o	ded due lishing o the Virg e fragme h and p erns and occurri occurrin	to pinyo connecti inia Ran nted du binyon-ju d mover ng on v g within	on pine an vity with o ges is the e to the lir uniper exp ments of o alley botto riparian ar	d juniper other lek main prio nited am pansion i GRSG ar om and reas thro	expar c comp ority in ount o nto cc re typi mount ughout	nsion, fire, lexes and this PPA. If post-fire onnectivity cal in the ain bench the PPA.
29 30 31 32 33			Vegetat The W grasses are hig (see T a	ion 'estern surrou hly alter able 4- 2	edge Inded red by 220).	of the F by agric y the pre	PA is d ulture fi esence o	ominate ields alo f cheatg	d by large ng the val rass and a	monocu ley botto re likely	ıltures om. Tł to re-l	of annual nese areas ourn again

 Table 4-219

 Virginia Range Sage-Grouse Habitat Matrix Categories

Т

2

3

4

13

Vegetation Category	Big Sagebrush Shrubland	Black/low Sagebrush	Grassland	Invasives	Riparian	Salt Desert Scrub	Woodland	Other
Acres Percent of Area	22,129	3,475 4	646 I	18,641 19	186 0	14,175 14	32,889 33	6,598 7
		Vegetation in t communities in component. U mixed mounta burned approx grasslands wit areas. The vas	the PPA cons n the lower e Jpper elevati ain shrub spe kimately 55,0 ch some sage t majority of	ists mainly o elevations. M ons consist ecies. In 199 00 acres. Th ebrush recov the burned a	of Wyoming any of these largely of 9 and 2001 lese areas a very taking areas were s	and basin e sites also mountain the Fish re now p place in seeded in	big sagebrus b have a rabbi big sagebrus and Fish two redominately the more re 2001.	h plant itbrush sh and o Fires annual esilient
		Across the VR PPA, cheatgrass dominates where past fires have occurred. Noxious weeds such as Scotch thistle, musk thistle and hoary cress have also expanded from past fire occurrences. Other noted species include Russian knapweed, spotted knapweed, scotch thistle, Canadian thistle, musk thistle, and leafy spurge.						
		Fire Past fire rehabilitation efforts have exhibited mixed success from obvious cheatgrass conversion to good success and observed use by GRSG. Higher elevations of the VR PPA frequently receive lightning strikes in the summer. Highway 395 is in a lower elevation and runs along the western boundary of the PPA, this area seems to experience a high volume of human caused fires.						
	-	The PPA was heavily impacted by fire in 1999 and 2001, particularly in areas now rated 3A and 3B. More resilient habitats identified as IA and IB comprise the bulk of the used habitat and also show better establishment of seeded species from rehabilitation efforts undertaken in 2001.					n areas mprise seeded	
		Fire regimes a condition clas regimes withir II, four perce remaining in t issues within regimes are whereas 81 pe replacing fire) condition clas	re a measure is measuring in the Virginia nt in Fire Re he other Fire the PPA. In III and IV (3 ercent of the . Two condi is III, 14 per	e of historic f an area's Ranges PPA egime IV, fo e Regimes. T healthy, res 35-100 year PPA is now tion classes rcent in co	fire return i departure are as follo our percent This speaks ilient sageb frequency fire regime are largely ndition clas	nterval ar from tha ws: 81 pe in Fire to potent rush eco mixed/se II (0-35 ye present ss II, wit	nd fire severit t fire regime rcent in Fire F Regime V, au tial state conv systems, typic tand replacin ear frequency with 77 perc h very little	y, with e. Fire Regime nd the version cal fire g fire) y, stand cent in within
	Vegetation Category Acres Percent of Area	Vegetation CategoryBig Sagebrush ShrublandAcres22,129Percent of22Area	Vegetation CategoryBig Sagebrush ShrublandBlack/low SagebrushAcres Percent of Area22,129 22 43,475Percent of Area22 22 44Vegetation in communities in component. U mixed mounta burned approx grasslands with areas. The vasVegetation in component. U mixed mounta burned approx grasslands with areas. The vasAcross the V Noxious weed expanded from knapweed, spot leafy spurge.Noxious weed expanded from knapweed, spot leafy spurge.Fire Past fire rehat cheatgrass co elevations of Highway 395 i PPA, this areatThe PPA was now rated 3A the bulk of the species from rFire regimes a condition class regimes within regimes are whereas 81 pe replacing fire) condition class condition class	Vegetation CategoryBig Sagebrush ShrublandBlack/low SagebrushGrasslandAcres22,1293,475646Percent of2241AreaVegetation in the PPA cons communities in the lower e component. Upper elevati mixed mountain shrub spe burned approximately 55,0 grasslands with some sage areas. The vast majority ofAcross the VR PPA, chear Noxious weeds such as Sc expanded from past fire knapweed, spotted knapwee leafy spurge.Fire Past fire rehabilitation eff cheatgrass conversion to elevations of the VR PPA Highway 395 is in a lower e PPA, this area seems to expThe PPA was heavily impa now rated 3A and 3B. Mor the bulk of the used hab species from rehabilitationFire regimes are a measure condition class measuring regimes are 11 and IV (i whereas 81 percent of the replacing fire). Two condit condition class II, 14 pe condition class II, 14 pe condition class II, and the re	Vegetation CategoryBig Sagebrush ShrublandBlack/low SagebrushGrasslandInvasivesAcres Percent of Area22.1293.47564618.641Vegetation in the PPA consists mainly c communities in the lower elevations. M component. Upper elevations consist mixed mountain shrub species. In 199 burned approximately 55,000 acres. Th grasslands with some sagebrush reco areas. The vast majority of the burned a Across the VR PPA, cheatgrass dom Noxious weeds such as Scotch thistle, expanded from past fire occurrences knapweed, spotted knapweed, scotch t leafy spurge.Fire Past fire rehabilitation efforts have cheatgrass conversion to good succer elevations of the VR PPA frequently Highway 395 is in a lower elevation and PPA, this area seems to experience a hiThe PPA was heavily impacted by fire now rated 3A and 3B. More resilient h the bulk of the used habitat and also species from rehabilitation efforts under Fire regimes are a measure of historici condition class measuring an area's regimes within the Virginia Ranges PPA II, four percent in Fire Regimes. T issues within the PPA. In healthy, res regimes are III and IV (35-100 year whereas 81 percent of the PPA is now replacing fire). Two condition classse condition class III, 14 percent in co condition class III, 14 percent in co	Vegetation Category Big Surublash Shrublash Black/low Sagebrush Grassland Invasives Riparian Acres 22,129 3,475 646 18,641 186 Percent of 22 4 1 19 0 Area Vegetation in the PPA consists mainly of Wyoming communities in the lower elevations. Many of thess component. Upper elevations consist largely of mixed mountain shrub species. In 1999 and 2001 burned approximately 55,000 acres. These areas a grasslands with some sagebrush recovery taking areas. The vast majority of the burned areas were s Across the VR PPA, cheatgrass dominates when Noxious weeds such as Scotch thistle, musk thist expanded from past fire occurrences. Other no knapweed, spotted knapweed, scotch thistle, Cana leafy spurge. Fire Past fire rehabilitation efforts have exhibited n cheatgrass conversion to good success and obs elevations of the VR PPA frequently receive ligh Highway 395 is in a lower elevation and runs along PPA, this area seems to experience a high volume of The PPA was heavily impacted by fire in 1999 ar now rated 3A and 3B. More resilient habitats iden the bulk of the used habitat and also show bet species from rehabilitation efforts undertaken in 20 Fire regimes are a measure of historic fire return i condition class measuring an area's departure regimes within the Virginia Ranges PPA are as follo II, four percent in Fire Regime. This speaks issues within the PPA. In healthy, resilient sageb regimes are III and IV (35-100 year frequency whereas 81 percent of the PPA is now fire regime replacing fire). Two cond	Vegetation Category Big Sugebrush Shrubland Black/low Sagebrush Grassland Invasives Riparian Desert Scrub Acres 22,129 3,475 646 18,641 186 14,175 Percent of 22 4 1 19 0 14 Area Vegetation in the PPA consists mainly of Wyoming and basin communities in the lower elevations. Many of these sites also component. Upper elevations consist largely of mountain mixed mountain shrub species. In 1999 and 2001 the Fish burned approximately 55,000 acres. These areas are now p grasslands with some sagebrush recovery taking place in areas. The vast majority of the burned areas were seeded in Noxious weeds such as Scotch thistle, musk thistle and the expanded from past fire occurrences. Other noted spec knapweed, spotted knapweed, scotch thistle, Canadian thist leafy spurge. Fire Past fire rehabilitation efforts have exhibited mixed suc cheatgrass conversion to good success and observed use elevations of the VR PPA frequenty receive lightning stril- Highway 395 is in a lower elevation and runs along the west PPA, this area seems to experience a high volume of human The PPA was heavily impacted by fire in 1999 and 2001. now rated 3A and 3B. More resilient habitats identified as the bulk of the used habitat and also show better estab species from rehabilitation efforts undertaken in 2001. Fire regimes are a measure of historic fire return interval ar condition class In a measy departure from tha regimes within the Virgina RangesPA are as follow	Vegetation Category Big Sagebrush Surubland Black/low Sagebrush Sagebrush Grassland Grassland Invasives Invasives Riparian Riparian Desert Desert Scrub Woodland Scrub Acres 22.129 3.475 646 18.641 186 14.175 32.889 Percent of 22 4 1 19 0 14 33 Area Vegetation in the PPA consists mainly of Wyoming and basin big sagebrus communities in the lower elevations. Many of these sites also have a rabb component. Upper elevations consist largely of mountain big sagebrus mixed mountain shrub species. In 1999 and 2001 the Fish and Fish two burned approximately 55.000 acres. These areas are now predominately grasslands with some sagebrush recovery taking place in the more m areas. The vast majority of the burned areas were seeded in 2001. Across the VR PPA, cheatgrass dominates where past fires have occ Noxious weeds such as Scotch thistle, musk thistle and hoary cress ha expanded from past fire occurrences. Other noted species include F knapweed, spotted knapweed, scotch thistle, Canadian thistle, musk thist leafy spurge. Fire Past fire rehabilitation efforts have exhibited mixed success from c cheatgrass conversion to good success and observed use by GRSG. elevations of the VR PPA frequently receive lightning strikes in the su Highway 395 is in a lower elevation and runs along the western boundary PPA, this area seems to experience a high volume of human caused fires. The PPA was heavily impacted by fire

Table 4-220Virginia Range Vegetation Categories

Table 4-221 Summary of Burn Probability

High and Very High Burn Probability in PPA (acres)	89,169
High and Very High Burn Prohability in PPA (percent)	90.9
	70.7

The Carson City District (BLM office), Plumas National Forest, Humboldt Toyabie National Forest, Northern California District (BLM office), Truckee Meadows Fire Protection District, and Reno Fire Departments all have agreements, equipment, and jurisdictions within or near the PPA. Federal Interagency Station located within and near the PPA includes the Doyle interagency Station, Stead interagency station, and Palomino Valley BLM station. Response time within the PPA is generally fast, with good coverage from multiple resources. In addition the Stead Air Tanker Base hosts single engine air tankers, heavy air tankers, and heavy helicopters throughout the summer and could easily respond to any fires within the PPA.

12 Existing Treatments

Landscape level NEPA planning has been initiated by the Sierra Front Field Office that encompasses the PPA area. The Carson City District ESR program has treated 45,502 total acres within the PPA. Areas with the most GRSG use are located within these treatments, and appear to have a high correlation to areas with higher resistance/resilience values. These areas are also recovering from fire impacts observably better than the surrounding areas.

19Pinyon-juniper treatments are planned in the Piute Canyon Grazing Allotment20ES (DOI-BLM-NV-C020-2013-033EA) and will treat 427 acres. This project is21intended to enhance GRSG habitat. An additional 1,746 acres of pinyon-juniper22removal adjacent to the PPA is also planned within the same document. These23projects will be implemented once funding becomes available.

24

25 26

27

28

29

30

31

32

33

34

35

36

37

1 2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

18

Management Strategies

Other Relevant Management Activities

The Sierra Front Field Office of the BLM administers two grazing permits within the VR PPA, with an aggregate total of approximately 1,000 head utilizing portions of the PPA throughout the year.

Fuels Management

A significant amount of annual grassland 3A habitats exist just outside the western edge of the emphasis area creating high potential for future catastrophic wildfires. Primary focus should be placed in this area which also includes a large proportion of past fire rehabilitation activities. Multiple roads and clearings exist within the PPA that present opportunities for use as fuel breaks to slow fire progression across the 3A and 3B habitats. Active fuels and restoration treatments have been initiated along the western and southern

l 2	portions of the PPA (see Table 4-222). Additional fuels management activities include:
3	 Establish fuel breaks system along the Western edge of the PPA
4	habitats along HWY 395.
5 6 7	• Establish a fuel break off of the Dry Valley Road along the southern edge of the VR PPA. This will aid in protection of previous restoration projects.
8	 Pinyon-juniper removal projects south of the PPA will reduce fire
9	intensity and enhance fire suppression success. Effects of pinyon-
10	juniper removal in these areas are currently being analyzed in the
11	Virginia Ranges EA.

Table 4-222Fuels Management Potential Treatments

	Priority	Priority I	Priority 2	Priority 3	Total
	Miles	25.19	0	0	25.19
12					
13		Habitat Recovery and	Restoration		
14		A high percentage	of the area (19 per	cent) has been convert	ted to annual
15		grassland due to lo	w resiliency and rep	eated fire occurrence. I	More resilient
16		habitats and riparia	n areas exist within	the focal habitat, but	are currently
17		degraded. Priority	treatments for rest	oration are focused on	reestablishing
18		functioning riparian	systems. Priority 2 tre	atments include removal	l of coniferous
19		expansion in travel	corridors on the sou	th end of the focal area.	. The focus of
20		Priority 3 restoration	n areas is to reestabli	sh native perennial speci	es in an effort
21		to reverse or slow a	innual grassland conve	rsion (see Table 4-223)).
22		Treatment consider	ations include:		
23		Riparian	treatments around t	he dry valley drainages a	and associated
24		epheme	ral streams		
25		• Inventor	ry and ground prepara	tion in invasive annual gr	asslands
26		Herbicio	le application in invasi	ve annual grasslands	
27		Seeding	of desirable species in	prepared annual grassla	nds.

Table 4-223Habitat Restoration Potential Treatments

Priority	Priority I	Priority 2	Priority 3	Total
Acres	8,343	0	0	8,343
Percent of PPA	8.46	0	0	8.46

I 2 3 4 5	Fire Operations Fire operations are primarily focused on adequate early detection and initial attack efforts. Suppression is generally applied to fire however, the 'let it burn' policy can be applied successfully in some areas like riparian corridors, decadent sagebrush stands, aspen stands and grasslands.
6	Other issues include:
7 8	First order suppression focusses on unburned areas adjacent to previous ESR treatments on the South and West sides.
9 10	Secondary Suppression priorities are centered on areas that have been previously treated by the ESR program.
 2 3 4	Tertiary suppression priorities are directed at higher elevation areas of the Virginia Range and Fort Sage Mountains and 3B habitats on the northeast portion of the PPA. The majority of these areas has been rated IA and IB and should be highly resilient if fire burns in these areas (see Table 4-224).

Table 4-224Fire Operations Management Strategies

Priority	Priority I	Priority 2	Priority 3	Total				
Acres	49,706	87,595	8,312	145,613				
Percent of PPA	50.4	88.8	8.4	147.6				
5								
6	Post-Fire Rehabilitation							
7	The prevalence of h	ighly desirable habitat	: (3B and 3C) within	low resiliency				
8	regimes elevates the	e need for prompt f	ire rehabilitation activ	vities with an				
9	emphasis on establish	ning sagebrush cover a	and limiting cheatgrass	establishment				
20	post-fire within this	emphasis area. Curre	nt telemetry data sug	gests that the				
21	most used habitat i	n the PPA is in pre	evious ESR treatments	s with higher				
22	resiliency values. Che	resiliency values. Cheatgrass expansion and state conversion is a high concern in						
23	this PPA and has occu	irred over a large port	ion of the PPA.	0				
24	First order treatment	priority would be cer	ntered on the valley bo	ttoms and any				
25	impacted fuels or re	storation treatments	(see Table 4-225).	Second order				
26	treatment priorities	would include 3B de	signated habitat on tl	he toe slopes				
27	(lower one third of	the slope) and aroun	d active leks and kno	wn areas that				
28	GRSG use. High ele	vation fires within th	e PPA may become	a priority for				
29	treatment if it is o	determined that ero	sion potential may r	negatively and				
80	significantly impact ha	bitat values. Treatmen	t considerations includ	e:				
31	In areas where sagebr	rush systems have bur	ned and natural recove	ry is not likely				
32	targeted seeding on	North and East fac	ing microclimates wit	hin the areas				
33	designated 3A and 3B	would enhance proba	bility of successful esta	blishment.				

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	23,532	61,842	7,335	92,709
	Percent of PPA	23.8	62.7	7.4	94
I					
2		Use of some form of	ground preparation	(drill seeding, aerial	seeding and
3		chaining, harrowing, etc	.) is warranted and fea	sible on valley bottom	areas.
4		Areas appropriate for	drill seeding and e	quipment use will b	e surveyed,
5		inventoried and cleared	by Cultural Resource	staff prior to treatmen	nt.
6		Where appropriate, he	rbicide treatments w	ill be applied to suppi	ress invasive
7		and noxious species esta	ablishment and spread		
8		Proposed Managemen	ot		
9		See Table 4-226 for	projects that have be	en identified presently	y within the
0		NEPA planning proces	s. See Figures 4-12	28 through 4-131 fo	or a graphic
1		depiction of the propos	ed treatments and stra	tegies in the PPA.	-

Table 4-225Post-Fire Rehabilitation Management Strategies

Table 4-226	
Project Planning Area Treatment Summary Tabl	e

Treatment Description Priority			ty		Thr Addr	eats essed		1	NEPA	۱.		Treatments					
	ອ ອີ ສິ		ame	me													
Name/T ype	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	2-2- 2-2- 2-2- (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Black Rock Priority	59.6 miles	Х						Х			Х	Х		Х		5-7	5+
Black Rock Secondary	l 66 miles		Х					Х			Х	Х		Х		5-7	5+
Invasive Weeds Treatments	2,000 acres	Х				Х					Х	Х		X		5-7 or 0	5+
Sage-grouse Conifer Treatments	1,000		Х		Х						Х	Х		Х		50+	5+

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

4.2.28 Black Rock

1 2 3

4 5

18

19

20

21

22

23

24

25

Project Planning Area Description

General Site Description

The Back Rock PPA is located in the central portion of the Winnemucca
District and lies entirely within Humboldt County, Nevada. Approximately,
28,489 acres lies within the Black Rock-High Rock Canyon National
Conservation Area. Additionally, 22,920 acres are in designated wilderness and
8,414 acres are in a WSA or an Instant Study Area (managed as wilderness).
The PA is 191,758 acres in size of which 8,911 acres are part of the Summit
Lake Indian Reservation (five percent), 175,292 acres are public (91 percent),
6,710 acres are private (three percent), six acres are US Fish and Wildlife
Service (greater than one percent) and 840 acres are water (greater than one percent). Major mountain ranges include the Pine Forest, Black Rock and Calico
Mountain ranges which are typically oriented north to south. Elevation ranges from 3,996 to 9,416 feet.

Major streams include Soldier Creek, Battle Creek, Bartlett Creek, Leonard Creek and Craine Creek. Craine Creek flows north; Mahogany, Summer Camp and Snow Creeks flow west into Summit Lake, all others flow to the south. Summit Lake is located between the Black Rock and Calico Mountains and has no outflow. Over 600 springs and seeps have been identified; small wet meadows are scattered in conjunction with springs and riparian areas. Just over half of stream reaches assessed in the PPA are meeting Proper Functioning Condition (PFC) (see **Table 4-227**).

	Matrix Category	No Data	IA	IB	IC	2 A	2B	2C	3A	3B	3C	Grand Total		
	Acres	2,272	0	196	775	0	8,321	75,384	0	7,659	97,153	191,758		
	Percent of	I	0	0	0	0	4	39	0	4	51	100		
	PPA													
26														
27			\sim	ith little	e resp	ect fo	r eleva	tion or v	egetatio	n type, 89	percent of	the PPA is		
28		classified as 3C or 3B habitat. This classification is based on the soil												
29		temperature/moisture layer and not actual perennial cover. The IB and IC												
30			ha	bitat oc	curs ir	n the l	, headwa	ter regioi	ns of Co	oleman Cree	ek and the l	North Fork		
31			of	Battle (Creek	and ii	n the no	orthwest	ern corr	ner of the P	PA around	Bear Butte		
32			an	d Troug	h Moι	untain								
33			Sa	ge-grous	е									
34			Tł	nere are	I4 ac	tive (GRSG (Centrocer	cus urop	hasianus) le	ks; four are	e located in		
35			th	e Pine F	orest	Range	e, eight	are locat	ted in th	ne Black Ro	ck Range a	nd two are		
36			lo	cated in	the C	Calico	Mounta	ains. For	habitat	types, all le	ks are loca [.]	ted in class		
37			30	C habita	it, the	e leas	t resist	tant and	resilier	nt type. Le	k surveys	have been		

Table 4-227 Black Rock Sage-Grouse Habitat Matrix Categories

conducted annually over the past five years by Nevada Department Of Wildlife
(NDOW). Annual variability in count numbers has been high with no apparent
trend in population. Summer and winter habitat overlap considerably because of
inconsistent snowfall and persistence. The greatest threat to GRSG is the loss of
habitat from wildfire and habitat degradation due to heavy livestock grazing and
free-roaming horses.

7 Vegetation 8 Lower elevations consist of salt desert shrub and Wyoming big sagebrush 9 (Artemisia tridentata ssp. wyomingensis). When fires occur, these areas generally 10 convert to nonnative invasive annual grasses. For fires above 5,500 ft. elevation, 11 Wyoming sagebrush often recovers back to native perennials. Other native 12 plant communities appear resilient over time to wildfire. There are small areas 13 of low sagebrush (Artemisia arbuscula) throughout the PPA that are defined and restricted by soils. Higher elevations have both Mountain big sagebrush 14 15 (Artemisia tridentata ssp. vaseyana) and mixed mountain shrub. Aspen (Populus 16 tremuloides) stands are restricted to riparian areas, drainages, seeps and other 17 mesic sites. Curl-leaf mountain mahogany (Cercocarpus ledifolius) occurs in small 18 stands generally on rocky outcrops (see Table 4-228). 19 Major invasive noxious weeds include scotch thistle (Onopordum acanthium),

20Canada thistle (*Cirsium arvense*), hoary cress (*Cardaria draba*), perennial21pepperweed (*Lepidium latifolium*) and spotted knapweed (*Centaurea maculosa*).22Livestock congregate within riparian areas due to poor water distribution.23These areas are heavily impacted and generally in poor condition.

	Vegetation Category	Big Sagebrush Shrubland	Aspen Forest	Mahogany Woodland	Invasives	Riparian	Salt Desert Scrub	Other	Grand Total				
	Acres	46,43	8,771	8,100	3,790	744	7,08814,900	16,835	191,759				
	Percent of	76	5	4	2	<	4	9	100				
~ 1	Area												
24													
25		Fi	re										
26		A total of 12 wildfires have burned 19,391 acres in the Black Rock PPA since											
27		1982. The Mahogany fire was the largest fire that impacted the PPA and burned											
28		12.029 acres within the PPA boundary. Most burned areas demonstrated good											
29		re	covery i	n part. due	to ESR effo	orts. natura	l recovery an	d exclusi	ion from				
30		de	omestic g	razing Appro	ximately 42	percent an	d 57 percent	of the PP	A have a				
31		ʻh	igh' and '	moderate' bu	rn probabili	tv respecti	vely Historic	fire regin	nes were				
27		11	norally E	iro Pogimo IV	/ but some	aroos of M	ountain hig sa	aobruch r	nov have				
32		Se	inerally r		, but some	areas or m	ountain big sa	gebrush i	hay have				
33		bı	urned at	rates <100 ye	ears; the cur	rent rate fo	or the entire P	PA irresp	ective of				
34		ve	egetation	type is >300	years. Most	areas are c	onsidered con	dition cla	ss II with				
35		sr	nall area	s of conditio	on class I. c	ondition c	lass III areas	occur w	ithin the				
36		Ь	oundaries	of past wildfi	res (see Tal	ole 4-229).							

Table 4-228Black Rock Vegetation Categories

4-206

Table 4-229Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres)	80,162
	High and Very High Burn Probability in PPA (percent)	42.0
 2 3	Management Strategies	
4	Treatments	
5	Past and present treatments in the area have prima	arily focused on ESR
6	treatments and weed treatments, with the addition of se	everal small fuel breaks
7	near roadways. Major rehabilitation efforts followed the	1999 Denio and Pass
8	Fires, 2001 Mahogany Fire, and 2006 New York Fires. The	he Mahogany and New
9	York Fire received some seeding but recovered natur	rally due to elevation,
10	though the Denio and pass fire were heavily reseeded.	
11	Other Relevant Management Activities	
12	Primary uses occurring in the area include grazing and	some moderate scale
13	mining. The mining activities are restricted to a small pe	ortion planning area at
14	present, though grazing occurs across the entire plann	ing area. Grazing may
15	hinder some of the rehabilitation activities such as	seeding or meadow
16	restorations activities. Also included in the planning are	the North Black Rock
17	and Pahute Peak Wilderness areas, and the Lahontan C	utthroat Trout Instant
18	Study area in the Black Rock Mountains, and the newly	designated Pine Forest
19	Wilderness Area in the Pine Forest Range, which preclud	le or limit some forms
20	of active management	
21	In addition, the Black Rock East and Black Rock West HM	1As make up a majority
22	of the southern portion of the assessment area. R	ehabilitation activities,
23	specifically seedings or riparian restoration will likely	be hindered in areas
24	overlapped by HMAs.	
25	Fuels Management	
26	The District identified several fuel breaks within the PPA	that cover roughly 500
27	miles and have been selected as possible areas for fu	Ill green stripping and
28	seeding using all of the tools available, including che	emical and mechanical
29	treatments, and leaving the potential for native and nonn	ative seeding use open.
30	Treatments will be identified on a case-by-case basis.	Generally, roads are
31	mowed first, then greenstripped, and maintained. A	reas that have been
32	greenstripped that now have cheatgrass (Bromus tecto	orum) growing will be
33	chemically treated and maintained. The District will be	careful to avoid killing
34	low-sage areas when managing and creating these fuel bre	aks, and will spot treat
35	for noxious weeds. Despite the lack of burning in the high	er elevation areas, fuel
36	breaks will be installed as a result of climate change a	and the expectancy of
3/	higher intensity storms, which may result in an increased	tire regime (see Table
38	4-230).	

	Priority	Priority I	Priority 2	Priority 3	Total
	Miles	58.91	161.77	0	220.68
I					
2		Black Rock does not h	ave conifer expansior	issues.	
3		There is one nonnat	ive annual grass trea	atments proposed with	nin the Black
4		Rocks PPA, situated	in the Pearl Camp	Canyon and Leonard	Creek Area,
5		though the remainder	of this area has limite	ed nonnative invasive gra	ass exposure.
6		Some additional areas	on the perimeter m	nay also be targeted. T	he area does
7		have some problems	with noxious weed	s, such as scotch this	tle, perennial
8		pepperweed and sho	rt whitetop. The Dis	trict will continue to in	nventory and
9		spot treat the PPA fo	r noxious weeds, esp	ecially where meadow	conversion is
10		occurring.			
П		Habitat Restoration and	Recovery		
12		The District would t	reat the Black Rock	PPA with protection g	reenstrips by
13		applying herbicide and	then reseeding with	appropriate species in a	ireas adjacent
14		to important GRSG	nabitat. Treatment ap	plications will occur a	t appropriate
15		times of the year and	will not interfere with	lifecycles of local GRSC	G populations
16		(see Table 4-23 I).			
17		The District would a	so treat the Pine Fo	rest which has some h	igh elevation
18		meadows that have b	een damaged partially	due to Livestock mana	agement. The
19		District will look int	o altering livestock	management to better	manage the
20		meadows which serve	as brood rearing hab	itat for greater GRSG.	
21		The high elevation ar	eas tend to be wet,	have cool-dry and wa	arm-dry soils,
22		some aspen stands, m	ountain sagebrush an	d varying levels of unde	erstory. In an
23		effort to enhance exis	ting habitat hand plai	nting, aerial and or drill	seeding may
24		be applied.			

Table 4-230Fuels Management Potential Treatments

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	143,614	0	0	143,614
	Percent of PPA	74.89	0	0	74.89
25					
26		Fire Operations			
27		First priority ar	eas for fire operations	are low elevation areas	(below 6,000ft)
28		because these a	reas are less likely to	recover naturally, as wel	l as white bark
29		pine (Pinus albic	aulis) stands and occup	pied LCT streams. Second	d priority areas
30		are high elevation	on areas (above 6,000f	t). In extreme fire years,	the Black Rock
31		PPA may take	precedence over othe	r planning areas because	large blocks of
32		contiguous habit	tat occur in these place	s (see Table 4-232).	

Table 4-23 IHabitat Restoration Potential Treatments

	Priority	Priority I	Priority 2	Priority 3	Total							
	Acres	117,952	107,913	34,886	260,751							
	Percent of PPA	61.5	56.3	18.2	136							
I												
2		The Denio Junction w	vas identified as a p	repositioning stage for	areas below							
3		6000 feet. High elevation areas would not be priority for prepositioning due to										
4		general lack of burnin	g. The Black Rock	area has some tactic	and response							
5		constraints due to difficult terrain and lack of access to higher elevation areas.										
6		The probability of a burn in these areas is lower than in other areas of the										
7		District. The southern	portion has very limi	ted experience with wi	ldfire.							
8		Post-Fire Rehabilitation N	lanagement									
9		First priority areas for ESR operations are low elevation areas (below 6,000ft)										
10		because these areas a	re less likely to reco	over naturally, and hav	e some areas							
П		that have converted to	cheatgrass Second p	priority areas are high e	levation areas							
12		(above 6,000ft), focus	sing on areas wher	e T&E species habita	t is and the							
13		treatment of invasive a	nnuals (see Table 4-	233).								

Table 4-232Fire Operations Management Strategies

Table 4-233								
Post-Fire Rehabilitation Management Strategies								

	Priority	Priority I	Priority 2	Priority 3	Total					
	Acres	109,008	82,752	0	191,760					
	Percent of PPA	56.8	43.2	0	100					
 14 15 16 17 18 19 20 21 22 23 	erations for this area ter fire. The program with herbicide, aerial so propriate vegetation co three years, then the l g towards restoration pecies habitat will be emaining islands from	will include will include eeding, drill ommunities. District will efforts. All the priority cheatgrass								
24 25 26	Grazing within a burned area will be assessed on a case-by-case basis for c five years after the fire. Monitoring results will determine manage decisions.									
27 28 29 30		Proposed Management See Table 4-234 for p NEPA planning process depiction of the propose	: rojects that have bee . See Figures 4-13 2 d treatments and strat	n identified presently 2 through 4-136 for egies in the PPA.	within the a graphic					

Treatme Descript	ent ion	P	riorit	y		Thr Addr	eats essed		I	NEPA	•	Treatments					
						(I) si						Time Frame		Certainty of Effectiveness ¹		ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	2-5 (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Black Rock Priority	59.6 miles	Х						Х			Х	Х		Х		5-7	5+
Black Rock Secondary	166 miles		Х					Х			Х	Х		Х		5-7	5+
Invasive Weeds Treatments	2,000 acres	Х				Х					Х	Х		Х		5-7 or 0	5+
Sage- grouse Conifer Treatments	1,000		X		Х						X	X		Х		50+	5+

Table 4-234Project Planning Area Treatment Summary Table

State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

|--|

Project Planning Area Description

General Site Description

The Lone Willow PPA is located in the northeastern portion of the Winnemucca District along the Idaho-Nevada state line and lies entirely within Humboldt County. The PA is 277,485 acres in size of which 262,661 acres (95 percent) are public and 14,824 acres (five percent) are private. Major mountain ranges include the Bilk Creek, Trout Creek and Montana Mountain ranges which are typically oriented north to south. Kings River Valley separates the major mountain ranges. Elevation ranges from 4,167 ft. in the valley bottoms to 8,494 ft. on the highest ridges of the Bilk Creek Mountains.

15Most perennial streams feed either Quinn River or Kings River; a few streams16flow north or east of the PPA. Hundreds of springs and seeps occur; some form17larger meadow complexes. Approximately half of the stream reaches assessed in18the PPA are meeting PFC.

5 6

7

8

9

10

П

12

13

I	All 3C habitat (33 percent of total) is located in the Montana Mountains; this is
2	likely an erroneous categorization as much of the top of the mountain has very
3	little to absent nonnative invasive grass cover, and has been highly resilient to
4	past disturbances. Approximately half of the 3C habitat has good sagebrush
5	cover; the other half was impacted by the 2012 Holloway and Long Canyon
6	Fires (should be in A category). The 3B habitat (18 percent) occurs at the base
7	of the Montana and Bilk Creek Mountains as well as one large patch at the
8	upper end of Kings River Valley. All 3A and 1A habitats (40 percent and eight
9	percent, respectively) are located in the Trout Creek and Bilk Creek Mountains
0	at higher elevations. The 3A classification comes from sagebrush cover loss due
1	to recent wildfires (see Table 4-235).

Table 4-235Lone Willow Sage-Grouse Habitat Matrix Categories

	M = 4											
	Matrix Category	No Data	IA	ΙB	IC	2 A	2 B	2 C	3 A	3B	3C	Grand Total
	Acres	1,910	17,115	0	0	46,100	15,486	39,749	71,274	35,068	50,783	277,485
	Percent of PPA	I	6	0	0	17	6	14	26	13	18	100
12												
13			Sage	e-grous	se							
14			The	re are	e 50 a	ctive GR	SG (Cent	rocercus ur	ophasianu	s) leks; 3	I of those	e leks are
15			on t	the M	lontar	na Mount	tains, seve	en leks in	the Trou	it Creek	Mountair	ns and 12
16			leks	in the	e Bilk	Creek M	lountains.	. By habita	t types, 2	7 leks are	located	within 3C
17			habi	tat; l	6 leks	are loca	ted withi	n 3B habit	at, and se	ven leks	on 3A ha	bitat. Lek
18			surv	eys h	ave l	been cor	nducted a	innually ov	ver the p	ast five	years by	NDOW.
19			Ann	ual va	ariabil	lity in co	unt num	oers has b	een high	with no	apparent	trend in
20			population. Lek counts in 2014 were below the five-year average. Summer and									
21		winter habitat overlap considerably because of inconsistent snowfall and										
22			persistence. Habitat has been greatly impacted by wildfire over the past 25									
23			years. The greatest threat to GRSG habitat is loss of habitat due to wildfire and									
24			habi	habitat degradation due to heavy livestock grazing.								
25			Vege	etation	1							
26			Low	ver el	evatio	ons cons	ist of sa	lt desert	shrub an	d Wyom	ning big s	sagebrush
27			(Arte	emisia	tride	ntata ssp.	wyoming	ensis). Wh	en fires o	occur, the	ese areas	generally
28			conv	vert t	o do	minance	by invasiv	ve annuals	. For fire	s above !	5,500 ft.	elevation,
29			Wyo	oming	sage	ebrush re	ecovers b	back to na	ative per	ennials. C	Other nat	tive plant
30			com	muni	ties a	ppear res	silient ove	er time to	wildfire. 7	There are	large are	eas of low
31			sage	brush	ı (Art	emisia a	rbuscula)	througho	ut the F	'PA that	are def	fined and
32		restricted by soils. Higher elevations have both mountain big sagebrush										
33			(Arte	emisia	tride	ntata ssp	. vaseyand	a) and mix	ked mour	ntain shru	ıb. Asper	n (Populus
34			trem	uloide	es) sta	ands are	restricted	d to riparia	an areas,	drainages	s, seeps a	and other
35			mes	ic site	es. Cu	ırl-leaf m	ountain n	nahogany ((Cercocarț	ous ledifoli	us) occur	rs in small
36			stan	ds ge	nerall	y on roc	ky outcro	ops. Major	invasive v	weeds inc	lude scot	ch thistle
37			(Ond	opordi	ım ac	anthium),	Canada	thistle (Cir	rsium arve	nse) , ho	ary cress	(Cardaria

I	draba), perennial pepperweed (Lepidium latifolium) and spotted knapweed
2	(Centaurea maculosa). Livestock congregate within riparian areas due to poor
3	water distribution. These areas are heavily impacted and generally in poor
4	condition (see Table 4-236).

Table 4-236Lone Willow Vegetation Categories

	Vegetation Category	Big Sagebrush Shrubland	Aspen Forest	Mahogany Woodland	Invasives	Riparian	Salt Desert Scrub	Other	Grand Total	
	Acres	194,426	16,098	12,896	5,295	1,812	14,900	39,819	285,248	
	Percent of	68	5	5	2	I	5	14	100	
	Area									
5										
6		Fire	9							
7		А	total of 4	5 wildfires ha	ve burned i	n the Lone	Willow F	PA since	1985 for	
8		194	4,210 tota	al acres. The	Holloway 1	fire was a	particular	y large fir	e which	
9		impacted 154,972 acres in the Lone Willow PPA. Several areas have burned two								
10		or even three times over the past 25 years; these areas have poor shrub								
		rec	overy. Ap	proximately e	eight percent	t and 90 pe	ercent of t	he PA hav	e a 'very	
12		hig	h' and 'h	igh' burn pr	obability, re	espectively.	Historic	fire regim	es were	
13		ger	nerally Fire	e Regime IV, I	but some ar	eas of Mou	ntain big s	agebrush r	nay have	
14		bu	rned at ra	tes <100 year	s; the curre	ent rate for	the entire	PA irresp	ective of	
15		veg	getation ty	pe is less <37	7 years. Mos	st areas are	considere	d conditio	n class II	
16		wit	th small ar	eas of conditio	on class I. Co	ondition clas	ss III areas	are not ca	ptured in	
17		Lar	ndfire data	(see Table 4	-237).					

Table 4-237Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres)	271,308
	High and Very High Burn Probability in PPA (percent)	97.9
18		
19	Management Strategies	
20		
21	Treatments	
22	Past and present treatments occurring in the PPA includ	e hazardous fuels, weed
23	treatments, ESR and burned area rehabilitation treatmen	its. A significant portion,
24	approximately 250,000 acres of the planning area was af	fected by wildfire in the
25	2012 Holloway and Long Canyon Fires. Past and prese	nt treatment related to
26	fire rehabilitation include approximately 80,000 acres	of broadcast seeding,
27	hand-planting of 45,000 sagebrush and bitterbrush seed	llings, with an additional
28	50,000 planned for installation in spring of 2015, and	numerous riparian and
29	meadow restoration projects.	
30	Cheatgrass treatment projects are also currently under	way along the margin of
31	intact habitat, or in areas of persistent cheatgrass die-c	off areas. Approximately
32	2500 acres of cheatgrass has been chemically treated a	nd recently reseeded to
- Ibuffer intact habitat from the invasive annual grassland and in cheatgrass die-offs.2This is in addition to other spot treatments of noxious and invasive weeds3within the planning area.
 - Numerous green strips and fuel breaks have been installed over the last several years throughout the planning area. Approximately 70 miles of fuel breaks have been installed with a combination of mechanical, chemical and seeding treatments.
- 8 Other Relevant Management Activities

4

5

6

7

- Primary uses occurring in the area include grazing and some moderate scale
 mining. The mining activities are restricted to a small portion of the planning
 area at present, though grazing occurs across the entire planning area. Grazing
 may hinder some of the rehabilitation activities such as seeding or meadow
 restorations activities. Also included in the planning area is the Disaster Peak
 Wilderness Study Area which precludes or limits some forms of active
 management.
- 16Fuels Management17Currently, there are four road fuel breaks within the Lone Willow PPA totaling1870 miles in length. These fuel breaks were treated mechanically by mowing;19portions were sprayed with herbicide where necessary. Several other fuel20breaks have been implemented outside of the PA to limit fire spread within (see21Table 4-238).

Table 4-238Fuels Management Potential Treatments

	Priority	Priority I	Priority 2	Priority 3	Total
	Miles	88.69	137.49	0	226.18
22					
23		The District identified	d six additional fue	l breaks within the PF	PA that extend
24		roughly 100 miles and	d have been selecte	ed for full green strippi	ing and seeding
25		using all of the tools a	available- chemical a	nd mechanical treatme	nts, and leaving
26		the potential for nativ	e and nonnative se	eding use open. Treatn	nents would be
27		identified on a case-b	y-case basis, but ge	enerally, the roads wo	uld need to be
28		mowed first, then g	greenstripped, and	maintained. Areas th	nat have been
29		greenstripped that ne	ow have cheatgras	s (Bromus tectorum) g	rowing will be
30		chemically treated and	d maintained. The [District will be careful	to avoid killing
31		low-sage areas when r	nanaging and creatin	ng these fuel breaks.	
32		Lone Willow has no c	onifer expansion iss	ues.	
33		Annual grass treatmer	nts are proposed alo	ong the southern edge	of the PPA and
34		extending out of th	e PPA Perimeter.	Roadsides, drainages,	and livestock
35		improvements need to	o be inventoried for	r nonnative invasive spe	ecies as ground

l 2	disturbance areas are the primary locations for these species to gain entry into the Lone Willow PMU. Inventoried areas will be treated as applicable.
3 4	Currently the district is spot treating for nonnative invasive species, primarily cheatgrass and limited patches of medusahead rye (<i>Taeniatherum caput-medusae</i>).
5	Habitat Restoration and Recovery
6	The District has been hand planting in the Holloway fire area in large blocks
7	where sagebrush is absent (see Table 4-239).

Priority	Priority I	Priority 2	Priority 3	Tota		
Acres	3,341	44,078	0	47,419		
Percent of PPA	1.20	15.88	0	17.09		
	In 2014, 45,000) seedlings were plant	ed with an additional 50,0	00 planned for		
	2015. There ar	e also several ongoing	restoration projects off o	f Highway 293,		
	and some hand-	plantings south of the l	Priority Area.			
	The District has	s plans to work on rou	ighly five miles of riparian a	reas located in		
	the Bilk Creek	and Trout Creek mo	untains in 2015, including	House Creek,		
	Cold Springs C	reek, and parts of King'	s River.			
	The District ha	us two ongoing and o	ne planned meadow resto	ration projects		
	located in the Montana's which are crucial brood rearing habitat for GRSG.					
	Fire Operations					
	First priority ar	eas for fire operations	are the intact sagebrush ha	bitat with good		
	understory loca	ated in the Montana N	1ountains which are in the	e south-central		
	and eastern portion of the PPA (see Table 4-240).					
	First priority ar	eas are located at or	above 6.500ft to 7.500ft ir	n elevation and		
	have cool-dry s	oils.				
	Remaining intac	t sagebrush islands ar	e the second highest prio	rity to protect		
	after intact habi	itat as the District wan	ts to work to extend the l	burn interval in		
	these areas to	5-10 years, and reduce	the rapid fire interval wh	ich will lead to		
	invasive annual	establishment				

Table 4-239Habitat Restoration Potential Treatments

Fire Operations Management Strategies						
Priority	Priority I	Priority 2	Priority 3	Total		
Acres	122,405	155,833	128,084	406,321		
Percent of PPA	44.1	56.2	46.2	146.4		

Table 4-240

27

I Post-Fire Rehabilitation Management	
2 There are several current ESR treatments (VTRT geospatial lay	yer), mostly aerial
3 seeding and a 500 acre area targeted for herbicide application	on. The district is
4 seeing a positive response to the ESR treatments. The a	aerial treatments
5 occurred in the Holloway Fire of 2012, and treatments began	n in 2013. These
6 treatments did not need herbicide applications due to lack of	f the presence of
7 nonnative invasive grasses in those areas. These treatments	will continue for
8 one to five years with the goal of reestablishing healthy, fi	unctioning native
9 vegetation communities that will support GRSG populations (se	ee Table 4-241).

Priority I **Priority Priority 2 Priority 3** Total Acres 80,115 48.348 149,022 277,485 Percent of PPA 28.9 17.4 53.7 100 10 11 Additionally, there are some remaining sagebrush islands that the District wants 12 to protect. The islands are intact habitat but have invasive annuals butting up 13 against them, which are being treated with herbicide application and seeding. 14 If the Montana Mountains were to burn again the District would continue ESR 15 treatments appropriate to pre-burn conditions and the history of this landscape 16 to recover. The Rapid Ecological Assessment data for this area projects the 17 Montana Mountains as being GRSG habit through 2025, making this area a 18 stronghold for Winnemucca. Treatments will include: 19 Where crucial sagebrush species have been impacted, seed or seedlings are 20 planted to reestablish GRSG habitat. If there is cheatgrass present the area will 21 be pre-treated with herbicides, and then seeded in areas that are unlikely to 22 recover naturally. Sagebrush will be hand-planted (bare root plant) in blocks, or 23 seeded, aerially or drilled if applicable. 24 ESR treatments on the Montana Mountains are part of an overall strategy of 25 recovery and restoration, due to their importance as GRSG habitat. 26 Other areas would get the ESR treatments appropriate to their priority as 27 GRSG habitat and ability to recover according to FIAT parameters. 28 **Proposed Management** 29 See Table 4-242 for projects that have been identified presently within the 30 NEPA planning process. See Figures 4-137 through 4-141 for a graphic 31 depiction of the proposed treatments and strategies in the PPA.

Table 4-241
Post-Fire Rehabilitation Management Strategies

Treatment Description		Priority Threats Addressed			NEPA				Treatments								
	_					s (I)						Tir Fra	ne me	Certa Effecti	inty of veness ¹	ame	me
Name/Type	Acres/Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian (R)	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Kings River Fuelbreaks	790	I								С			I	LI		5-7	0-2
South End Fuelbreak	360	I								С			I	LI		5-7	0-2
Montana Fuelbreak	264	I								С			I	LI		5-7	0-2
Montana Road Fuelbreak	80 miles		2							С			I	LI		5-7	0-2
Habitat Protection Strips	203	I						W		С			I	LI		5-7	0-2
Bilk Creek Fuelbreaks	96 miles		2						I			Р		LI		5-7	3-5
Meadow Restoration	230			3		Ι	R			С			I	LI		0 or 10	0-2
Sagebrush Restoration Projects HL	2500	Ι				I		W		С		Р	I	LI		0	3-5
BRTE Die- off Restoration Blocks	4020		2			Ι		W		С		Р	I	L2*		0 or 10	3-5
Lone Willow Riparian Restoration Projects	25 miles			3		I	R		I	С		Р	I	LI		0 or 10	3-5

Table 4-242 Project Planning Area Treatment Summary Table

State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes: I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

² Describe frequency of maintenance necessary to continue effectiveness (years)

³ Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

I

SECTION 5 LOOKING AHEAD: IMPLEMENTATION, NEPA, AND MONITORING

4 5.1 IMPLEMENTATION STRATEGY

5 Management strategies identified in this assessment are consistent with and fall 6 within broader land use plan direction. FIAT assessments are referenced in the 7 appendices of each sub-regional environmental impact statement. As such, the 8 potential implementation of all FIAT management strategies and treatments are 9 fully subject to all direction and constraints pronounced in the overarching land 10 use plan.

П The planning, implementation, and monitoring cycle for FIAT strategies is a 12 multiyear and multistep process. Figure 5-1 illustrates the sequence of FIAT 13 steps, project implementation, and monitoring. In FIAT assessment areas, the 14 identified management strategies occur across the spectrum of the planning 15 process. Some FIAT management strategies have planning completed, are NEPA 16 compliant, and are ready for implementation. Others are beyond the NEPA 17 scoping phase, but planning is not yet complete. Finally, many potential 18 treatments identified in this assessment were conceptualized in FIAT 19 workshops; in these cases, planning has not begun.

Figure 5-1: FIAT Process

I	Prioritizing the sequence of project/treatment implementation is an important
2	process; NEPA compliance, budgeting, unit capacity, and other factors may be
3	considered. Furthermore, this prioritization is a necessary step in order to
4	produce an out-year program of work. The FIAT Technical Team concluded
5	that this program of work would be developed immediately following the
6	completion of FIAT Step 2 assessments. The time necessary for implementation,
7	the scale of treatment, and the type of treatment by management strategy will
8	be considered. The program of work will portray the years for implementation,
9	scale of treatment, and type of treatment by program area (see Table 5-1).

Table 5-1 Assessment Area Treatment Summary

	Acres				Miles			
Treatment Type	lst	2nd	3rd	Total	l st	2nd	3rd	Total
	Priority	Priority	Priority	TOLAI	Priority	Priority	Priority	TOLAT
Habitat Restoration	998,190	1,048,979	29,195	2,076,361	NA	NA	NA	NA
Fuels Treatments	NA	NA	NA	NA	1295.91	1879.13	123.67	3,298.71
Fire Operations	3,369,742	1,758,164	477,100	5,605,006	NA	NA	NA	NA
Post-Fire	3,225,663	1,283,307	604,883	5,113,853	NA	NA	NA	NA
Treatments (ESR)								

10 11

12

13

14

15

16

17

18

19

20

21

22

5.1.1 Fuels Management

Fuels management is a proactive strategy designed to reduce wildfire behavior by changing the size, structure, arrangement, and amount of live and dead vegetation.

The focus of the FIAT process was very specific to the identified habitats and the associated buffers of these areas (see **Table 5-2**). In the vegetation types being addressed, fire growth can cross large tracts of ground in very short time frames. Due to the focus on the habitats and buffers, many types of treatments, existing or planned, were not addressed in this process. The areas outside of the planning areas will need to be addressed in the future because they are often the only option available to minimize fires entering the planning areas and the identified leks.

- 23Future efforts should also include fuels and restoration types of treatments24outside of the areas identified. This is because these areas will be critical for25increasing habitat and connecting the identified areas.
- 26The emphasis for fuels management to reduce wildfire behavior and size is to27use existing linear structures to compartmentalize areas burned and to not28fragment additional habitat by establishing new lines.

РРА	Total Miles of High (1st Priority) Fuels Management	Total Miles of Moderate (2nd Priority) Fuels Management	Total Miles of Low (3rd Priority) Fuels Management	
Beaty Butte	48.70	92.27	0	
Black Rock	58.91	161.77	0	
Bull Creek	3.52	19.76	0	
Clover Flat	29.37	0	0	
Cold Springs	65.97	16.18	0	
Duck Flat	15.25	42.27	0	
Frenchglen	127.19	40.03	0	
Gravelly	14.60	9.65	0	
Hart Mountain	26.32	82.18	0	
High Rock	28.95	102.88	0	
Horse Lake	20.97	33.00	0	
Lone Willow	88.69	37.49	0	
Madeline Plains	0	6.66	8.63	
Madeline Plains Connectivity	7.59	17.45	16.64	
Massacre	23.87	44.18	0	
North Warner	0	167.22	0	
Orejana East	39.8	52.77	84.47	
Orejana West	0	258.76	0	
Pueblo	109.14	44.81	0	
Roaring Springs	45.93	0	0	
Shaffer Mountain Connectivity	9.13	7.41	0	
Sheldon	104.38	81.06	0	
Shinn	62.69	65.62	13.93	
South Warner	0	149.59	0	
Trout Creek East	46.67	115.87	0	
Trout Creek West	78.20	42.25	0	
Virginia Ranges	25.19	0	0	
Vya	52.98	58.63	0	
Wall Canyon	61.89	29.37	0	
Total for all WGB PPAs	1295.91	1879.13	123.67	

 Table 5-2

 Fuels Management in Project Planning Areas in the Western Great Basin/Warm Springs

 Valley Landscape

7

8

5.1.2 Habitat Restoration/Recovery

All natural systems vary in space and time; in many cases, restoring a range of target vegetative conditions may be desirable. Where historic processes are not likely to become reestablished, full restoration may not be possible; however, site resilience can be leveraged to increase ecological function over time. This assumes that proper post-disturbance management does not continue to bring a site back to a ruderal successional state.

9By further defining the restoration continuum, treatments can in turn be further10defined and prioritized at finer local scales.

1 2 The following are considerations for habitat restoration and recovery project planning, project implementation, and NEPA (also see **Table 5-3**).

Table 5-3Habitat Restoration and Recovery Potential Treatment Areas in the Western Great Basin/Warm Springs Valley Landscape

РРА	Total Acres of Potential Conifer Encroachment Potential Treatments	Percent- age of PPA	Total Acres of Invasive Annual Grasses Potential Treatments	Percent- age of PPA	Total Acres of Other Potential Habitat Restoration and Recovery Potential Treatments	Percent- age of PPA
Beaty Butte	72,652	18	401,507	100	14,932	4
Black Rock	0	0	71,807	37	71,807	37
Bull Creek	21,265	32	32,235	49	0	0
Clover Flat	17,941	57	31,531	100	0	0
Cold Springs	49,754	69	0	0	5,485	8
Duck Flat	75,376	58	0	0	0	0
Frenchglen	212,624	115	0	0	0	0
Gravelly	27,260	84	33,205	103	0	0
Hart Mountain	22,599	9	0	0	11,228	5
High Rock	0	0	0	0	3,599	2
Horse Lake	45,711	49	26,430	28	0	0
Lone Willow	0	0	44,078	16	3,341	I
Madeline Plains	19,205	26	0	0	0	0
Madeline Plains	42,380	30	0	0	0	0
Connectivity						
Massacre	40,600	35	0	0	3,847	3
North Warner	195,437	67	293,398	100	0	0
Orejana East	0	0	150,221	50	158,715	53
Orejana West	0	0	124,800	100	124,800	100
Pueblo	0	0	0	0	22,412	17
Roaring Springs	0	0	13,892	18	8,527	
Shaffer Mountain	0	0	15,578	81	0	0
Connectivity						
Sheldon	3,647		0	0	0	0
Shinn	36,777	9	54,120	13	59,531	14
South Warner	37,523	100	37,520	100	0	0
Trout Creek East	0	0	0	0	71,060	21
Trout Creek West	0	0	0	0	35,900	43
Virginia Ranges	8,343	8	0	0	0	0
Vya	24,287	10	0	0	3,536	2
Wall Canyon	0	0	54,99 3	21	5,239	2
Total for all WGB	953,381	19	1,385,315	27	603,959	12
PPAs						
	Habitat Resto treatments:	pration is a	proactive stra	tegy that in	cludes the followir	ng types of

- Reducing phase I and phase 2 conifer vegetation, generally through hand mechanical treatment
- Managing invasive annual grasses, generally through the use of herbicides

3 4 5

6

7

8

9

l 2 3 4		 Seeding and planting of sagebrush Other types of treatments (such as fire use) with the primary goal of restoring or enhancing native plant species and vegetative structure in the native sagebrush steppe ecosystem; this may include removing underirable plant species
2	513	
6	5.1.5	Fire Operations
7		Fire operations are preparedness, prevention, and suppression and are both
8		proactive and reactive responses to wildfires. Proactive management under the
9		resistance/resilience model includes activities that increase the probability of fire
10		containment and severity in critical areas before fires start Reactive
		management prioritizes and identifies fire suppression that has a high probability
		management phontizes and identifies in e suppression that has a right probability
2		of keeping disturbed acres to a minimum by using the proactive planning and
3		infrastructure after fires start (see Table 5-4).

Table 5-4

Fire Operations Potential Treatment Areas in Project Planning Areas in the Western Great Basin/ Warm Springs Valley Landscape

(Fire Operations percentages exceed 100 due to operations planned outside of PPAs for optimal protection)

РРА	Total Acres of High (1st Priority) Fire Suppres- sion Areas	Percent of 1st Priority in Each PPA	Total Acres of Moderate (2nd Priority) Fire Suppres- sion Areas	Percent of 2nd Priority in Each PPA	Total Acres of 3rd Priority Fire Suppres- sion Areas	Percent of 3rd Priority in Each PPA	Total Acres of Fire Suppres- sion Areas	Total Percent of Fire Suppres- sion Areas in Each PPA
Beaty Butte	346,878	86.3	55,236	13.7	0	0	402,115	100
Black Rock	117,952	61.5	107,913	56.3	34,886	18.2	260,751	136
Bull Creek	75,937	114.6	6,099	9.2	12,486	18.8	94,521	142.7
Clover Flat	31,524	100	0	0	0	0	31,524	100
Cold Springs	24,990	34.7	46,983	65.3	0	0	71,973	100
Duck Flat	37,982	29.4	58,682	45.5	32,429	25.1	129,093	100
Frenchglen	189,155	101.9	0	0	0	0	189,155	101.9
Gravelly	39,730	123.0	2,795	8.7	0	0	42,525	131.7
Hart	176,397	73.0	65,281	27.0	0	0	241,678	100
Mountain								
High Rock	119,913	50.4	91,308	38.4	26,691	11.2	237,912	100
Horse Lake	26,428	28.3	66,923	71.7	0	0	93,351	100
Lone Willow	122,405	44.I	155,833	56.2	128,084	46.2	406,321	146.4
Madeline	19,094	26.2	13,939	19.1	39,959	54.7	72,992	100
Plains								
Madeline	0	0	104,578	74.4	89,522	63.7	194,100	38.
Plains								
Connectivity								
Massacre	12,071	10.4	53,180	45.8	50,983	43.9	116,234	100
North	44,057	15.0	249,344	85.0	0	0	293,401	100
Warner								
Orejana East	314,350	104.9	44,266	14.8	0	0	358,616	9.7
Orejana	124,781	100	0	0	0	0	124,781	100
West								
Pueblo	100,631	75.0	55,576	41.4	0	0	156,207	116.4

March 2015

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessment Western Great Basin - Warm Springs Valley/Western Great Basin

Table 5-4
Fire Operations Potential Treatment Areas in Project Planning Areas in the
Western Great Basin/ Warm Springs Valley Landscape
(Fire Operations percentages exceed 100 due to operations planned outside of PPAs for
optimal protection)

- -

- -

РРА	Total Acres of High (Ist Priority) Fire Suppres- sion Areas	Percent of Ist Priority in Each PPA	Total Acres of Moderate (2nd Priority) Fire Suppres- sion Areas	Percent of 2nd Priority in Each PPA	Total Acres of 3rd Priority Fire Suppres- sion Areas	Percent of 3rd Priority in Each PPA	Total Acres of Fire Suppres- sion Areas	Total Percent of Fire Suppres- sion Areas in Each PPA
Roaring	40,240	53.I	35,570	46.9	0	0	75,809	100
Springs								
Shaffer	11,362	59.1	7,853	40.9	0	0	19,215	100
Mountain								
Connectivity								
Sheldon	422,651	100	0	0	0	0	422,651	100
Shinn	304,351	73.7	108,341	26.3	0	0	412,692	100
South	37,522	100	0	0	0	0	37,522	100
Warner								
Trout Creek	216,062	64.5	119,419	35.5	0	0	335,481	100
East								
Trout Creek	48,319	57.9	55,682	66.7	0	0	104,001	124.7
West								
Virginia	49,706	50.4	87,595	88.8	8,312	8.4	145,613	147.6
Ranges								
Vya	164,396	70.0	29,982	12.8	40,526	17.3	234,904	100
Wall Canyon	150,858	58.9	135,786	53.I	13,222	5.2	299,866	117.2
Total for all WGB PPAs	3,369,742	65.8	1,758,164	34.3	477,100	9.3	5,605,006	109.5

8

9

5.1.4 Post-Fire Rehabilitation

Post-fire rehabilitation (see **Table 5-5**) is based on the BLM's ESR program and the Forest Service's Burned Area Emergency Response Program. Resistance/resilience modeling underlies post-fire activities by prioritizing treatments, based on probability of success at present and through time. Specific geographic GRSG population trends after fire also indicate where rehabilitation projects should be developed and whether projects continue into recovery and restoration. Program policies limit available funding from one to three years.

Table 5-5 Post-Fire Rehabilitation Potential Treatment Areas In Project Planning Areas in the Western Great Basin/ Warm Springs Valley Landscape

РРА	Total Acres of High (1st Priority) Post- Fire Rehab Areas	Percent of 1st Priority in Each PPA	Total Acres of Moderate (2nd Priority) Post- Fire Rehab Areas	Percent of 2nd Priority in Each PPA	Total acres of 3rd Priority Post- Fire Rehab Areas	Total Percent of 3rd Priority Post-Fire Rehab Areas
Beaty Butte	376,769	93.7	15,003	2.6	10,358	3.7
Black Rock	109,008	56.8	82,752	43.2	0	0
Bull Creek	20,998	31.7	6,717	10.1	38,540	58.2

5-6

PPA	Total Acres of High (Ist Priority) Post- Fire Rehab Areas	Percent of 1st Priority in Each PPA	Total Acres of Moderate (2nd Priority) Post- Fire Rehab Areas	Percent of 2nd Priority in Each PPA	Total acres of 3rd Priority Post- Fire Rehab Areas	Total Percent of 3rd Priority Post-Fire Rehab Areas
Clover Flat	31,529	100	0	0	0	0
Cold Springs	24,990	34.7	0	0	46,983	65.3
Duck Flat	37,980	29.4	58,682	45.5	32,429	25.1
Frenchglen	146,051	78.7	39,515	21.3	0	0
Gravelly	16,123	49.9	13,408	41.5	2,766	8.6
Hart Mountain	176,397	73.0	65,266	27.0	0	0
High Rock	90,762	38.1	121,915	51.2	25,234	10.6
Horse Lake	26,428	28.3	66,923	71.7	0	0
Lone Willow	80,115	28.9	48,348	17.4	149,022	53.7
Madeline Plains	27,301	37.4	0	0	45,691	62.6
Madeline Plains	46,437	33.0	0	0	94,155	67.0
Connectivity						
Massacre	12,071	10.4	53,181	45.8	50,977	43.9
North Warner	232,690	79.3	60,715	20.7	0	0
Orejana East	149,459	49.9	150,211	50. I	0	0
Orejana West	124,781	100	0	0	0	0
Pueblo	84,610	63	49,650	37	0	0
Roaring Springs	75,810	100	0	0	0	0
Shaffer Mountain	11,358	59.1	7,857	40.9	0	0
Connectivity						
Sheldon	422,651	100	0	0	0	0
Shinn	310,278	75.2	102,413	24.8	0	0
South Warner	29,143	77.7	8,377	22.3	0	0
Trout Creek East	216,650	64.5	119,416	35.5	0	0
Trout Creek West	31,717	38.0	51,696	62.0	0	0
*Virginia Ranges (Total is -6,000 acres for dry lake)	23,532	23.8	61,842	62.7	7,335	7.4
Vya	151,551	64.5	30.188	12.9	53,144	22.6
, Wall Canyon	138,474	54.1	69.232	27.0	48,249	18.9
Total for all WGB PPAs	3,225,663	63.1	1,283,307	25.1	604,883	11.8

Table 5-5Post-Fire Rehabilitation Potential Treatment Areas In Project Planning Areas in the
Western Great Basin/ Warm Springs Valley Landscape

10

11

12

13

5.2

MONITORING AND ADAPTIVE MANAGEMENT

Once implemented, projects and treatments identified in this assessment will follow the same monitoring protocols as non-FIAT management actions, in accordance with overarching guidance in land use plans. Specifically, monitoring that evaluates the implementation and effectiveness of FIAT management strategies will follow The Greater Sage-Grouse Monitoring Framework (BLM/Forest Service 2014). In this framework, as with all projects designed to enhance or restore GRSG habitats, monitoring and evaluating the individual FIAT actions will use the approved fine- and site-scale monitoring methods of the BLM Core Terrestrial Indicators and Methods (from AIM-Monitoring: A component of the Assessment, Inventory, and Monitoring [AIM] Strategy), Interpreting Indicators of Rangeland Health (BLM Technical Reference 1734-6),

and the Sage-Grouse Habitat Assessment Framework (HAF/BLM Technical Reference 6710-1, in press).

During the annual broad-scale and mid-scale monitoring of GRSG habitats, the FIAT actions will be assessed as they relate to GRSG habitat measures of sagebrush availability, human disturbance levels, and sagebrush conditions. Monitoring results from the implemented FIAT actions can inform future actions if necessary to enhance and restore GRSG habitats.

1 2

3

4

5

6

7

SECTION 6

2 LIST OF PREPARERS

BUREAU OF LAND MANAGEMENT				
Name	Title/Role			
Ken Collum	WGB FIAT Project Lead, Eagle Lake Field Office			
Andrew Johnson	GIS Specialist, Eagle Lake Field Office			
Sam Gersie	GIS Specialist, Eagle Lake Field Office			
Valda Lockie	Ecologist (editing), Eagle Lake Field Office			
Doug Havlina	Fire Ecologist, NIFC			
David Probasco	Lakeview District POC			
Casey O'Conner, Jared	Burns District POCs			
Lemos, Andy Daniels				
Brian Watts	Vale District POC			
Ryan Elliot	Carson City District POC			

3

CONTRACTOR

ENVIRONMENTAL MANAGEMENT AND PLANNING SOLUTIONS, INC. WWW.EMPSI.COM

Name	Role
Jordan Adams	Meeting Support
Amy Cordle	Technical Editor/QA
Sean Cottle	Environmental Specialist
Peter Gower	FIAT Deputy Project Manager
Mario Murillo	Formatting
Holly Prohaska	FIAT Project Manager
Cindy Schad	Word Processor
Morgan Trieger	Meeting Support
Randy Varney	Technical Editor

March 2015

2

I

This page intentionally left blank

SECTION 7

2 **REFERENCES**

3 4 5	Baker, W. L. 2011. "Pre-Euro-American and recent fire in sagebrush ecosystems." In: Greater Sage- Grouse: Ecology and Conservation of a Landscape Species and Its Habitats (S. T. Knick and J. W. Connelly editors). University of California Press, Berkeley. Pp. 185-201.
6 7	Ballard, J. 2010, Hart Mountain National Wildlife Refuge Intensive Riparian Habitat Evaluation, Phase 3, Great Basin Bird Observatory, Reno Nevada.
8 9 10	BLM and Forest Service (Bureau of Land Management and US Forest Service). 2014. The Greater Sage- Grouse Monitoring Framework. Developed by: the Interagency Greater Sage-Grouse Disturbance and Monitoring Sub-Team.
 2	Brown, J.K., Reinhardt, E.D., Kramer, K.A., 2003. Coarse woody debris: managing benefits and fire hazard in the recovering forest. USDA For. Serv. Gen. Tech. Rep. RMRS-GTR-105. Ogden, UT.
13 14 15	Chambers, J. C., R. F. Miller, J. B. Grace, D. A. Pyke, B. Bradley, S. Hardegree, and C. D'Antonio. 2014. "Resilience to stress and disturbance, and resistance to <i>Bromus tectorum</i> (L.) invasion in the cold desert shrublands of western North America." <i>Ecosystems</i> 17:360-375.
6 7 8	Condon, L., P. J. Wiesberg, and J. C. Chambers. 2011. "Abiotic and biotic influences on <i>Bromus tectorum</i> invasion and Artemisia tridentata recovery after fire." <i>International Journal of Wildland Fire</i> 20:597-604.
19 20 21	Connelly, J. W., S. T. Knick, M. A. Schroeder, and S. J. Stiver. 2004. Conservation Assessment of Greater Sage-Grouse and Sagebrush Habitats. Western Association of Fish and Wildlife Agencies. Unpublished report. Cheyenne, Wyoming.
22 23	Davies, K.W., J.D. Bates, and A.M. Nafus. 2012. Vegetation response to mowing dense mountain big sagebrush stands. Rangeland Ecology and Management 65:268-276.
24 25	Davies, K.W., and J.D. Bates. 2010. Native perennial forb variation between mountain big sagebrush and Wyoming big sagebrush plant communities. Environmental Management 46:452-458.

- Davies, K.W., J.D. Bates, C.S. Boyd, and A.M. Nafus. 2014. Is fire exclusion in mountain big sagebrush
 communities prudent? Soil nutrient, plant diversity, and arthropod response to burning.
 International Journal of Wildland Fire 23:417-424.
- Dobkin, D.S., Rich, A.C., Pyle, W.H., 1998. Habitat and avifaunal recovery from livestock grazing in a
 riparian meadow system of the northwestern Great Basin. Conserv. Biol. 12, 209–221.
- Doherty, K. E.; J. D. Tack, J. S. Evans, and D. E. Naugle. 2010. Mapping Breeding Densities of Greater
 Sage-Grouse: A Tool for Range-Wide Conservation Planning. BLM completion report:
 Agreement #L10PG00911.
- 9 Earnst, S.L., Dobkin, D.S., Ballard, J.A., 2012. Changes in avian and plant communities of aspen
 10 woodlands over 12 years after livestock removal in the northwestern Great Basin. Conserv.
 11 Biol. 26, 862–872.
- 12 Ellsworth et al. unpublished data
- Epanchin-Niell, R. S., M. B. Hufford, C. E. Aslan, J. P. Sexton, J. D. Port, and T. M. Waring. 2009.
 "Controlling invasive species in complex social landscapes." *Front. Ecol. Environ.*doi:10.1890/090029.
- Grayson, D.K., 1993. The Desert's Past: A Natural Prehistory of the Great Basin. Smithsonian Institute
 Press, Washington, DC.
- 18 GBBO (Great Basin Bird Observatory) 2010. Nevada Comprehensive Bird Conservation Plan, ver. 1.0.
 19 Great Basin Bird Observatory, Reno, Nevada. Internet website:
 20 www.gbbo.or/bird_conservation_plan.html. Accessed May 2013.
- Johnson, K.N., Sessions, J., Franklin, J., Gabriel, J. 1998. Integrating wildfire into strategic planning for
 Sierra Nevada forests. J. of Forestry, 96, 42-49.
- Knapp, P. A. 1996. "Cheatgrass (Bromus tectorum [L.]) dominance in the Great Basin Desert." Global
 Environmental Change 6(1):37-52.
- Knick, S. T., and J. W. Connelly (editors). 2011. "Greater sage-grouse: Ecology and Conservation Of A
 Landscape Species And Its Habitats." *Studies in Avian Biology* 38:646.
- Knick, S. T., S. E. Hanser, and K. L. Preston. 2013. "Modeling ecological minimum requirements for
 distribution of greater sage-grouse leks: Implications for population connectivity across their
 western range, USA." *Ecology and Evolution* 3(6):1539-1551.
- LANDFIRE: Biophysical settings model. Landscape Fire and Resource Management Planning Tools. U.S.
 Department of Agriculture Forest Service and U.S. Department of the Interior.
 http://www.landfire.gov/NationalProductDescriptions20.php.

- Manier, D. J., D. J. A. Wood, Z. H. Bowen, R. M. Donovan, M. J. Holloran, L. M. Juliusson, and K. S.
 Mayne et al. 2013. Summary of science, activities, programs, and policies that influence the range-wide conservation of Greater Sage-Grouse (*Centrocercus urophasianus*): US Geological Survey Open-File Report 2013-1098. Internet website: http://pubs.usgs.gov/of/2013/1098/.
- McIver, James, Mark Brunson, Steve Bunting, Jeanne Chambers, Paul Doescher, James Grace, April
 Hulet, Dale Johnson, Steve Knick, Richard Miller, Mike Pellant, Fred Pierson, David Pyke,
 Benjamin Rau, Kim Rollins, Bruce Roundy, Eugene Schupp, Robin Tausch, and Jason Williams.
 2014. A Synopsis of Short-Term Response to Alternative Restoration Treatments in SagebrushSteppe: The SageSTEP Project. Rangeland Ecology and Management, 67(5), 584-598.
- Miller, Richard F., Tony J. Svejcar, Neil E. West. 1994. Implications of livestock grazing in the Intermountain sagebrush region: Plant composition. In: M Vavra, WA Laycock, and RD Pieper, editor. Ecological implications of herbivory in the west. Society for Range Management, Denver, Colorado. p. 101–146.
- Miller, R. F., J. D. Bates, T. J. Svejcar, F. B. Pierson, and L. E. Eddleman. 2005. "Biology, ecology, and
 management of western juniper." Oregon State University Agricultural Experiment Station
 Technical Bulletin 152, Corvallis.
- Pyne, Stephen J. 2004. Tending fire: coping with America's wildland fires. Island Press, Washington, D.C.,
 USA
- Reisner, Michael D., James B. Grace, David A. Pyke, and Paul S. Doescher. 2013. "Conditions favouring
 Bromus tectorum dominance of endangered sagebrush steppe ecosystems." Journal of Applied
 Ecology 50:1039-1049.
- Rowland, M. M., L. H. Suring, and M. J. Wisdom. 2010. "Assessment of habitat threats to shrublands in the Great Basin: A case study." In: Environmental Threat Assessment and Application to Forest and Rangeland Management (J. M. Pye, H. M. Rauscher, Y. Sands, D. C. Lee, and J. S. Beatty, editors). US Forest Service, General Technical Report, PNW, Bozeman, Montana. Pp. 673-685.
- Tausch, R.J. and R.S. Nowak. 1999. Fifty Years of ecotone change between shrub and tree dominance in
 the Jack Springs pinyon research natural area. In
- E.D. McArthur, K.W. Ostler, and C.L. Wambolt (compilers). Proceedings: shrubland ecotones. RMRS-P II, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden,
 UT. Pp. 71-77.
- USFWS (US Fish and Wildlife Service). 2013. Greater Sage-Grouse (Centrocercus urophasianus)
 Conservation Objectives: Final Report. US Fish and Wildlife Service, Denver, Colorado.
 February 2013.

 Whisenant, Steven G. 1990. "Changing fire frequencies on Idaho's Snake River Plains: Ecological and management implications." In: Proceedings—Symposium on Cheatgrass Invasion, Shrub Die-Off, and Other Aspects of shrub Biology and Management, Las Vegas, Nevada (E. Durant McArthur, Evan M. Romney, Stanley D. Smith, and Paul T. Tueller, compilers). Gen. Tech. Rep. INT-276.
 Ogden, Utah: US Department of Agriculture, Forest Service, Intermountain Research Station. 4-10. April 5-7, 1989.

- 7 Young, James A. and Abbott B. Sparks 2002. Cattle in the Cold Desert. University of Nevada Press.
- Ziegenfuss, Linda, Kathryn A. Schoenecker, Jason I. Ransom, Drew A. Ignizio, and Tracy Mask. 2014.
 Influence of Non Native and Native Ungulate Biomass and Seasonal Precipitation on Vegetation
 Production in a Great Basin Ecosystem. In Western North American Naturalist Volume 74(3)
 20.

Appendix A Maps

When viewed electronically, hyperlinks embedded throughout this document allow readers to navigate directly to the maps below.

Frenchglen Fuels Management

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Potential Conifer Treatment Areas First

Second

Third

State Boundaries BLM District Boundary FIAT Project Planning Areas

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:407,000

Frenchglen Fire Operations

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

First State Boundaries Second BLM District Boundary Third FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:407,000

Orejana East Fuels Management

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Orejana East Fire Operations

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Roaring Springs Fuels Management

Western Great Basin and Warm Springs Valley **Bureau of Land Management** U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

or completeness of these data for individual use or aggregate use with other data.

BLM District Boundary FIAT Project Planning Areas Data Sources: Bureau of Land Management, ESRI Basedata 1:268,000

Potential Treatment Area

Habitat Restoration- Invasive Annual Grasses

State Boundaries BLM District Boundary FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:267,000

Potential Treatment Areas Habitat Restoration- Active ESR Treatments State Boundary BLM District Boundary FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:267,000

Roaring Springs Fire Operations

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

First State Boundaries Second BLM District Boundary Third FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata

Priority
First State Boundaries
Second BLM District Boundary
Third FIAT Project Planning Areas

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:268,000

Pueblo Fuels Management

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Potential Treatment Area

Habitat Restoration- Sagebrush Plantings

Habitat Restoration- Sagebrush Mowings OFIAT Project Planning Areas

State Boundary BLM District Boundary March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:269,000

Potential Treatment Areas

Habitat Restoration-Active ESR Treatments

State Boundary BLM District Boundary FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:269,000

Western Great Basin and Warm Springs Valley **Pueblo Fire Operations Bureau of Land Management** U.S. Department of the Interior Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments OR S **Pueblo** Burns District Lakeview District Priority

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

First State Boundaries BLM District Boundary Second Third FIAT Project Planning Areas

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:269,000

N

Priority for Implementation First Second

Third

State Boundaries BLM District Boundary FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:446,000

Trout Creek East Fire Operations

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Trout Creek East Post-Fire Rehabilitation (ESR) Priority

Potential Treatment Areas

Habitat Restoration-Active ESR Treatments

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:238,000

Trout Creek West Fire Operations

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

OR S Trout Creek East Vale District **Burns** District Trout Creek West

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Priority
First State Boundaries
Second BLM District Boundary
Third FIAT Project Planning Areas

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:238,000

Clover Flat Fuels Management

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data. \$

State Boundaries BLM District Boundary FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:134,000

Potential Conifer Treatment Areas

First Second Third

State Boundaries BLM District Boundary FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:134,000

Potential Treatment Area

Habitat Restoration- Invasive Annual Grasses

State Boundaries BLM District Boundary March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:133,000

Clover Flat Fire Operations

Priority
First State Boundaries
Second BLM District Boundary

FIAT Project Planning Areas

Third

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata

Western Great Basin and Warm Springs Valley

Bureau of Land Management

Priority
First State Boundaries
Second BLM District Boundary
Third FIAT Project Planning Areas

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:134,000

Second

Third

BLM District Boundary FIAT Project Planning Areas

Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:149,000

Potential Conifer Treatment Areas

State Boundaries BLM District Boundary FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:149,000

Forential C First Second Third

Potential Treatment Area

Habitat Restoration- Invasive Annual Grasses

State Boundaries BLM District Boundary March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:149,000

Western Great Basin and Warm Springs Valley **Gravelly Fire Operations Bureau of Land Management** Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments U.S. Department of the Interior OR S Lakeview District Gravelly 16.0 Priority March 2015 State Boundaries First

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

BLM District Boundary Second

FIAT Project Planning Areas

Third

Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata

Priority
First State Boundaries
Second BLM District Boundary
Third FIAT Project Planning Areas

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:149,000

U.S. Department of the Interior Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments OR Burns District_ keview District North 395 Warner Clover Flat Hart Mountain Priority for Implementation March 2015 No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, First State Boundaries Date Saved: 3/25/2015 N Second BLM District Boundary Data Sources: Bureau of Land Management, ESRI Basedata or completeness of these data for individual Third FIAT Project Planning Areas 1:656,000 use or aggregate use with other data.

North Warner Fuels Management

Western Great Basin and Warm Springs Valley

Bureau of Land Management

Potential Conifer Treatment Areas First

Second

Third

State Boundaries BLM District Boundary FIAT Project Planning Areas

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:656,000

Potential Treatment Area Habitat Restoration- Invasive Annual Grasses

State Boundaries BLM District Boundary March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:655,000

North Warner Fire Operations

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

First State Boundaries Second BLM District Boundary Third FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata

N

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:655,000

1:340,000

1:341,000

Orejana West Fire Operations

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Priority
First State Boundaries
Second BLM District Boundary
Third FIAT Project Planning Areas

South Warner Fuels Management

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

N

Priority for Implement	
	First
	Second
	Third

State Boundaries BLM District Boundary FIAT Project Planning Areas

Potential Conifer Treatment Areas

Second

Third

State Boundaries BLM District Boundary FIAT Project Planning Areas

Potential Treatment Area

Habitat Restoration- Invasive Annual Grasses

State Boundaries BLM District Boundary FIAT Project Planning Areas

South Warner Fire Operations

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

Priority
First State Boundaries
Second BLM District Boundary
Third FIAT Project Planning Areas

Potential Conifer Treatment Areas

Second

Third

State Boundaries BLM District Boundary FIAT Project Planning Areas

Habitat Restoration- Sagebrush Plantings

Habitat Restoration- Sagebrush Mowings C FIAT Project Planning Areas

BLM District Boundary

First State Boundaries Second BLM District Boundary Third FIAT Project Planning Areas

Bull Creek Fuels Management

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

N

Priority for Implementation First Second Third

State Boundaries BLM District Boundary FIAT Project Planning Areas

Bull Creek Habitat Restoration - Conifer Treatments

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

Potential Conifer Treatment Areas First

Second

Third

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:182,000

State Boundaries BLM District Boundary FIAT Project Planning Areas

Potential Treatment Area Habitat Restoration- Invasive Annual Grasses

State Boundaries BLM District Boundary

Bull Creek Fire Operations

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

First State Boundaries Second BLM District Boundary Third FIAT Project Planning Areas

Wall Canyon Fuels Management

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

N

FIAT Project Planning Areas

Data Sources: Bureau of Land Management, ESRI Basedata 1:396,000

Habitat Restoration- Sagebrush Plantings

Habitat Restoration- Sagebrush Mowings OFIAT Project Planning Areas

BLM District Boundary

Data Sources: Bureau of Land Management, ESRI Basedata 1:396,000

Habitat Restoration-Active ESR Treatments

BLM District Boundary FIAT Project Planning Areas

Wall Canyon Fire Operations

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

N

BLM District Boundary Second FIAT Project Planning Areas Third

Data Sources: Bureau of Land Management, ESRI Basedata 1:397,000

Duck Flat Fuels Management

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Duck Flat Habitat Restoration - Conifer Treatments

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

Potential Conifer Treatment Areas

Second

Third

State Boundaries BLM District Boundary FIAT Project Planning Areas

Duck Flat Fire Operations Bureau of Land Management U.S. Department of the Interior Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments Canyon OR S NV Duck North Flat California District Winnemucca District Priority March 2015 No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, First State Boundaries Date Saved: 3/25/2015

or completeness of these data for individual use or aggregate use with other data.

BLM District Boundary Second Third FIAT Project Planning Areas Data Sources: Bureau of Land Management, ESRI Basedata

Western Great Basin and Warm Springs Valley

High Rock Fuels Management

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Potential Treatment Area

Habitat Restoration- Sagebrush Plantings

Habitat Restoration- Sagebrush Mowings

State Boundary BLM District Boundary

Potential Treatment Areas

Habitat Restoration- Active ESR Treatments

s State Boundary BLM District Boundary

High Rock Fire Operations

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Massacre Fuels Management

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Potential Conifer Treatment Areas

Third

BLM District Boundary

Habitat Restoration- Sagebrush Plantings

Habitat Restoration- Sagebrush Mowings C FIAT Project Planning Areas

BLM District Boundary

Data Sources: Bureau of Land Management, ESRI Basedata 1:228,000

Massacre Fire Operations

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Shinn Fuels Management

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Potential Conifer Treatment Areas First

Second

Third

State Boundaries BLM District Boundary FIAT Project Planning Areas

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:631,000

1:630,000

U.S. Department of the Interior Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments OR S Madeline Plains Connectivity NV North California District Winnemucca Shinn District Horse Lake Carson City District Priority March 2015 No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, First State Boundaries Date Saved: 3/25/2015 BLM District Boundary Data Sources: Bureau of Land Management, ESRI Basedata Second or completeness of these data for individual Third FIAT Project Planning Areas use or aggregate use with other data.

Shinn Fire Operations

Western Great Basin and Warm Springs Valley Bureau of Land Management

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:631,000

Horse Lake Fuels Management

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Potential Conifer Treatment Areas

Second

Third

State Boundaries

BLM District Boundary

FIAT Project Planning Areas

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:222,000

or completeness of these data for individual use or aggregate use with other data.

FIAT Project Planning Areas

Data Sources: Bureau of Land Management, ESRI Basedata 1:221,000

Horse Lake Fire Operations

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

First State Boundaries Second BLM District Boundary Third FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:222,000

N

Priority for Implementation First Second Third

State Boundaries BLM District Boundary FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:120,000 Shaffer Mountain Connectivity Habitat Restoration - Inv. A. Grass Trtmnts Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

Potential Treatment Area

Habitat Restoration- Invasive Annual Grasses

State Boundaries BLM District Boundary March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:120,000

First State Boundaries Second BLM District Boundary Third FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata

Priority
First State Boundaries
Second BLM District Boundary
Third FIAT Project Planning Areas

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:120,000

N

Priority for Implementation First Second Third

State Boundaries BLM District Boundary March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:183,000

Potential Conifer Treatment Areas

Second

Third

State Boundaries BLM District Boundary FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:183,000

U.S. Department of the Interior OR S North California District Madeline Plains

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

Priority State Boundaries First BLM District Boundary Second Third FIAT Project Planning Areas

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata

Western Great Basin and Warm Springs Valley

Bureau of Land Management

Madeline Plains Fire Operations

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Priority
First State Boundaries
Second BLM District Boundary
Third FIAT Project Planning Areas

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:183,000

N

Priority for Implementation First Second

Third

State Boundaries BLM District Boundary FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:243,000

Potential Conifer Treatment Areas

Second

Third

State Boundaries BLM District Boundary FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:243,000

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:243,000

Cold Springs Fuels Management

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

N

Third

State Boundaries BLM District Boundary FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:185,000

Potential Conifer Treatment Areas

Second

Third

State Boundaries BLM District Boundary FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:185,000

Potential Treatment Areas

Habitat Restoration- Active ESR Treatments

State Boundary BLM District Boundary FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:184,000

Cold Springs Fire Operations

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

First State Boundaries Second BLM District Boundary Third FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata

Priority State Boundaries First BLM District Boundary Second FIAT Project Planning Areas Third

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:185.000

Bureau of Land Management

Western Great Basin and Warm Springs Valley **Cold Springs Post-Fire Rehabilitation (ESR) Priority**

Potential Conifer Treatment Areas

Second

Third

State Boundaries BLM District Boundary FIAT Project Planning Areas Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:485,000

Potential Treatment Area

Habitat Restoration- Sagebrush Plantings

Habitat Restoration- Sagebrush Mowings C FIAT Project Planning Areas

BLM District Boundary

Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:484,000

N

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:484,000

Sheldon Fuels Management

Western Great Basin and Warm Springs Valley **Bureau of Land Management**

use or aggregate use with other data.

First

Second

Third

State Boundaries BLM District Boundary FIAT Project Planning Areas Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:455,000

or completeness of these data for individual use or aggregate use with other data.

Data Sources: Bureau of Land Management, ESRI Basedata 1:455,000

Bureau of Land Management Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments U.S. Department of the Interior **Carson City** Virginia District **District** Ranges Priority for Implementation March 2015 First

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

N

State Boundaries BLM District Boundary FIAT Project Planning Areas

Second

Third

Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:206,000

Western Great Basin and Warm Springs Valley

Virginia Ranges Fuels Management

Potential Conifer Treatment Areas First

Second

Third

State Boundaries BLM District Boundary FIAT Project Planning Areas

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:206,000

Virginia Ranges Fire Operations

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

Priority
First State Boundaries
Second BLM District Bour

Third

BLM District Boundary

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata

Priority
First State Boundaries
Second BLM District Boundary
Third FIAT Project Planning Areas

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:206,000

Black Rock Fuels Management

Western Great Basin and Warm Springs Valley **Bureau of Land Management** U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

N or completeness of these data for individual use or aggregate use with other data.

BLM District Boundary FIAT Project Planning Areas Data Sources: Bureau of Land Management, ESRI Basedata 1:354,000

Potential Treatment Area

Habitat Restoration- Invasive Annual Grasses

State Boundaries BLM District Boundary March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:354,000

Potential Treatment Area

Habitat Restoration- Sagebrush Plantings

Habitat Restoration- Sagebrush Mowings

State Boundary BLM District Boundary March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:354,000

Black Rock Fire Operations

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata

State Boundaries BLM District Boundary FIAT Project Planning Areas Third

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:354,000

Lone Willow Fuels Management

Western Great Basin and Warm Springs Valley Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Potential Treatment Area

Habitat Restoration- Invasive Annual Grasses

State Boundaries BLM District Boundary March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:358,000

Potential Treatment Areas

Habitat Restoration-Active ESR Treatments

State Boundary
BLM District Boundary
FIAT Project Planning Areas

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:358,000

Western Great Basin and Warm Springs Valley **Lone Willow Fire Operations Bureau of Land Management** U.S. Department of the Interior Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments Vale Burns District District OR S Lone Willow Winnemucca District Priority March 2015

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

First State Boundaries Second BLM District Boundary Third FIAT Project Planning Areas March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata

Priority
First State Boundaries
Second BLM District Boundary
Third FIAT Project Planning Areas

March 2015 Date Saved: 3/25/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:358,000 This page intentionally left blank.

Appendix B GIS Data

State	Regions	Layer Name	Туре	Address	
				ilmcasde.blm.doi.net\ilmcasodb1\ilmcaPub.CASO.GTLF\ilmcaPub.CASO.GTLF_	
California	All California	Roads - CA GTLF	Polyline	arc	
		1998 - 2001 Sagegrouse		\\blm\dfs\ca\el\pub\gisimage\gis\master\basic\fauna\sagegrouse\Telemtry_	
California	Alturas	Telemetry	Point	1998_2001\Telemetry_Data_Gail_Popham.shp	
		2007 - 2009 Sagegrouse		\\blm\dfs\ca\el\pub\gisimage\gis\master\basic\fauna\sagegrouse\Telemetry	
California	Alturas	Telemetry	Point	_2007_09\2007-09_All_Locations.shp	
				\\blm\dfs\ca\el\pub\gisimage\gis\master\basic\fauna\sagegrouse\2014\cdfw	
California	Alturas	Active Leks CA 2014	Point	gisdata_From_Brian_Ehler_20140915\2014_5yr_Active_Leks.shp	
				\\blm\dfs\ca\el\pub\gisimage\gis\master\basic\fauna\sagegrouse\Lek_NDO	
California	Alturas	Leks 2012 NDOW	Point	W_2012.shp	
		Potential Summer Habitat		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Californi	
California	Alturas	CA	Polygon	a\State\SUMMERHABITAT_DST_CAv1.1	
		Potential Summer Habitat		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Californi	
California	Alturas	NV	Polygon	a\State\SUMMERHABITAT_DST_CAv1.1	
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Soil	
		SSURGO Soils		Data_Ecological_Sites\Merged\SSURGO_Map_Units_NorEastCal_Merged_Joi	
California	Alturas	Components and Ecosites	Polygon	ned_Components_Ecosites_clip.shp	
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Asp	
California	Alturas	Aspect	Raster	ect_DEM10m_NorEast.tif	
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Sag	
California	Alturas	Elevation	Raster	e_Grouse_FIAT_Data\Step_2\DEM10m_NorEast_Clip.tif	
		1998 - 2001 Sagegrouse		\\blm\dfs\ca\el\pub\gisimage\gis\master\basic\fauna\sagegrouse\Telemtry_	
California	Eagle Lake	Telemetry	Point	1998_2001\Telemetry_Data_Gail_Popham.shp	
		2007 - 2009 Sagegrouse		\\blm\dfs\ca\el\pub\gisimage\gis\master\basic\fauna\sagegrouse\Telemetry	
California	Eagle Lake	Telemetry	Point	_2007_09\2007-09_All_Locations.shp	
				\\blm\dfs\ca\el\pub\gisimage\gis\master\basic\fauna\sagegrouse\2014\cdfw	
California	Eagle Lake	Active Leks CA 2014	Point	gisdata_From_Brian_Ehler_20140915\2014_5yr_Active_Leks.shp	
				\\blm\dfs\ca\el\pub\gisimage\gis\master\basic\fauna\sagegrouse\Lek_NDO	
California	Eagle Lake	Leks 2012 NDOW	Point	W_2012.shp	
				\\blm\dfs\ca\pub\gisimage\el\gis\master\basic\flora\noxious_weeds\weed_s	
California	Eagle Lake	Weeds Sites	Point	ites_all.shp	

				\\blm\dfs\ca\el\pub\gisimage\gis\project\Fuels\All_fuels\Fuels1_12012014.s			
California	Eagle Lake	Fuels Projects	Polygon	hp			
		Potential Summer Habitat		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Californi			
California	Eagle Lake	СА	Polygon	\State\SUMMERHABITAT_DST_CAv1.1			
		Potential Summer Habitat		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Californi			
California	Eagle Lake	NV	Polygon	a\State\SUMMERHABITAT_DST_CAv1.1			
				\\blm\dfs\ca\el\pub\gisimage\gis\master\basic\flora\2012_Rush_Fire\Seedin			
California	Eagle Lake	Rush Fire ESR Projects	Polygon	g			
				\\blm\dfs\ca\el\pub\gisimage\gis\master\basic\transportation\roads\el_all_r			
California	Eagle Lake	Roads	Polyline	oads_wprivate.shp			
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Asp			
California	Eagle Lake	Aspect	Raster	ect_DEM10m_NorEast.tif			
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Sag			
California	Eagle Lake	Elevation	Raster	e_Grouse_FIAT_Data\Step_2\DEM10m_NorEast_Clip.tif			
				\\blm\dfs\ca\el\pub\gisimage\gis\master\basic\fauna\sagegrouse\2014\cdfw			
California	Surprise	Active Leks CA 2014	Point	gisdata_From_Brian_Ehler_20140915\2014_5yr_Active_Leks.shp			
				\\blm\dfs\ca\el\pub\gisimage\gis\master\basic\fauna\sagegrouse\Lek_NDO			
California	Surprise	Leks 2012 NDOW	Point	W_2012.shp			
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Californi			
California	Surprise	Coleman Fire	Polygon	a\Surprise\colmanFire.gdb\Placemarks\Polygons			
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Sag			
California	Surprise	Conifer Projects	Polygon	e_Grouse_FIAT_Data\Surprise\SageGrouse_FIAT\Juniper_Projects.shp			
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Californi			
California	Surprise	ESR Treatment Areas	Polygon	a\Surprise\SurpriseESR.shp			
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Sag			
		SR_BigSage_GT5500_EW_		e_Grouse_FIAT_Data\Surprise\SageGrouse_FIAT\SRFO_Focal_Classes\SR_BigS			
California	Surprise	focal_2A_2C.shp	Polygon	age_GT5500_EW_focal_2A_2C.shp			
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Sag			
		SR_LowSage_GT5500_No		e_Grouse_FIAT_Data\Surprise\SageGrouse_FIAT\SRFO_Focal_Classes\SR_Low			
California	Surprise	South_focal_1B.shp	Polygon	Sage_GT5500_NoSouth_focal_1B.shp			

				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew Johnson Projects\Sag
		SR N facing GT 5500 fo		e Grouse FIAT Data\Surprise\SageGrouse FIAT\SRFO Focal Classes\SR N f
California	Surprise	cal_1C.shp	Polygon	acing GT 5500 focal 1C.shp
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Sag
		SR_S_facing_slopes_focal		e Grouse FIAT Data\Surprise\SageGrouse FIAT\SRFO Focal Classes\SR S fa
California	Surprise	_3A.shp	Polygon	cing_slopes_focal_3A.shp
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Sag
		SR_WyBigSage_focal_3A.s		e_Grouse_FIAT_Data\Surprise\SageGrouse_FIAT\SRFO_Focal_Classes\SR_Wy
California	Surprise	hp	Polygon	BigSage_focal_3A.shp
				\\blm\dfs\ca\pub\gisimage\sr\gis\master\basic\flora\vegetation_communitie
California	Surprise	Vegetation Communities	Polygon	s.shp
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Asp
California	Surprise	Aspect	Raster	ect_DEM10m_NorEast.tif
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Sag
California	Surprise	Elevation	Raster	e_Grouse_FIAT_Data\Step_2\DEM10m_NorEast_Clip.tif
				\\blm\dfs\ca\pub\gisimage\sr\gis\master\basic\fauna\NDOW_SG_2013\NDO
California	Surprise	Leks 2013 NDOW	Point	W_SG_LekSites_2013_SRFO.shp
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\
Nevada	Winnemucca	Leks	Point	Winnemucca\leks.shp
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\
Nevada	Winnemucca	Telemetry	Point	Winnemucca\telemetry.shp
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\
Nevada	Winnemucca	BRTE_Restore	Polygon	Winnemucca\FIATLayers.gdb\FIATLayers.gdb\RequestedLayers\BRTE_Restore
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\
Nevada	Winnemucca	FY15 Handplanting	Polygon	Winnemucca\FY15 Handplanting.shp
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\
Nevada	Winnemucca	FY2014 Handplanting	Polygon	Winnemucca\FY2014handplanting.shp
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\
				Winnemucca\FIATLayers.gdb\FIATLayers.gdb\RequestedLayers\Habitat_Prote
Nevada	Winnemucca	Habitat_Protect	Polygon	<u>ct</u>
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\
Nevada	Winnemucca	Montana_FB	Polygon	Winnemucca\FIATLayers.gdb\FIATLayers.gdb\RequestedLayers\Montana_FB

				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\		
Nevada	Winnemucca	Nesting	Polygon	Winnemucca\nesting.shp		
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\		
				Winnemucca\FIATLayers.gdb\FIATLayers.gdb\RequestedLayers\NKingsRiver_F		
Nevada	Winnemucca	NKingsRiver_FB	Polygon	В		
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\		
				Winnemucca\FIATLayers.gdb\FIATLayers.gdb\RequestedLayers\Restore_Block		
Nevada	Winnemucca	Restore_Block1	Polygon	1		
		RoadFuelbreaks_125ft.sh		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\		
Nevada	Winnemucca	р	Polygon	Winnemucca\RoadFuelbreaks_125ft.shp		
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\		
Nevada	Winnemucca	sage_grouse_habitat	Polygon	Winnemucca\sage_grouse_habitat.shp		
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\		
				Winnemucca\FIATLayers.gdb\FIATLayers.gdb\RequestedLayers\SKingsRiver_F		
Nevada	Winnemucca	SKingsRiver_FB	Polygon	В		
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\		
Nevada	Winnemucca	summer	Polygon	Winnemucca\summer.shp		
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\		
Nevada	Winnemucca	Vtrt	Polygon	Winnemucca\wdo_vtrt\wdo_vtrt\vtrt.shp		
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\		
Nevada	Winnemucca	Vtrt_planningArea	Polygon	Winnemucca\wdo_vtrt\wdo_vtrt\vtrt_planningArea.shp		
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\		
Nevada	Winnemucca	Winter	Polygon	Winnemucca\winter.shp		
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\		
				Winnemucca\FIATLayers.gdb\FIATLayers.gdb\RequestedLayers\RoadFuelbrea		
Nevada	Winnemucca	RoadFuelbreaks	Polyline	ks		
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\		
Nevada	Winnemucca	RoadFuelBreaks_pot	Polyline	Winnemucca\roads_fuel_breaks_pot.shp		
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\		
Nevada	Winnemucca	Aspect	Raster	Winnemucca\aspect.dbf		
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Sag		
				e_Grouse_FIAT_Data\Carson		
				Clty\VirginiaRangesProjectPlanningArea.gdb\VirginiaRangesProjectPlanningAr		
Nevada	Carson City	RegapVirginiaRanges	Polygon	ea.gdb\VirginiaRangesConditionClass		

				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Sag	
				e_Grouse_FIAT_Data\Carson	
		VirginiaRangesConditionCl		Clty\VirginiaRangesProjectPlanningArea.gdb\VirginiaRangesProjectPlanningAr	
Nevada	Carson City	ass	Polygon	ea.gdb\VirginiaRangesConditionClass	
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Sag	
				e_Grouse_FIAT_Data\Carson	
		VirginiaRangesFocalAreaFi		Clty\VirginiaRangesProjectPlanningArea.gdb\VirginiaRangesProjectPlanningAr	
Nevada	Carson City	res	Polygon	ea.gdb\VirginiaRangesFocalAreaFires	
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Sag	
				e_Grouse_FIAT_Data\Carson_	
		VirginiaRangesFocalAreaR		Clty\VirginiaRangesProjectPlanningArea.gdb\VirginiaRangesProjectPlanningAr	
Nevada	Carson City	ehabTreatments	Polygon	ea.gdb\VirginiaRangesFocalAreaRehabTreatments	
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Sag	
				e_Grouse_FIAT_Data\Carson	
		VirginiaRangesFocalAreaV		Clty\VirginiaRangesProjectPlanningArea.gdb\VirginiaRangesProjectPlanningAr	
Nevada	Carson City	egREGAP	Polygon	ea.gdb\VirginiaRangesFocalAreaVegREGAP	
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Sag	
				e_Grouse_FIAT_Data\Carson	
		VirginiaRangesFocalFireRe		Clty\VirginiaRangesProjectPlanningArea.gdb\VirginiaRangesProjectPlanningAr	
Nevada	Carson City	gime	Polygon	ea.gdb\VirginiaRangesFocalFireRegime	
				\\blm\dfs\ca\el\pub\gisimage\gis\project\GIS\Andrew_Johnson_Projects\Sag	
				e_Grouse_FIAT_Data\Carson	
		VirginiaRangesResistance		${\sf Clty} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
Nevada	Carson City	Resilience	Polygon	ea.gdb\VirginiaRangesResistanceResillience	
				G:\corp\External_Source\State\Fauna_OR\ODFWSageGrouseCoreAreas_Final	
Oregon	All Oregon	ODFW Core Habitat	Polygon	20110724	
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Oregon\	
Oregon	All Oregon	Treatment_pub_web.gdb	Polygon	State\treatment_pub_web\treatment_pub_web.gdb	
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Oregon\	
Oregon	All Oregon	Big_Sage_20141029	Raster	State\Big_Sage_20141029	
		Institute of Natural			
		Resources Tree Canopy		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Oregon\	
Oregon	All Oregon	Cover	Raster	State\TREE_CC_SEOR	

		R6_CurrentVeg_Arid_201		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Oregon\	
Oregon	All Oregon	10202.gdb	Raster	State\R6_CurrentVeg_Arid_20110202.gdb	
		SEOR_CurrentVeg_BLM_S		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Oregon\	
Oregon	All Oregon	ageCC.gdb	Raster	State\SEOR_CurrentVeg_BLM_SageCC.gdb	
		Oregon Greater Sage		G:\corp\BLMReplication\ORWA_rep_gdb\sage_grouse.gdb\grsg_leks_or_poin	
Oregon	Burns	Grouse Leks Points	Point	t	
Oregon	Burns	Burn	Polvgon	G:\corp\BLMReplication\ORWA rep_gdb\treatment_pub.gdb\burn_poly	
			1 2 702		
Oregon	Burns	Cut	Polygon	G:\corp\BLMReplication\ORWA_rep_gdb\treatment_pub.gdb\mech_poly	
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step1\Fire\Merged Fire	
Oregon	Burns	Fire History	Polygon	History.lyr	
Oregon	Burns	Hand or Machine Pile	Polygon	G:\corp\BLMReplication\ORWA_rep_gdb\treatment_pub.gdb\mech_poly	
-				G:\corp\External_Source\State\Fauna_OR\ODFWSageGrouseCoreAreas_Final	
Oregon	Burns	ODFW Core Habitat	Polygon	20110724	
Oregon	Burns	Proposed Burn	Polygon	G:\corp\BLMReplication\ORWA_rep_gdb\treatment_pub.gdb\burn_p_poly	
Oregon	Burns	Proposed Cut	Polygon	G:\corp\BLMReplication\ORWA_rep_gdb\treatment_pub.gdb\mech_p_poly	
		Proposed Hand or			
Oregon	Burns	Machine Pile	Polygon	G:\corp\BLMReplication\ORWA_rep_gdb\treatment_pub.gdb\mech_p_poly	
		Weed Treatment			
Oregon	Burns	Chemical	Polygon	G:\corp\BLMReplication\ORWA_rep_gdb\treatment_pub.gdb\chem_poiy	
Oregon	Durran	Weed Treatment	Delugon	Colorer DIAD a lighting ODMA rear add treatment with add mach notice	
Oregon	Burns	Mechanica	Polygon	G:\corp\BLWikepiication\UkwA_rep_gub\treatment_pub.gub\mecii_poiy	
Oregon	Burns	weeus	Polygon	G:\bns\layernies\LayerData\Burns.gub\weeus	
Oregon	Burns	GTRN Roads	Polyline	G:\corp\BLMReplication\ORWA_rep_gdb\ground_transportation_pub.gdb	
				\\blm\dfs\or\pub\gis\gisdata\or\Region\Elevation\NED10M\NED_Elevation_	
Oregon	Burns	Aspect	Raster	NW.gdb	
				\\blm\dfs\or\pub\gis\gisdata\or\Region\Elevation\NED10M\NED_Elevation_	
Oregon	Burns	Elevation	Raster	NW.gdb	

				\\blm\dfs\or\egis\projects\bns\FIAT\ilap Invasive Grasses\v101\raster_data.	
Oregon	Burns	ilap_Invasive_Grasses	Raster	<u>gdb</u>	
		Institute of Natural			
		Resources Tree Canopy		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Oregon\	
Oregon	Burns	Cover	Raster	State\TREE_CC_SEOR	
		SHMNWRC_SageGrouse_			
	Hart and	Telemetry_2000_2001.sh		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Oregon\	
Oregon	Sheldon	р	Point	HartMountain\SHMNWRC_SageGrouse_Telemetry_2000_2001.shp	
	Hart and	Hart Mountain Completed		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Oregon\	
Oregon	Sheldon	Juniper Cuts	Polygon	HartMountain\HartMountainJuniper\HartMountainCompletedJuniper	
	Hart and	Hart Mountain Proposed		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Oregon\	
Oregon	Sheldon	Juniper Cuts	Polygon	HartMountain\HartMountainJuniper\HartMountainProposedJuniper	
	Hart and	HartMtnRefuge_Wilderne		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Oregon\	
Oregon	Sheldon	ss.shp	Polygon	HartMountain\HartMtnRefuge_Wilderness.shp	
	Hart and	HartNAR_SageGrouseLeks		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Oregon\	
Oregon	Sheldon	Buff1_5km_Dec2014.shp	Polygon	HartMountain\HartNAR_SageGrouseLeks_Buff1_5km_Dec2014.shp	
	Hart and			\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\	
Oregon	Sheldon	SheldonCompletedJuniper	Polygon	Sheldon\SheldonJuniper\SheldonCompletedJuniper	
		SheldonNWR_SageGrouse			
	Hart and	Leks_Buff1_5km_Dec201		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\	
Oregon	Sheldon	4.shp	Polygon	Sheldon\SheldonNWR_SageGrouseLeks_Buff1_5km_Dec2014.shp	
	Hart and			\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\	
Oregon	Sheldon	SheldonProposedJuniper	Polygon	Sheldon\SheldonJuniper\SheldonProposedJuniper	
	Hart and	SheldonRefuge_Wildernes		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\	
Oregon	Sheldon	s.shp	Polygon	Sheldon\SheldonRefuge_Wilderness.shp	
	Hart and	SHMNWRC_administrativ		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Oregon\	
Oregon	Sheldon	e_boundaries.shp	Polygon	HartMountain\SHMNWRC_administrative_boundaries.shp	
	Hart and	Hart_RoadsToShareWithC		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Oregon\	
Oregon	Sheldon	ooperators_Feb2013	Polyline	HartMountain\Hart_RoadsToShareWithCooperators_Feb2013.shp	

		Sheldon_RoadsToShareWi			
	Hart and	thCooperators_Feb2013.s		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Nevada\	
Oregon	Sheldon	hp	Polyline	Sheldon\Sheldon_RoadsToShareWithCooperators_Feb2013.shp	
				\\blm\dfs\or\egis\gisdata\lak\non_blm\usfws\Hart_Mtn_Data\RefugeVulerab	
	Hart and	Hart Mountain Vegetation		ilityAssessment_2012\projects\ORBIC\VISTA\VegCover\Hart\Vegetation\Hart	
Oregon	Sheldon	Мар	Raster	Mtn Veg09.tif	
				\\blm\dfs\or\egis\gisdata\lak\non_blm\usfws\Hart_Mtn_Data\RefugeVulerab	
	Hart and			ilityAssessment_2012\projects\ORBIC\VISTA\VegCover\Sheldon_updated\Veg	
Oregon	Sheldon	Sheldon Vegetation Map	Raster	etation\sheldon_veg02_updt.tif	
		Oregon Greater Sage		G:\corp\BLMReplication\ORWA_rep_gdb\sage_grouse.gdb\grsg_leks_or_poin	
Oregon	Lakeview	Grouse Leks Points	Point	t	
				\\blm\dfs\or\egis\projects\oso\SageGrouse_FIAT\Sage_Grouse_FIAT_Data\La	
Oregon	Lakeview	Cheat Grass Occurences 1	Polygon	keview\SLK_BRTE_DOM_VEG_1	
				\\blm\dfs\or\egis\projects\oso\SageGrouse_FIAT\Sage_Grouse_FIAT_Data\La	
Oregon	Lakeview	Cheat Grass Occurences 2	Polygon	keview\SLK_BRTE_DOM_VEG_2	
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step1\Fire\Merged Fire	
Oregon	Lakeview	Fire History	Polygon	History.lyr	
				G:\corp\External_Source\State\Fauna_OR\ODFWSageGrouseCoreAreas_Final	
Oregon	Lakeview	ODFW Core Habitat	Polygon	20110724	
				$\label{eq:corp} G:\corp\BLMReplication\ORWA_rep_gdb\NISIMS.gdb\WeedInfestation\Location\Corp\BLMReplication\BLMReplication\Corp\BLMReplication\BLMReplication\Corp\BLMReplication\Corp\BLMReplication\BLMReplication\BLMReplication\BLMReplication\BLMReplication\BLMReplication\BLMReplication\BLMReplication\BLMReplication\BLMReplication\BLMReplication\BLMReplication\BLMReplication\BLMReplication\BLMReplication\BLMReplication\BLMReplication\BLMRep$	
Oregon	Lakeview	WeedInfestationLocation	Polygon	n	
Oregon	Lakeview	GTRN Roads	Polyline	G:\corp\BLMReplication\ORWA_rep_gdb\ground_transportation_pub.gdb	
				\\blm\dfs\or\pub\gis\gisdata\or\Region\Elevation\NED10M\NED_Elevation_	
Oregon	Lakeview	Aspect	Raster	<u>NW.gdb</u>	
				\\blm\dfs\or\pub\gis\gisdata\or\Region\Elevation\NED10M\NED_Elevation_	
Oregon	Lakeview	Elevation	Raster	NW.gdb	
		Institute of Natural			
		Resources Tree Canopy		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Oregon\	
Oregon	Lakeview	Cover	Raster	State\TREE_CC_SEOR	
		Oregon Greater Sage		G:\corp\BLMReplication\ORWA_rep_gdb\sage_grouse.gdb\grsg_leks_or_poin	
Oregon	Vale	Grouse Leks Points	Point	t	
				\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step1\Fire\Merged Fire	
Oregon	Vale	Fire History	Polygon	History.lyr	

				G:\corp\External_Source\State\Fauna_OR\ODFWSageGrouseCoreAreas_Final	
Oregon	Vale	ODFW Core Habitat	Polygon	20110724	
Oregon	Vale	GTRN Roads	Polyline	G:\corp\BLMReplication\ORWA_rep_gdb\ground_transportation_pub.gdb	
				\\blm\dfs\or\pub\gis\gisdata\or\Region\Elevation\NED10M\NED_Elevation_	
Oregon	Vale	Aspect	Raster	NW.gdb	
				\\blm\dfs\or\pub\gis\gisdata\or\Region\Elevation\NED10M\NED_Elevation_	
Oregon	Vale	Elevation	Raster	NW.gdb	
		Institute of Natural			
		Resources Tree Canopy		\\blm\dfs\ca\el\pub\gisimage\gis\project\FIAT\GIS\Step2\LocalData\Oregon\	
Oregon	Vale	Cover	Raster	State\TREE_CC_SEOR	

This page intentionally left blank.

Appendix C

Soil Temperature and Moisture Regime Attribute Table

Soil temperature and	Common Name	Original	Revised
moisture regime with		FIAT R&R	FIAT R&R
moisture subclass		Categories	Categories
Cryic/Aridic-Typic	Cold/dry		2
Cryic/Aridic bordering on Xeric	Cold/dry bordering on moist		I
Cryic/Ustic-Typic	Cold/summer moist		I
Cryic/Xeric	Cold/moist	Ι	1
Cryic/Xeric-Typic	Cold/moist		I
Cryic/Xeric bordering on Aridic	Cold/moist bordering on dry		1
Frigid/Aridic	Cool/dry	3	2
Frigid/Aridic-Typic	Cool/dry		2
Frigid/Aridic bordering on Ustic	Cool/dry bordering on summer moist		2
Frigid/Aridic bordering on Xeric	Cool/dry bordering on moist		2
Frigid/Xeric	Cool/moist	I	1
Frigid/Xeric-Typic	Cool/moist		1
Frigid/Xeric bordering on Aridic	Cool/moist bordering on dry		2
Frigid/Ustic bordering on aridic	Cool/summer moist bordering on dry		2
Frigid/Ustic-Typic	Cool/summer moist	I	1
Mesic/Aridic	Warm/dry	3	3
Mesic/Aridic-Typic	Warm/dry		3
Mesic/Aridic bordering on Ustic	Warm/dry bordering on summer moist		3
Mesic/Aridic bordering on Xeric	Warm/dry bordering on moist		3
Mesic/Ustic bordering on Aridic	Warm/summer moist bordering on dry		3
Mesic/Xeric	Warm/moist	2	2
Mesic/Xeric-Typic	Warm/moist		2
Mesic/Xeric bordering on Aridic	Warm/moist bordering on dry		3

The above table of soil attributes (soil temperature/moisture regimes) and Resistance/Resilience assignments were used in the original and revised FIAT reports. Soil survey spatial and tabular data were for the from obtained Project Planning Areas the Geospatial Data Gateway (http://datagateway.nrcs.usda.gov/). Gridded Soil Survey Geographic (gSSURGO) file geodatabases were used to display a 10-meter raster dataset. Where SSURGO data were unavailable, gaps were filled in using the State Soil Geographic database (STATSGO2). The attributes of the soil component with the highest component percentage (dominant component) were used to characterize the temperature and moisture regime. Only temperature and moisture regimes applicable to sagebrush ecosystems were displayed. For additional details, see Chambers et al. 2014, and Maestas and Campbell 2014.

Sage Grouse Initiative

Fact Sheet Mapping Potential Ecosystem Resilience and Resistance across Sage-Grouse Range using Soil Temperature and Moisture Regimes

A cool and moist (frigid/xeric) mountain big sagebrush site in Nevada (left) compared to a warm and dry (mesic/aridic) Wyoming big sagebrush site in Oregon (right) illustrates the natural variability in site potential across sagebrush ecosystems. Mapping soil temperature and moisture regimes can help depict this gradient and indicate potential ecosystem resilience and resistance. Photos: Jeremy Maestas

Background

ur ability to address threats to sage-grouse and the sagebrush steppe can be greatly enhanced by understanding ecosystem resilience to disturbance and resistance to invasive species (Chambers et al. 2014a,b). A recent breakthrough in the practical application of resilience and resistance concepts has been linking *soil temperature and moisture regimes* to sagebrush ecosystem responses to disturbance and annual grass invasion.

Potential resilience and resistance to invasive annual grasses reflect the biophysical conditions of an area, and soil temperature and moisture regimes provide a useful indicator of these conditions at multiple scales. Resilience to disturbance typically increases with higher resource availability and more favorable environmental conditions for plant growth and reproduction. Thus areas with warm (mesic) soil temperature and dry (aridic) soil moisture regimes typically have low potential resilience, while those with cool (frigid) to moderately cold (cryic) soil temperature and relatively moist (xeric to ustic) soil moisture regimes have high potential resilience. Resistance to exotic annual grasses, like cheatgrass, is strongly influenced by climate suitability for establishment and persistence. Cheatgrass germination, growth and reproduction appear to be optimal under relatively warm and dry to moist regimes (mesic/aridic or xeric), limited by low and sporadic precipitation under dry regimes (aridic), and generally constrained by colder regimes (frigid to cryic). These relationships are modified by effects of: (1) elevation, landform, slope, aspect, soil characteristics, and resulting vegetation composition and structure, and (2) the ecological condition of an area (Figure 1. Chambers et al. 2014a,b)

Soil climate data (temperature and moisture) are fundamentally important in classifying and mapping soils, and as such, are widely collected as part of the National Cooperative Soil Survey program. This provides us with the ability to map temperature and moisture regimes across the range of sage-grouse to better understand potential resilience and resistance along a diverse environmental gradient.

Figure 1. Example of resilience to disturbance (A) and resistance to cheatgrass (B) over a soil temperature and moisture regime gradient in the western portion of the sagebrush ecosystem. Dominant ecological types occur along a continuum from Wyoming big sagebrush communities on warm and dry sites to mountain big sagebrush/mountain brush communities on cold and moist sites (modified from Chambers et al. 2014a,b).

Resilience is the capacity of an ecosystem to regain its fundamental structure, processes and functioning when altered by stressors like drought, and disturbances like altered fire regimes. It is a measure of the ability of an ecosystem to *recover* after stress or disturbance.

Resistance is the capacity of an ecosystem to retain its fundamental structure, processes and functioning despite stresses, disturbances or invasive species, or to remain largely unchanged.

Resistance to invasion is the capacity of an ecosystem to limit the establishment and population growth of an invading species.

New product assembles available data for rangewide use

hile soil temperature and moisture regimes can be found in published soil surveys, a single dataset aggregating all available data was compiled to facilitate broad scale analyses and to provide a simple decision support tool for field practitioners. Available soils data from across Sage-Grouse Management Zones (Stiver et al. 2006) were compiled from two primary sources: 1) completed and interim soil surveys (SSURGO), and 2) state soils geographic databases (STATSGO2).

SSURGO - Soil Survey Geographic Database

SSURGO is the most detailed soil survey product produced by the National Cooperative Soil Survey. Information was collected through field inventory and interpretation at scales ranging from 1:12,000 to 1:63,360, with 1:24,000 being the most common. SSURGO datasets consist of spatial data, tabular data, and information about how the data were created. Soil survey maps are linked in the database to information about the component soils and properties for each soil map unit.

For this rangewide product, Gridded Soil Survey Geographic (gSSURGO) file geodatabases were used to display a 10-meter raster dataset. State gSSURGO datasets were then clipped to the extent of the Sage-Grouse Management Zones and merged.

STATSG02 – State Soil Geographic Database

The Digital General Soil Map of the United States or STATSGO2 is a broad-based inventory of soils and non-soil areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at a scale of 1:250,000. The dataset was created by generalizing more detailed soil survey maps. Where more detailed soil survey maps were not available, data on geology, topography, vegetation, and climate were assembled and related to Land Remote Sensing Satellite (LANDSAT) images. Soils of similar areas were studied, and the probable classification and extent of the soils were determined. STATSGO2 was used in areas of the Sage-Grouse Management Zones where more detailed SSURGO was currently not available.

Where can I access the product?

The aggregated soils data product can be downloaded freeof-charge on the Landscape Conservation Management and Analysis Portal (LCMAP):

https://www.sciencebase.gov/catalog/ folder/538e5aa9e4b09202b547e56c

How to work with the files in a Geographic Information System (GIS)

Rangewide layer for rapid application

The data product includes a file geodatabase named SoilMoistureTemperatureRegimes.gdb that contains a single raster dataset merging best available SSURGO and STATSGO2 across Sage-Grouse Management Zones. The attribute table includes the temperature and moisture regime for the map unit dominant condition. A layer file named SoilMoistTempLayer.lyr can be used to quickly create a fully symbolized map with a legend of the predominant temperature and moisture regimes across sagebrush ecosystems (Figure 2).

Detailed data for more in-depth analyses

Separate geodatabases providing more detailed information are also available for both SSURGO and STATSGO2 data. These products allow users to explore the data in more depth at finer scales. An example of how to work with one of the geodatabases is provided here.

Figure 2. New soils product provides ability to depict potential ecosystem resilience and resistance across the range of sagegrouse using soil temperature and moisture regimes. For more information on interpretation, see Chambers et al. 2014b.

The file geodatabase named SGMZ_SSURGO_temp_moist_ regimes_v2.gdb contains a raster dataset with all the SSURGO spatial data that is currently available in the Sage-Grouse Management Zones. There are two tables in this file geodatabase that can be joined to the raster dataset using the common mukey field. The table named SSURGO SGMZ_temp_moist_dom_cond_v2 contains the temperature and moisture regime and moisture subclass for the dominant condition in each map unit. The table named SSURGO SGMZ_temp_moist_components_v2 has data for each major component, including things like soil type, precipitation range, temperature-moisture regimes and subclasses, and ecological sites. When this table is joined to the raster dataset, the data for the dominant component will be in the attribute table. The Identify tool in ArcGIS can be used to display many attributes of the dominant component.

For an even finer grain look, the SSURGO_SGMZ_temp_ moist_components_v2 table can be opened to determine the ecological site and temperature and moisture regimes that are associated with each component in a map unit, rather than just the dominant component.

For More Information

Data Contact

Steve Campbell, USDA-NRCS Soil Scientist, 503-273-2421, steve.campbell@por.usda.gov

Background on SSURGO and STATSGO data: http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/geo/

Access to soil surveys: http://websoilsurvey.sc.egov.usda.gov/App/ HomePage.htm

Acknowledgements

We thank the Western Association of Fish and Wildlife Agencies, Fire and Invasives Working Group, for laying the foundation for development of this product. Special thanks to Amarina Wuenschel and Jeanne Chambers for their contributions to this product and to the many USDA Natural Resources Conservation Service specialists who contributed soil survey program data.

Suggested Citation

Maestas, J. D., and S. B. Campbell. Mapping Potential Ecosystem Resilience and Resistance across Sage-Grouse Range using Soil Temperature and Moisture Regimes. Fact Sheet. Sage Grouse Initiative, www.sagegrouseinitiative.com.

References

Chambers, J. C.; Bradley, B.A.; Brown, C.A.; D'Antonio, C.; Germino, M. J.; Hardegree, S. P; Grace, J. B.; Miller, R. F.; Pyke, D. A. 2014a. Resilience to stress and disturbance, and resistance to Bromus tectorum L. invasion in the cold desert shrublands of western North America. Ecosystems 17: 360-375

Chambers, J. C.; Pyke, D. A.; Maestas, J. D.; Pellant, M.; Boyd, C. S.; Campbell, S. B.; Espinosa, S.; Havlina, D. W.; Mayer, K. E.; Wuenschel, A. 2014b. Using resistance and resilience concepts to reduce impacts of invasive annual grasses and altered fire regimes on the sagebrush ecosystem and greater sage-grouse: A strategic multi-scale approach. Gen. Tech. Rep. RMRS-GTR-326. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 73 p.

Stiver, S. J.; Apa, A. D.; Bohne, J. R.; Bunnell, S. D.; Deibert, P. A.; Gardner, S. C.; Hilliard, M. A.; McCarthy, C. W.; Schroeder, M. A. 2006. Greater Sage-grouse Comprehensive Conservation Strategy. Unpublished report on file at: Western Association of Fish and Wildlife Agencies, Cheyenne, WY.

Displaying Dominant Condition Vs. Dominant Component

It is important to understand some fundamental concepts in how soils are mapped in order to properly interpret information provided. Soils and their properties change over a continuous gradient but soils are described in map units. Soil map units commonly contain more than one "component" (soil types or miscellaneous areas such as rock outcrops) with unique data associated with each component. When spatially displaying soil survey information, a decision has to be made as to how to aggregate the component data to the map unit. The two most common aggregation methods are to display either *dominant component* or *dominant condition*. The example below illustrates the difference between these two methods:

Component Name	% of Map unit	Temperature/ Moisture Regime	Aggregation Method
Alpha	45	Warm and Dry (Mesic/Aridic)	Dominant Component
Beta	30	Cool and Dry (Frigid/Aridic)	Dominant
Gamma	25	Cool and Dry (Frigid/Aridic)	Condition

Soil map unit: Alpha-Beta-Gamma complex, 8 to 30 percent slopes

This map unit is on highly dissected hill slopes with a complex pattern of northerly and southerly aspects. The Alpha component is on southerly aspects and the Beta and Gamma components are on cooler northerly aspects. The temperature and moisture regime for the dominant component is Warm and Dry (mesic/aridic) since the Alpha component comprises the highest percentage of the map unit. The dominant condition is Cool and Dry (frigid/aridic) since the Beta and Gamma components cumulatively comprise 55 percent of the map unit, exceeding the 45 percent of the Alpha component. For the majority of soil map units, but not all, the dominant component and dominant condition results are identical. This product provides aggregated data in both dominant condition and component tables to allow users access to advantages of each approach.

This page intentionally left blank.

Appendix D Meeting Locations and Participants

Meeting Place	Date	Attendees	Agency
Lakeview, OR	10/23/2014		
		Sean Cottle	EMPSi
		Ken Collum	BLM
		David Probasco	BLM
		Bob Crumine	BLM
		Grace Haskins	BLM
		Andrew Johnson	BLM
		Brandi St. Clair	ODFW
		Craig Foster	ODFW
		James Price	ODFW
		Mary Jo Hendrick	ODFW
Burns OR	11/3/2014		
		lordan Adams	EMPSi
		Ken Collum	BIM
			BLM
			BLM
		Pachal Resultion	BLM
			BLM
		Jarod Lemos	
			BLM
		Bill Dragt	BLM
		Andy Daniels	BLM
		Jeremy Maestas	NRCS
		Lars Santana	NRCS
		Rod Klus	ODFW
Vale, OK	11/4/2014	landan Adama	
		Jordan Adams	
			BLM
		Bill Lutjens	BLM
		Pat Ryan	BLM
		Bob Narus	BLM
		Brian Watts	BLM
----------------	-----------	----------------	-------
		Megan McGuire	BLM
		Ralph Falsetto	BLM
Winnemucca, NV	12/4/2014		
		Jordan Adams	EMPSi
		Doug Havlina	BLM
		Ken Collum	BLM
		Derek Messura	BLM
		Sam Gersie	BLM
		Andrew Johnson	BLM
		Mark Williams	BLM
		Robert Bunkall	BLM
		Ed Partee	NDOW
		Jane Van Gunst	NDOW
Susanville, CA	12/8/2014		
		Peter Gower	EMPSi
		Ken Collum	BLM
		Andrew Johnson	BLM
		Shawn Thornton	BLM
		Eli Flores	BLM
		Melissa Nelson	BLM
Lakeview, OR	12/9/2014		
		Peter Gower	EMPSi
		Ken Collum	BLM
		Andrew Johnson	BLM
		Sam Gersie	BLM
		James Price	BLM
		Grace Haskins	BLM
		Todd Forbes	BLM
		John Owens	BLM
		David Probasco	BLM
		Bob Crumrine	BLM
		Angela Sitz	BLM
		Shannon Theall	BLM

This page intentionally left blank.