


Middle Rockies Grizzly Bear NSCCVI

The NatureServe Climate Change Vulnerability Index

Release 2.1 7 April 2011; Bruce Young, Elizabeth Byers, Kelly Gravuer, Kim Hall, Geoff Hammerson, Alan Redder With input from: Jay Cordeiro, Kristin Szabo

* = Required field

Geographic Area Assessed:	Middle Rockies E	*				
Assessor:	Sarah Bresi	nan				
Species Scientific Name:	Ursus arct	os *	Er	nglish Name:	Grizzly Bear	
Major Taxonomic Group:	Mammal	*		G-Rank: G	4	
Relation of Species' Rang	e to Assessment Area:	Southern edge of range	*	S-Rank:		
Check if species is an obligate of c	aves or groundwater aqua	atic systems:	(Must be i	marked with an "X" f	for accurate scoring of these species.)	
Assessment Notes (to document spe	ecial methods and data sour	ces)				
S-Rank - NatureServe Explorer U.S.	& Canada State/Province S	tatus: Montana (S2S3)				
Section A: Exposure to Local Clima	ate Change (Calculate for s	species' range within asses	sment area)			
Temperature *		Hamo	n AET:PET Moi	sture Metric *		
Severity >5.5° F (3.1° C) warmer 5.1-5.5° F (2.8-3.1° C) warmer 4.5-5.0° F (2.5-2.7° C) warmer 3.9-4.4° F (2.2-2.4° C) warmer < 3.9° F (2.2° C) warmer Total:	Scope (percent of range) 18.002 69.4715 12.5265 0 0	Sever	< -0.11-0.0970.11-0.0740.09-0.0510.07-0.0280.05	9 61.8974 6 27.5892 3 2.2466	f range)	

Section B: Indirect Exposure to Climate Change (Evaluate for specific geographical area under consideration)

Mark an "X" in all boxes that apply.

Effect on Vulnerability									
Greatly		Somewhat		Somewhat					
increase	Increase	increase	Neutral	decrease	Decrease	Unknown			
			X						
			X						
			X						
						Χ			

- 1) Exposure to sea level rise
- 2) Distribution relative to barriers
- a) Natural barriers
- b) Anthropogenic barriers
 3) Predicted impact of land use changes resulting from human responses to climate change

Middle Rockies Grizzly Bear NSCCVI

Section C: Sensitivity

Mark an "X" in all boxes that apply.

Greatly		Somewhat		Somewhat		
increase	Increase	increase	Neutral	decrease	Decrease	Unknown
			Х	Х		
				X		
		X	Χ			
				X		
		X	Χ			
			Χ			
		X				
				X		
			Х			
			Х			
						Х
			Х			
			Х			
						.,
						Х
			X			
		X				

Factors that influence vulnerability (* at least 10 required)

- 1) Dispersal and movements
- 2) Predicted sensitivity to temperature and moisture changes
- a) Predicted sensitivity to changes in temperature
 - i) historical thermal niche
 - ii) physiological thermal niche
- b) Predicted sensitivity to changes in precipitation, hydrology, or moisture regime
 - i) historical hydrological niche
 - ii) physiological hydrological niche
- c) Dependence on a **specific disturbance regime** likely to be impacted by climate change
- d) Dependence on ice, ice-edge, or snow-cover habitats
- 3) Restriction to uncommon geological features or derivatives
- 4) Reliance on interspecific interactions
- a) Dependence on other species to generate habitat
- b) Dietary versatility (animals only)
- c) Pollinator versatility (plants only)
- d) Dependence on other species for propagule dispersal
- e) Forms part of an interspecific interaction not covered by 4a-d
- 5) Genetic factors
- a) Measured genetic variation
- b) Occurrence of **bottlenecks** in recent evolutionary history (use only if 5a is "unknown")
- 6) Phenological response to changing seasonal temperature and precipitation dynamics

Section D: Documented or Modeled Response to Climate Change (Optional; May apply across the range of a species)

Mark an "X" in all boxes that apply.

	Effect on Vulnerability										
Greatly		Somewhat		Somewhat							
increase	Increase	increase	Neutral	decrease	Decrease	Unknown					
			X								
						Х					
						X					
						X					

(Optional)

- 1) Documented response to recent climate change
- 2) Modeled future (2050) change in population or range size
- 3) Overlap of modeled future (2050) range with current range
- 4) Occurrence of protected areas in modeled future (2050) distribution

Middle Rockies Grizzly Bear NSCCVI

Climate Change Vulnerability Index

for Ursus arctos in Middle Rockies Ecoregion

Not Vulnerable/Presumed Stable

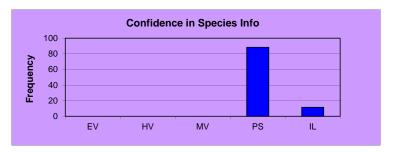
Notes: Species range may shift and perhaps leave the assessment area.

Confidence in Species
Information
High

* Histogram below

Definitions of Index Values

Extremely Vulnerable (EV): Abundance and/or range extent within geographical area assessed extremely likely to substantially decrease or disappear by 2050.


Highly Vulnerable (HV): Abundance and/or range extent within geographical area assessed likely to decrease significantly by 2050.

Moderately Vulnerable (MV): Abundance and/or range extent within geographical area assessed likely to decrease by 2050.

Not Vulnerable/Presumed Stable (PS): Available evidence does not suggest that abundance and/or range extent within the geographical area assessed will change (increase/decrease) substantially by 2050. Actual range boundaries may change.

Not Vulnerable/Increase Likely (IL): Available evidence suggests that abundance and/or range extent within geographical area assessed is likely to increase by 2050.

Insufficient Evidence (IE): Available information about a species' vulnerability is inadequate to calculate an Index score.

Results of a Monte Carlo simulation (1000 runs) of the data entered in the Index.

Middle Rockies Greater Sage-Grouse NSCCVI

The NatureServe Climate Change Vulnerability Index

Release 2.1 7 April 2011; Bruce Young, Elizabeth Byers, Kelly Gravuer, Kim Hall, Geoff Hammerson, Alan Redder With input from: Jay Cordeiro, Kristin Szabo

Funding for Release 2.0 generously provided by the Duke Energy Corporation.

* = Required field

Geographic Area Assessed:	Middle Rockies Ecoregion	*				
Assessor:	Sarah Bresnan					
Species Scientific Name:	Centrocercus urophasianus	*	Engl	ish Name:	Greater Sage-Grouse	
Major Taxonomic Group:	Bird	*	Г	O Bando	0204	
Relation of Species' Rang	ge to Assessment Area: East/west e	dge of range]*	G-Rank: S-Rank:	G3G4	
Check if species is an obligate of	caves or groundwater aquatic systems:		(Must be ma	arked with an '	X" for accurate scoring of these species.)	
Assessment Notes (to document s	pecial methods and data sources)					
S-Rank - NatureServe Explorer U.S	. & Canada State/Province Status: Montan	a (S3), Idaho (S	2), Wyoming (S	64), South Dak	ota (S2)	
Section A: Exposure to Local Clin	nate Change (Calculate for species' range	e within assessm	nent area)			
Section A: Exposure to Local Clin Temperature *	nate Change (Calculate for species' range		nent area)	ure Metric *		

Section B: Indirect Exposure to Climate Change (Evaluate for specific geographical area under consideration)

Mark an "X" in all boxes that apply.

Effect on Vulnerability								
Greatly		Somewhat		Somewhat				
increase	Increase	increase	Neutral	decrease	Decrease	Unknown		
			Χ					
		X	X					
		X						
		X						

- 1) Exposure to sea level rise
- 2) Distribution relative to **barriers**
- a) Natural barriers
- b) Anthropogenic barriers
- 3) Predicted impact of land use changes resulting from human responses to climate change

Middle Rockies Greater Sage-Grouse NSCCVI

Section C: Sensitivity

Mark an "X" in all boxes that apply.

	Effect on Vulnerability									
Greatly increase	Increase	Somewhat increase	Neutral	Somewhat decrease	Decrease	Unknown				
			Χ							
				Х						
			Χ							
				X						
			Χ							
		X								
			Χ							
				Х						
	Х	Х								
			Х							
						X				
			X							
			X							
						.,				
		,				X				
		X								
	Χ	X								

Factors that influence vulnerability (* at least 10 required)

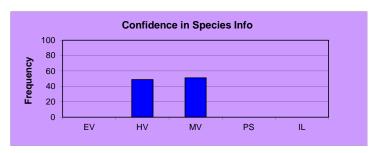
- 1) Dispersal and movements
- 2) Predicted sensitivity to temperature and moisture changes
- a) Predicted sensitivity to changes in temperature
 - i) historical thermal niche
 - ii) physiological thermal niche
- b) Predicted sensitivity to changes in precipitation, hydrology, or moisture regime
 - i) historical hydrological niche
 - ii) physiological hydrological niche
- c) Dependence on a **specific disturbance regime** likely to be impacted by climate change
- d) Dependence on ice, ice-edge, or snow-cover habitats
- 3) Restriction to uncommon geological features or derivatives
- 4) Reliance on interspecific interactions
- a) Dependence on other species to generate habitat
- b) Dietary versatility (animals only)
- c) Pollinator versatility (plants only)
- d) Dependence on other species for propagule dispersal
- e) Forms part of an interspecific interaction not covered by 4a-d
- 5) Genetic factors
- a) Measured genetic variation
- b) Occurrence of **bottlenecks** in recent evolutionary history (use only if 5a is "unknown")
- 6) Phenological response to changing seasonal temperature and precipitation dynamics

Section D: Documented or Modeled Response to Climate Change (Optional; May apply across the range of a species)

Mark an "X" in all boxes that apply.

Effect on Vulnerability									
Greatly		Somewhat		Somewhat					
increase	Increase	increase	Neutral	decrease	Decrease	Unknown			
						Χ			
						X			
						Χ			
						Χ			

(Optional)


- 1) Documented response to recent climate change
- 2) Modeled future (2050) change in population or range size
- 3) Overlap of modeled future (2050) range with current range 4) Occurrence of protected areas in modeled future (2050) distribution

Middle Rockies Greater Sage-Grouse NSCCVI

Climate Change Vulnerability Index for Centrocercus urophasianus in Middle Rockies Ecoregion Moderately Vulnerable Moderately Vulnerable Notes: Confidence in Species Information Low * Histogram below * Histogram below Definitions of Index Values Extremely Vulnerable (EV): Abundance and/or range extent within geographical area assessed extremely likely to substantially decrease or disappear by 2050. Highly Vulnerable (HV): Abundance and/or range extent within geographical area assessed likely to decrease significantly by 2050. Moderately Vulnerable (MV): Abundance and/or range extent within geographical area assessed likely to decrease by 2050. Not Vulnerable (PS): Available evidence does not suggest that abundance and/or range extent within the geographical area assessed will change (increase/decrease) substantially by 2050. Actual range boundaries may change.

Not Vulnerable/Increase Likely (IL): Available evidence suggests that abundance and/or range extent within geographical area assessed is likely to increase by 2050.

Insufficient Evidence (IE): Available information about a species' vulnerability is inadequate to calculate an Index score.

Results of a Monte Carlo simulation (1000 runs) of the data entered in the Index.

Middle Rockies Golden Eagle NSCCVI

The NatureServe Climate Change Vulnerability Index

Release 2.1 7 April 2011; Bruce Young, Elizabeth Byers, Kelly Gravuer, Kim Hall, Geoff Hammerson, Alan Redder With input from: Jay Cordeiro, Kristin Szabo

Funding for Release 2.0 generously provided by the Duke Energy Corporation.

* = Required field

Geographic Area Assessed:	Middle Rockies Ecoregion	*			
Assessor:	Sarah Bresnan				
Species Scientific Name:	Aquila chrysaetos	_*	English Name:	Golden Eagle	
Major Taxonomic Group:	Bird	*	0.0		
Relation of Species' Ran	ge to Assessment Area: Entire rang	ge	G-Rank: * S-Rank:	G5	
Check if species is an obligate of	caves or groundwater aquatic systems:		(Must be marked with an "X	" for accurate scoring of these species.)	
Assessment Notes (to document sp	,				
S-Rank - NatureServe Explorer U.S.	& Canada State/Province Status: Montana (S4), Idaho (S4E	3, S4N), Wyoming (S3B, S3N)), South Dakota (S3S4B,S3N)	
Section A: Exposure to Local Clim	nate Change (Calculate for species' range withi	in assessmer	nt area)		
Temperature *		Hamon Al	ET:PET Moisture Metric *		
Severity >5.5° F (3.1° C) warmer 5.1-5.5° F (2.8-3.1° C) warmer	Scope (percent of range) 20.5 59.7	Severity	Scope (percent < -0.119 12.7224 0.0970.119 43.7861	of range)	

Section B: Indirect Exposure to Climate Change (Evaluate for specific geographical area under consideration)

Mark an "X" in all boxes that apply.

Effect on Vulnerability									
Greatly		Somewhat		Somewhat					
increase	Increase	increase	Neutral	decrease	Decrease	Unknown			
			X						
			X						
			X						
		X							

- 1) Exposure to sea level rise
- 2) Distribution relative to **barriers**
- a) Natural barriers
- b) Anthropogenic barriers
- 3) Predicted impact of land use changes resulting from human responses to climate change

Middle Rockies Golden Eagle NSCCVI

Section C: Sensitivity

Mark an "X" in all boxes that apply.

Greatly		Somewhat		Somewhat		
increase	Increase	increase	Neutral	decrease	Decrease	Unknown
		1			Х	
				Х		
			Х			
				Х		
			X			
		Х				
						X
				Х		
			Χ			
			Χ			
						Х
			Χ			
			Χ			
						X
	-		X			
			X			

Factors that influence vulnerability (* at least 10 required)

- 1) Dispersal and movements
- 2) Predicted sensitivity to temperature and moisture changes
- a) Predicted sensitivity to changes in temperature
 - i) historical thermal niche
 - ii) physiological thermal niche
- b) Predicted sensitivity to changes in precipitation, hydrology, or moisture regime
 - i) historical hydrological niche
 - ii) physiological hydrological niche
- c) Dependence on a **specific disturbance regime** likely to be impacted by climate change
- d) Dependence on ice, ice-edge, or snow-cover habitats
- 3) Restriction to uncommon geological features or derivatives
- 4) Reliance on interspecific interactions
- a) Dependence on other species to generate habitat
- b) Dietary versatility (animals only)
- c) Pollinator versatility (plants only)
- d) Dependence on other species for propagule dispersal
- e) Forms part of an interspecific interaction not covered by 4a-d
- 5) Genetic factors
- a) Measured genetic variation
- b) Occurrence of **bottlenecks** in recent evolutionary history (use only if 5a is "unknown")
- 6) Phenological response to changing seasonal temperature and precipitation dynamics

Section D: Documented or Modeled Response to Climate Change (Optional; May apply across the range of a species)

Mark an "X" in all boxes that apply.

	Effect on Vulnerability										
Greatly		Somewhat		Somewhat							
increase	Increase	increase	Neutral	decrease	Decrease	Unknown					
						Χ					
						Χ					
						X					
						X					

(Optional)

- 1) Documented response to recent climate change
- 2) Modeled future (2050) change in population or range size
- 3) Overlap of modeled future (2050) range with current range
- 4) Occurrence of protected areas in modeled future (2050) distribution

Middle Rockies Golden Eagle NSCCVI

Climate Change Vulnerability Index

for Aquila chrysaetos in Middle Rockies Ecoregion

Not Vulnerable/Increase Likely

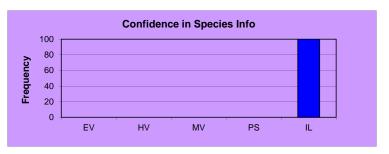
Notes: Species range may shift and perhaps leave the assessment area.

Confidence in Species
Information
Very High

* Histogram below

Definitions of Index Values

Extremely Vulnerable (EV): Abundance and/or range extent within geographical area assessed extremely likely to substantially decrease or disappear by 2050.


Highly Vulnerable (HV): Abundance and/or range extent within geographical area assessed likely to decrease significantly by 2050.

Moderately Vulnerable (MV): Abundance and/or range extent within geographical area assessed likely to decrease by 2050.

Not Vulnerable/Presumed Stable (PS): Available evidence does not suggest that abundance and/or range extent within the geographical area assessed will change (increase/decrease) substantially by 2050. Actual range boundaries may change.

Not Vulnerable/Increase Likely (IL): Available evidence suggests that abundance and/or range extent within geographical area assessed is likely to increase by 2050.

Insufficient Evidence (IE): Available information about a species' vulnerability is inadequate to calculate an Index score.

Results of a Monte Carlo simulation (1000 runs) of the data entered in the Index.

Middle Rockies Mule Deer NSCCVI

The NatureServe Climate Change Vulnerability Index

Release 2.1 7 April 2011; Bruce Young, Elizabeth Byers, Kelly Gravuer, Kim Hall, Geoff Hammerson, Alan Redder With input from: Jay Cordeiro, Kristin Szabo

Funding for Release 2.0 generously provided by the Duke Energy Corporation.

* = Required field

Geographic Area Assessed:	Middle Rockies Ecoregion	*		
Assessor	Sarah Bresnan			
Species Scientific Name	Odocoileus hemionus	*	English Name:	Mule Deer
Major Taxonomic Group:	Mammal	*	G-Rank:	
Relation of Species' Ran	ge to Assessment Area: Entire range	ge	* S-Rank:	G5 S5
Check if species is an obligate of	caves or groundwater aquatic systems:		(Must be marked with an	"X" for accurate scoring of these species.)
Assessment Notes (to document s	pecial methods and data sources)			
·	& Canada State/Province Status: Montana (S5			cota (S5)
Section A: Exposure to Local Clin	nate Change (Calculate for species' range with	in assessmei	nt area)	
Temperature *		Hamon Al	T:PET Moisture Metric *	
Severity >5.5° F (3.1° C) warmer 5.1-5.5° F (2.8-3.1° C) warmer 4.5-5.0° F (2.5-2.7° C) warmer 3.9-4.4° F (2.2-2.4° C) warmer < 3.9° F (2.2° C) warmer Total:	47.753053 47.980749	-(-(Scope (perci < -0.119 0.349484 .0970.119 43.70727 .0740.096 40.69229 .0510.073 14.89858 .0280.050 0.352378 >-0.028 0 <i>Total</i> : 100	ent of range) (Must sum to 100)

Section B: Indirect Exposure to Climate Change (Evaluate for specific geographical area under consideration)

Mark an "X" in all boxes that apply.

Effect on Vulnerability									
Greatly		Somewhat		Somewhat					
increase	Increase	increase	Neutral	decrease	Decrease	Unknown			
			X						
			X						
		X	X						
			X						

- 1) Exposure to sea level rise
- 2) Distribution relative to barriers
- a) Natural barriers
- b) Anthropogenic barriers
- 3) Predicted impact of land use changes resulting from human responses to climate change

Middle Rockies Mule Deer NSCCVI

Section C: Sensitivity

Mark an "X" in all boxes that apply.

increase Increase increase Neutral decrease Decrease Unit of the property of the	Effect on Vulnerability Greatly Somewhat Somewhat									
X X X X X X X X X X X X X X X X X X X				Mandaal		D	I balan acc			
X X X X X X X X X X X X X	increase	increase	increase	neutrai			Unknow			
X X X X X X X X X X X X X X X X X X X					X	X				
X X X X X X X X X X X X X X X X X X X										
X X X X X X X X X X X X X X X X X X X										
X X X X X X X X X X X X X X X X X X X					.,					
X X X X X X X X X X X X X X X X X X X					X					
X X X X X X X X X X X X X X X X X X X		·		X						
X X X X X X X X X X X X X X X X X X X										
X X X X X X X X X X X X X X X X X X X					V					
X X X X X X X X X X X X X X X X X X X					X					
X X X X X X X X X X X X X X X X X X X				X						
X X X X X X X X X X X X X X X X X X X				Y						
X X X X X X X X X X X X X X X X X X X			-							
X X X X X X X X X X X X X X X X X X X				X						
X X X					X					
X X X										
X X X				V						
X X										
X				X						
X							Х			
X			1							
X				X						
X										
X							V			
1 X			ļļ.				X			
				X						
							Х			

Factors that influence vulnerability (* at least 10 required)

- 1) Dispersal and movements
- 2) Predicted sensitivity to temperature and moisture changes
- a) Predicted sensitivity to changes in temperature
 - i) historical thermal niche
 - ii) physiological thermal niche
- b) Predicted sensitivity to changes in precipitation, hydrology, or moisture regime
 - i) historical hydrological niche
 - ii) physiological hydrological niche
- c) Dependence on a **specific disturbance regime** likely to be impacted by climate change
- d) Dependence on ice, ice-edge, or snow-cover habitats
- 3) Restriction to uncommon geological features or derivatives
- 4) Reliance on interspecific interactions
- a) Dependence on other species to generate habitat
- b) Dietary versatility (animals only)
- c) Pollinator versatility (plants only)
- d) Dependence on other species for propagule dispersal
- e) Forms part of an interspecific interaction not covered by 4a-d
- 5) Genetic factors
- a) Measured genetic variation
- b) Occurrence of **bottlenecks** in recent evolutionary history (use only if 5a is "unknown")
- 6) Phenological response to changing seasonal temperature and precipitation dynamics

Section D: Documented or Modeled Response to Climate Change (Optional; May apply across the range of a species)

Mark an "X" in all boxes that apply.

Effect on Vulnerability									
Greatly		Somewhat		Somewhat					
increase	Increase	increase	Neutral	decrease	Decrease	Unknown			
						Χ			
						Х			
						X			
	•					X			

(Optional)

- 1) Documented response to recent climate change
- 2) Modeled future (2050) change in population or range size
- 3) Overlap of modeled future (2050) range with current range
- 4) Occurrence of protected areas in modeled future (2050) distribution

Middle Rockies Mule Deer NSCCVI

Climate Change Vulnerability Index

for Odocoileus hemionus in Middle Rockies Ecoregion

Not Vulnerable/Increase Likely

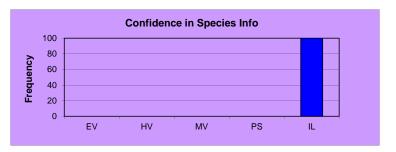
Notes: Species range may shift and perhaps leave the assessment area.

Confidence in Species
Information
Very High

* Histogram below

Definitions of Index Values

Extremely Vulnerable (EV): Abundance and/or range extent within geographical area assessed extremely likely to substantially decrease or disappear by 2050.


Highly Vulnerable (HV): Abundance and/or range extent within geographical area assessed likely to decrease significantly by 2050.

Moderately Vulnerable (MV): Abundance and/or range extent within geographical area assessed likely to decrease by 2050.

Not Vulnerable/Presumed Stable (PS): Available evidence does not suggest that abundance and/or range extent within the geographical area assessed will change (increase/decrease) substantially by 2050. Actual range boundaries may change.

Not Vulnerable/Increase Likely (IL): Available evidence suggests that abundance and/or range extent within geographical area assessed is likely to increase by 2050.

Insufficient Evidence (IE): Available information about a species' vulnerability is inadequate to calculate an Index score.

Results of a Monte Carlo simulation (1000 runs) of the data entered in the Index.

Middle Rockies Elk NSCCVI

The NatureServe Climate Change Vulnerability Index

Release 2.1 7 April 2011; Bruce Young, Elizabeth Byers, Kelly Gravuer, Kim Hall, Geoff Hammerson, Alan Redder With input from: Jay Cordeiro, Kristin Szabo

Funding for Release 2.0 generously provided by the Duke Energy Corporation.

* = Required field

Geographic Area Assessed:	Middle Rockies Ecoregion	*				
Assessor:	Sarah Bresnan					
Species Scientific Name:	Cervus canadensis	*	English Name:		Elk	
Major Taxonomic Group:	Mammal	*	G-Rank:	G5		
Relation of Species' Rang	ge to Assessment Area: En	tire range *	S-Rank:	S5		
Check if species is an obligate of	caves or groundwater aquatic system	s:	(Must be marked with a	n "X" for accurate sco	oring of these species.)
Assessment Notes (to document sp	,					
S-Rank - NatureServe Explorer U.S.	& Canada State/Province Status: Monta	ana (S5) Idaho (S5) V	Myoming (S5) South D	kota (SS)		
		ana (66), naana (66), n	vyoming (55), Sodan Di	akola (55)		
	ate Change (Calculate for species' ran			anota (55)		
		ge within assessment				

Section B: Indirect Exposure to Climate Change (Evaluate for specific geographical area under consideration)

Mark an "X" in all boxes that apply.

Effect on Vulnerability								
Greatly		Somewhat		Somewhat				
increase	Increase	increase	Neutral	decrease	Decrease	Unknown		
			X					
			Х					
			Х					
			X					

- 1) Exposure to sea level rise
- 2) Distribution relative to barriers
- a) Natural barriers
- b) Anthropogenic barriers
 3) Predicted impact of land use changes resulting from human responses to climate change

Middle Rockies Elk NSCCVI

Section C: Sensitivity

Mark an "X" in all boxes that apply.

Effect on Vulnerability								
Greatly increase	Increase	Somewhat increase	Neutral	Somewhat decrease	Decrease	Unknow		
					X			
				Х				
			Х					
				X				
			Х	^				
			X					
			Х					
		X						
			X					
			Х					
						Х		
			Х					
			X					
			^					
						Х		
			X					
						X		

- 1) Dispersal and movements
- 2) Predicted sensitivity to temperature and moisture changes
- a) Predicted sensitivity to changes in temperature
 - i) historical thermal niche
 - ii) physiological thermal niche
- b) Predicted sensitivity to changes in precipitation, hydrology, or moisture regime
 - i) historical hydrological niche
 - ii) physiological hydrological niche
- c) Dependence on a **specific disturbance regime** likely to be impacted by climate change
- d) Dependence on ice, ice-edge, or snow-cover habitats
- 3) Restriction to uncommon geological features or derivatives
- 4) Reliance on interspecific interactions
- a) Dependence on other species to generate habitat
- b) Dietary versatility (animals only)
- c) Pollinator versatility (plants only)
- d) Dependence on other species for propagule dispersal
- e) Forms part of an interspecific interaction not covered by 4a-d
- 5) Genetic factors
- a) Measured genetic variation
- b) Occurrence of **bottlenecks** in recent evolutionary history (use only if 5a is "unknown")
- 6) Phenological response to changing seasonal temperature and precipitation dynamics

Middle Rockies Elk NSCCVI

Section D: Documented or Modeled Response to Climate Change (Optional; May apply across the range of a species)

Mark an "X" in all boxes that apply.

	Effect on Vulnerability										
Greatly		Somewhat		Somewhat							
increase	Increase	increase	Neutral	decrease	Decrease	Unknown					
						X					
						X					
						Χ					
						X					

(Optional)

- 1) Documented response to recent climate change
- 2) Modeled future (2050) change in population or range size
- 3) Overlap of modeled future (2050) range with current range
- 4) Occurrence of protected areas in modeled future (2050) distribution

Climate Change Vulnerability Index

for Cervus canadensis in Middle Rockies Ecoregion

Not Vulnerable/Increase Likely

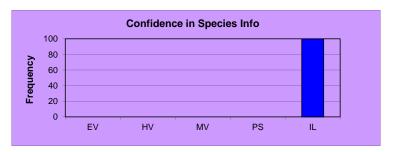
Notes: Species range may shift and perhaps leave the assessment area.

Confidence in Species
Information
Very High

* Histogram below

Definitions of Index Values

Extremely Vulnerable (EV): Abundance and/or range extent within geographical area assessed extremely likely to substantially decrease or disappear by 2050.


Highly Vulnerable (HV): Abundance and/or range extent within geographical area assessed likely to decrease significantly by 2050.

Moderately Vulnerable (MV): Abundance and/or range extent within geographical area assessed likely to decrease by 2050.

Not Vulnerable/Presumed Stable (PS): Available evidence does not suggest that abundance and/or range extent within the geographical area assessed will change (increase/decrease) substantially by 2050. Actual range boundaries may change.

Not Vulnerable/Increase Likely (IL): Available evidence suggests that abundance and/or range extent within geographical area assessed is likely to increase by 2050.

Insufficient Evidence (IE): Available information about a species' vulnerability is inadequate to calculate an Index score.

Results of a Monte Carlo simulation (1000 runs) of the data entered in the Index.

Data Request Method

Rapid Ecoregional Assessments (REAs)—National Operations Center, CO

Individual REA data layers and some other products are still available but are no longer being published.

If you would like to obtain more information, including data and model zip files* (containing Esri ModelBuilder files for ArcGIS 10.x and relevant Python scripts), please email **BLM OC REA Data Portal Feedback Team@blm.gov**.
*Note that a few models require software that BLM does not provide such as R, Maxent, and TauDEM.

Models associated with individual REAs may require data links to be updated to function properly. REA reports, technical appendices, and model overviews (for some REAs) contain detailed information to determine what products are available and what datasets are necessary to run a certain model.

Please include the report name and any specific data information that you can provide with your request.

Other BLM data can be found on the Geospatial Business Platform Hub (https://gbp-blm-egis.hub.arcgis.com).