Appendix E: References

Table of Contents

E-1 Ref	ferences	2
E-1.1	Master Reference List	2
E-1.2	Other Sources: Websites	47
E-2 Glo	ossaries	48
E-2.1	Project glossary	48
E-2.2	Acronym List	57
E-2.3	Scientific-common name master list for plants	61
E-3 Ma	nagement Questions	73

Tables

Table E - 1. Citations for references used in the REA.	2
Table E - 2. Glossary of terms used in the REA.	
Table E - 3. List of acronyms used in the REA.	57
Table E - 4. Plant scientific names used in the coarse-filter conceptual models	
Table E - 5. List of management questions addressed in this REA	73

E-1 References

This appendix compiles several "references" lists or lookup tables. First is provided a listing of reference materials relevant to the REA (Table E - 1), including published papers, reports, theses, dissertations, and other documents. Many of them have URLs referenced within the citation.

Other sections of the appendix provide a short section of useful URLs for websites, but this is not comprehensive by any means. This appendix also has the project glossary (Table E - 2) and list of acronyms (Table E - 3).

One request from AMT members was for a cross-walk of the scientific names used for plant species in the terrestrial coarse-filter conceptual models; Table E - 4provides this list, with the taxonomic standard NatureServe uses in our descriptive materials, the common name for the plants, and the name used in the NRCS PLANTS database. The sort order is alphabetical by scientific name.

The last section of this appendix is the list of management questions addressed in the REA, both those initially proposed by BLM and the AMT, and those ansered by the assessments. Also provided are comments relevant to why the MQ was not answered, the original MQ, and the final MQ. These are provided in Table E - 5.

E-1.1 Master Reference List

Below are provided full citations for many reports, published papers and gray literature that is relevant to this REA. Many of these have been cited in either the report chapters or one of the appendices. Many others have not and are provided for reference. PDFs are not necessarily provided for all of them, although many were delivered to BLM in PDF format. Many of them are copyrighted material, and hence cannot be wholesale provided. They are sorted alphabetically by the first author's last name. In addition a "short citation" is provided for many of them which cross-references to the text citations of these references.

Full Citation	Short Citation
	(used in text)
Abatzoglou, J. T., and C. A. Kolden. 2011. Climate change in western U.S. deserts:	Abatzoglou
Potential for increased wildfire and invasive annual grasses. Rangeland Ecology and	and Kolden
Management 64:471-478.	2011
Abbott, M.L. 2005. Atmospheric Mercury Concentrations Near Salmon Falls Creek	
Reservoir – Phase 1. Idaho National Laboratory Report INL/EXT-05-00767, October	
2005.	
Abele, S. L., editor. 2011. Nevada Springs Conservation Plan. Springs Conservation Plan	Abele 2011
Working Group, The Nature Conservancy, Reno, NV.	
Abella, S.R., D.J. Craig, L.P. Chiquoine, K.A. Prengaman, S.M. Schmid, and T.M. Embrey.	
2011. Relationships of native desert plants with red brome (<i>Bromus rubens</i>): toward	
identifying invasion-reducing species. Invasive Plant Science and Management 4:115-	
124.	
Abella, S.R., T.M. Embrey, S.M. Schmid, and K.A. Prengaman. 2012. Biophysical	
correlates with the distribution of the invasive annual red brome (Bromus rubens) on a	
Mojave Desert landscape. Invasive Plant Science and Management 5:47-56.	

Table E - 1. Citations for references used in the REA.

Full Citation	Short Citation (used in text)
Adams, J. C., and S. F. McCool. 2009. Finite recreation opportunities: The Forest Service, the Bureau of Land Management, and off-road vehicle management. Natural Resources Journal 49:45-116.	Adams and McCool 2009
ADoT [Arizona Department of Transportation]. 2010. Natural Resources Management Group priority weed list. [http://www.azdot.gov/Highways/Natural_Resources/PriorityWeedList.asp] (accessed 8-26-2010).	ADoT 2010
ADWR [Arizona Department of Water Resources]. 2009. Arizona Water Atlas, Volume 7, Lower Colorado River Planning Area. Arizona Department of Water Resources, November 2009.	ADWR 2009
Agee, J. K. 1998. The landscape ecology of western fire regimes. Northwest Science 72(4):24-34.	Agee 1998
AGFD [Arizona Game and Fish Department]. 2006. Arizona's comprehensive wildlife conservation strategy: 2005-2015. Draft report. Arizona Game and Fish Department, Phoenix, AZ.	AGFD 2006
Aldridge, C.L., S. E. Nielsen, H. L. Beyer, M. S. Boyce, J.W. Connelly, S. T. Knick, and M. A. Schroeder. 2008. Range-wide patterns of greater sage-grouse persistence. Diversity and Distribution 14:983-994.	Aldridge et al. 2008
 Allan, J. D. 2004. Landscape and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35:257-284. Allen, E.B. L.E. Rao, G. Tonnesen, M.E. Fenn, and A. Bytnerowicz. 2009a. Empirical and Modeling Approaches to Setting Critical Loads for N Deposition in Southern California Shrublands. Poster Presentation, American Geophysical Union, Fall 2009 Workshop: Nitrogen Deposition, Critical Loads and Biodiversity, Edinburgh, Scotland, UK - 16-18 November, 2009. Online: http://ontality.com/fileadmin/user_upload/2009_edinburgh/. Allen, E.B., L.E. Rao, R.J. Steers, A. Bytnerowicz, and M.E. Fenn. 2009b. Impacts of atmospheric nitrogen deposition on vegetation and soils in Joshua Tree National Park. In: R.H. Webb, L.F. Fenstermaker, J.S. Heaton, D.L. Hughson, E.V. McDonald, and D.M. Miller, editors, The Mojave Desert: Ecosystem Processes and Sustainability. University of Nevada Press, Las Vegas. 	Allan 2004
Anderson, L. E. 1990. A checklist of <i>Sphagnum</i> in North America north of Mexico. The Bryologist 93:500-501. Anderson, L. E., H. A. Crum, and W. R. Buck. 1990. List of mosses of North America	
north of Mexico. The Bryologist 93:448-499. Anderson, M. D. 2001. <i>Coleogyne ramosissima</i> . In: Fire Effects Information System [Online]. USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). [http://www.fs.fed.us/database/feis/] (accessed 2 January 2011).	Anderson 2001
Anderson, R. A. 1994. Functional and population responses of the lizard Cnemidophorus tigris to environmental conditions. American Zoologist 34:409-421.	Anderson 1994
Anning, D. W., S. A. Thiros, L. M. Bexfield, T. S. McKinney, and J. M. Green. 2009. Southwest principal aquifers regional ground-water quality assessment. USDI U.S. Geological Survey Fact Sheet 2009-3015 March 2009. [http://water.usgs.gov/nawqa/studies/praq/swpa]	Anning et al. 2009

Full Citation	Short Citation
ANSTE [Aquatic Nuisance Species Teck Force] 2011 Aquatic Nuisance Species Teck	(used in text)
ANSTF [Aquatic Nuisance Species Task Force]. 2011. Aquatic Nuisance Species Task	ANSTF 2011
Force documents. [http://anstaskforce.gov/documents.php] (Accessed 1 February	
2011).	
Apitz, S. E., J. W. Davis, K. Finkelstein, D. W. Hohreiter, R. Hoke, R. H. Jensen, J. Jersak,	Apitz et al.
V. J. Kirtay, E. E. Mack, V. S. Magar, D. Moore, D. Reible, and R. G. Stahl, Jr. 2005.	2005
Assessing and managing contaminated sediments: Part II, Evaluating risk and	
monitoring sediment remedy effectiveness. Integrated Environmental Assessment and	
Management 1(1):1-14.	
Archer, S. A., and K. I. Predick. 2008. Climate change and ecosystems of the	Archer and
Southwestern United States. Rangelands 30(3):23-38.	Predick 2008
Arredondo, J. T., T. A. Jones, and D. A. Johnson. 1998. Seedling growth of	Arredondo et
Intermountain perennial and weedy annual grasses. Journal of Range Management	al. 1998
51(5):584-589.	
Artz, M. C. 1989. Impacts of linear corridors on perennial vegetation in the East Mojave	Artz 1989
Desert: Implications for environmental management and planning. Natural Areas	
Journal 9:117-129.	
Ashton, I. W., L. A. Hyatt, K. M. Howe, J. Gurevitch, and M. T. Lerdau. 2005. Invasive	
species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest.	
Ecological Applications 15(4):1263-1272.	
AWS Truewind & NREL [AWS Truewind & National Renewable Energy Laboratory].	
2003. Predicted mean annual wind speeds at 50-m height. AWS Truewind & National	
Renewable Energy Laboratory. http://www.windpoweringamerica.gov/index.asp	
AWS Truewind & NREL [AWS Truewind & National Renewable Energy Laboratory].	AWS
2009. Predicted mean annual wind speeds at 80-m height. AWS Truewind & National	Truewind &
Renewable Energy Laboratory. [http://www.windpoweringamerica.gov/index.asp]	NREL 2009
AZ-WIPWG [Arizona Wildlands Invasive Plant Working Group]. 2010. Arizona wildlands	AZ-WIPWG
	2010
invasive plants. [http://sbsc.wr.usgs.gov/research/projects/swepic/SWVMA/sbscmain.asp] (accessed	2010
on 8-26-2010).	D.III 4077
Ballinger, R. E. 1977. Reproductive strategies: Food availability as a source of proximal	Ballinger 1977
variation in a lizard. Ecology 58:628-635.	
Ballinger, R. E. 1984. Survivorship of the tree lizard, <i>Urosaurus ornatus linearis</i> , in New	Ballinger 1984
Mexico. Journal of Herpetology 18:480-481.	
Banta, B. H. 1961. Herbivorous feeding of <i>Phrynosoma platyrhinos</i> in southern Nevada.	Banta 1961
Herpetologica 17:136-137.	
Barbour, M. G., and J. Major, editors. 1977. Terrestrial vegetation of California. John	Barbour and
Wiley and Sons, New York. 1002 pp.	Major 1977
Barbour, M. G., and W. D. Billings, editors. 1988. North American terrestrial vegetation.	Barbour and
Cambridge University Press, New York. 434 pp.	Billings 1988
Barbour, M. G., T. Keeler-Wolf, and A. A. Schoenherr, editors. 2007. Terrestrial	Barbour et al.
vegetation of California. Third edition. University of California Press, Berkeley.	2007
Barney, J. N., and T. H. Whitlow. 2008. A unifying framework for biological invasions:	Barney and
The state factor model. Biological Invasions 10:259-272.	Whitlow 2008
Baron, J. S. 2006. Hindcasting nitrogen deposition to determine an ecological critical	
load. Ecological Applications 16(2):433-439.	1

Full Citation	Short Citation (used in text)
Baron, J. S., H. M. Rueth, and A. M. Wolfe. 2000. Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems 3:352-368. DOI 10.1007/s100210000032.	
Barrios, L., and A. Rodriguez. 2004. Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines. Journal of Applied Ecology 41:72-81.	Barrios and Rodriguez 2004
Barrows, C.W. 2011. Sensitivity to climate change for two reptiles at the Mojave- Sonoran Desert interface. Journal of Arid Environments 75:629-635.	Barrows 2011
Bateman, H. L., A. Chung-MacCoubrey, and H. L. Snell. 2008. Impact of non-native plant removal on lizards in riparian habitats in the southwestern United States. Restoration Ecology 16(1):180-190.	
Bates, J. W., and M. O. Moretti. 1994. Golden eagle (<i>Aquila chrysaetos</i>) population ecology in eastern Utah. Great Basin Naturalist 54(3):248-255.	Bates and Moretti 1994
Bauman, J. 2004. Is Dugway's expansion an alien concept? Deseret News, Salt Lake City, UT. [http://www.deseretnews.com/article/1,5143,595102911,00.html?pg=3] (accessed Nov. 4, 2004).	Bauman 2004
Beamish, R. 2009. Desert clash in West over solar potential, water. U.S. News & World Report. April 18, 2009.	Beamish 2009
Beatley, J. C. 1966. Ecological status of introduced brome grasses (<i>Bromus</i> spp.) in desert vegetation of southern Nevada. Ecology 47(4):548-554.	Beatley 1966
Beatley, J. C. 1976. Vascular plants of the Nevada Test Site and central-southern Nevada: Ecological and geographic distributions. Technical Information Center, Energy Research and Development Administration. TID-26881. Prepared for Division of Biomedical and Environmental Research. 297 pp.	Beatley 1976
Beaumont, L. J., A. Pitman, M. Poulsen, and L. Hughes. 2007. Where will species go? Incorporating new advances in climate modeling into projections of species distributions. Global Change Biology 13:1368-1385.	Beaumont et al. 2007
Beever, E. A., and P. F. Brussard. 2000. Examining ecological consequences of feral horse grazing using exclosures. Great Basin Naturalist 60(3):236-254.	Beever and Brussard 2000
Belnap, J., J. H. Kaltenecker, R. Rosentreter, J. Williams, S. Leonard, and D. Eldridge. 2001. Biological soil crusts: Ecology and management. In: P. Peterson, editor. January 2001. USDI Bureau of Land Management, U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Denver, CO. Technical Reference 1730-2.	Belnap et al. 2001
Belsky, A. J., A. Matzke, and S. Uselman. 1999. Survey of livestock influences on stream and riparian ecosystems in the western United States. Journal of Soil and Water Conservation 54(1): 419-431.	Belsky et al. 1999
Bender, D. J., L. Tischendorf, and L. Fahrig. 2003. Using patch isolation indicators to predict animal movement in landscapes. Landscape Ecology 18:17-39.	Bender et al. 2003
Benson, A. J. 2010. <i>Melanoides tuberculatus</i> . USGS Nonindigenous Aquatic Species Database, Gainesville, FL. [http://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=1037] (Revision Date: 4/24/2006).	Benson 2010
Berger, J. 1985. Interspecific interactions and dominance among wild Great Basin ungulates. Journal of Mammology 66(3):571-573	Berger 1985

Full Citation	Short Citation (used in text)
Berry, K. H., T. Y. Bailey, and K. M. Anderson. 2006. Attributes of desert tortoise populations at the National Training Center, Central Mojave Desert, California, USA. Journal of Arid Environments 67:165-191.	Berry et al. 2006
Bestelmeyer, B. T., J. E. Herrick, J. R. Brown, D. A. Trujillo, and K. M. Havstad. 2004. Land management in the American Southwest: A state-and-transition approach to ecosystem complexity. Environmental Management 34:38-51.	Bestelmeyer et al. 2004
 Betencourt, J. L., T. R. Van Devender, and P. Martin. 1990. Packrat Middens. The Last 40,000 Years of Biotic Change. University of Arizona Press, Tucson. Bevans, H.E., M.S. Lico, and S.J. Lawrence. 1998. Water Quality in the Las Vegas Valley Area and the Carson and Truckee River Basins, Nevada and California, 1992–96. U.S. Department of the Interior, U.S. Geological Survey, Circular 1170. Reston, Virginia. 	Betencourt et al. 1990
Bierwagen, B., D. M. Theobald, C. R. Pyke, A. Choate, P. Groth, J. V. Thomas, and P. Morefield. 2009. Land-use scenarios: National-scale housing-density scenarios consistent with climate change storylines. EPA/600/R-08/076F. U.S. Environmental Protection Agency, Global Change Research Program, National Center for Environmental Assessment, Washington, DC.	Bierwagen et al. 2009
Bierwagen, B., D.M. Theobald, C.R. Pyke, A. Choate, P. Groth, J.V. Thomas, and P. Morefield. (In press, accepted 12 October 2010). Land-Use Scenarios: National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines. Proceedings of the National Academy of Sciences.	Bierwagen et al. 2010
Billings, W. D. 1990. Bromus tectorum, a biotic cause of ecosystem impoverishment in the Great Basin. Pages 301-322 in: G. M. Woodwell, editor. The earth in transition: Patterns and processes of biotic impoverishment. Cambridge University Press, New York.	Billings 1990
Blackburn, W. H., and P. T. Tueller. 1970. Pinyon and juniper invasion in black sagebrush communities in east-central Nevada. Ecology 51(5):841-848.	Blackburn and Tueller 1970
Blackburn, W. H., P. T. Tueller, and R. E. Eckert, Jr. 1968. Vegetation and soils of the Mill Creek watershed. Nevada Agricultural Experiment Station Bulletin R-43. University of Nevada, Reno. 69 pp. In cooperation with USDI Bureau of Land Management.	Blackburn et al. 1968
Blackburn, W. H., P. T. Tueller, and R. E. Eckert, Jr. 1969c. Vegetation and soils of the Churchill Canyon watershed. Nevada Agricultural Experiment Station Bulletin R-45. University of Nevada, Reno. 155 pp. In cooperation with USDI Bureau of Land Management.	Blackburn et al. 1969c
Blackburn, W. H., P. T. Tueller, and R. E. Eckert, Jr. 1969d. Vegetation and soils of the Pine and Mathews Canyon watersheds. Agricultural Experiment Station, University of Nevada, Reno. 109 pp. In cooperation with USDI Bureau of Land Management.	Blackburn et al. 1969d
Blackburn, W. H., R. E. Eckert, Jr., and P. T. Tueller. 1969a. Vegetation and soils of the Coils Creek watershed. Nevada Agricultural Experiment Station Bulletin R-48. University of Nevada, Reno. 80 pp. In cooperation with USDI Bureau of Land Management.	Blackburn et al. 1969a
Blackburn, W. H., R. E. Eckert, Jr., and P. T. Tueller. 1969b. Vegetation and soils of the Crane Springs watershed. Nevada Agricultural Experiment Station Bulletin R-55. University of Nevada, Reno. 65 pp. In cooperation with USDI Bureau of Land Management.	Blackburn et al. 1969b

Full Citation	Short Citation (used in text)
Blaisdell, J. P., and R. C. Holmgren. 1984. Managing intermountain rangelands-salt- desert shrub ranges. General Technical Report INT-163. USDA Forest Service,	Blaisdell and Holmgren
Intermountain Forest and Range Experiment Station, Ogden, UT. 52 pp. Blank R. R., J. A. Young, and F. L. Allen. 1999. Aeolian dust in a saline playa	1984 Blank et al.
environment, Nevada, USA. Journal of Arid Environments 4:365-81. BLM [Bureau of Land Management]. 2004. Santa Rosa and Santa Jacinto National Mountains final management plan and record of decision. [http://www.blm.gov/ca/st/en/fo/palmsprings/santarosa/management_plan.html]	1999 BLM 2004
(accessed May 2009) BLM [Bureau of Land Management]. 2009. Secretary Salazar, Senator Reid announce 'fast-track' initiatives for solar energy development on western lands. [http://www.doi.gov/news/pressreleases/2009_06_29_release.cfm] (Press Release: 06/29/2009).	BLM 2009
BLM [Bureau of Land Management]. 2010a. Biomass. USDI Bureau of Land Management California. [http://www.blm.gov/ca/st/en/prog/energy/biomass.html]	BLM 2010a
BLM [Bureau of Land Management]. 2010b. Fast facts about fast-track renewable energy projects. USDI Bureau of Land Management Nevada State Office. [http://www.blm.gov/nv/st/en/prog/energy/fast-track_renewable.html]	BLM 2010b
BLM [Bureau of Land Management]. 2010c. Solar energy projects. USDI Bureau of Land Management California Desert District. [http://www.blm.gov/ca/st/en/fo/cdd/alternative_energy/SolarEnergy.html]	BLM 2010c
BLM [Bureau of Land Management]. 2010d. Renewable energy: Helping to energizeCalifornia. USDI Bureau of Land Management California.[http://www.blm.gov/pgdata/etc/medialib/blm/ca/pdf/caso/publications.Par.66433.File.dat/SinglePages.pdf]	BLM 2010d
BLM [Bureau of Land Management]. 2010e. Record of decision for Ruby Pipeline project. News Release No. 2010-023. USDI Bureau of Land Management Nevada State Office. [http://www.blm.gov/nv/st/en/info/newsroom/2010/july/record_of_decision.html]	BLM 2010e
BLM [Bureau of Land Management]. 2010f. Wind energy projects. USDI Bureau of Land Management California Desert District. [http://www.blm.gov/ca/st/en/fo/cdd/alternative_energy/WindEnergy.html]	BLM 2010f
BLM [Bureau of Land Management]. 2011. Clark, Lincoln, and White Pine counties Groundwater Development Project Draft Environmental Impact Statement, Volume 1- A. DES 11-18.	BLM 2011
Bossenbroek, J. M., C. E. Kraft, and J. C. Nekola. 2001. Prediction of long-distance dispersal using gravity models: zebra mussel invasion of inland lakes. Ecological Applications 11:1778-1788.	
Bowman, W. D., J. R. Gartner, K. Holland, and M. Wiedermann. 2006. Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: Are we there yet? Ecological Applications 16(3): 1183-1193.	
Bradley, B. A. 2008. Regional analysis of impacts of climate change on cheatgrass invasion shows potential risk and opportunity. Global Change Biology 12:1815-1822.	Bradley 2008
Bradley, B. A. 2009. Regional analysis of the impacts of climate change on cheatgrass invasion shows potential risk and opportunity. Global Change Biology 15:196-208.	Bradley 2009

Full Citation	Short Citation (used in text)
Bradley, B. A. 2010. Assessing ecosystem threats from global and regional change: Hierarchical modeling of risk to sagebrush ecosystems from climate change, land use and invasive species in Nevada, USA. Ecography 33:198-208.	Bradley 2010
Bradley, B. A., and J. F. Mustard. 2005. Identifying land cover variability distinct from land cover change: Cheatgrass in the Great Basin. Remote Sensing of the Environment 94:204-213.	Bradley and Mustard 2005
Bradley, B. A., and J. F. Mustard. 2006. Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecological Applications 16:1132-1147.	Bradley and Mustard 2006
Bradley, P. V., M. J. O'Farrell, J. A. Williams, and J. E. Newmark. Editors. 2006. The Revised Nevada Bat Conservation Plan. Nevada Bat Working Group. Reno, Nevada. 216 pp. Available online at http://www.wbwg.org/conservation/conservationplans/NVconservationplan.pdf.	
Branson, F. A., R. F. Miller, and I. S. McQueen. 1967. Geographic distribution and factors affecting the distribution of salt desert shrubs in the United States. Journal of Range Management 29(5):287-296.	Branson et al. 1967
Branson, F. A., R. F. Miller, and I. S. McQueen. 1976. Moisture relationships in twelve northern desert shrub communities near Grand Junction, Colorado. Ecology 57:1104-1124.	Branson et al. 1976
Braun, C. E. 1998. Sage-grouse declines in western North America: What are the problems? Proceedings of the Western Association of State Fish and Wildlife Agencies 78:139-156.	Braun 1998
Braun, C. E., O. Oedekoven, and C. L. Aldridge. 2002. Oil and gas development in western North America: Effects of sagebrush steppe avifauna with particular emphasis on sage-grouse. Transactions of the North American Wildlife and Natural Resources Conferences 67:337-349.	Braun et al. 2002
Brennan, T. C., and A. T. Holycross. 2006. A field guide to amphibians and reptiles in Arizona. Arizona Game and Fish Department, Phoenix, AZ.	Brennan and Holycross 2006
Brooks, M. L. 1999. Alien annual grasses and fire in the Mojave Desert. Madroño 46:13-19.	Brooks 1999
Brooks, M. L. 2008. Plant invasions and fire regimes. Pages 33-46 in: K. Zouhar, J. Kapler Smith, S. Sutherland, and M. L. Brooks. Wildland fire in ecosystems: Fire and non- native invasive plants. General Technical Report RMRS-GTR-42-volume 6. USDA Forest Service, Rocky Mountain Research Station, Ogden, UT. 355 pp.	Brooks 2008
Brooks, M. L., and J. C. Chambers. 2011. Resistance to invasion and resilience to fire in desert shrublands of North America. Rangeland Ecology and Management 64(5):431-438.	Brooks and Chambers 2011
Brooks, M. L., C. M. D'Antonio, D. M. Richardson, J. M. DiTomaso, J. B. Grace, R. J. Hobbs, J. E. Keeley, M. Pellant, and D. Pyke. 2004. Effects of invasive alien plants on fire regimes. BioScience 54:677-688.	Brooks et al. 2004
Brooks, M. L., T. C. Esque, and T. Duck. 2007. Creosotebush, blackbrush, and interior chaparral shrublands. Chapter 6 in: General Technical Report RMRS-GTR-202. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO.	Brooks et al. 2007

Full Citation	Short Citation (used in text)
Brooks, P. D., and M. W. Williams. 1999. Snowpack controls on nitrogen cycling and	
export in seasonally snow-covered catchments. Hydrological Processes 13:2177-2190.	
Brown, D. E., editor. 1982. Biotic communities of the American Southwest-United States and Mexico. Desert Plants Special Issue 4(1-4):1-342.	Brown 1982
Brown, J., L. Bach, A. Aldous, A. Wyers, and J. DeGagné. 2011. Groundwater-dependent ecosystems in Oregon: An assessment of their distribution and associated threats. Frontiers in Ecology and the Environment 9:97-102. <u>http://dx.doi.org/10.1890/090108</u>	Brown et al. 2011
Brown, M. T., and M. B. Vivas. 2005. Landscape development intensity index. Environmental Monitoring and Assessment 101:289-309.	Brown and Vivas 2005
Brown, R. D., and P. W. Mote. 2009. The response of Northern Hemisphere snow cover to a changing climate. Journal of Climate 22:2124-2145.	Brown and Mote 2009
Brown, T. J., B. L. Hall, and A. L. Westerling. 2004. The impact of twenty-first century climate change on wildland fire danger in the western United States: An applications perspective. Climatic Change 62:365-388.	Brown et al. 2004
Brown, W. S., and W. S. Parker. 1984. Growth, reproduction and demography of the racer, <i>Coluber constrictor mormon</i> , in northern Utah. Pages 13-40 in: R. A. Seigel et al., editors. Vertebrate ecology and systematics: A tribute to Henry S. Fitch. University of Kansas Museum of Natural History Special Publication (10):i-viii, 1-278.	Brown and Parker 1984
Buckley, Y. M., P. Downey, S. V. Fowler, R. Hill, J. Memmot, H, Norambuena, M. Pitcairn, R. Shaw, A. W. Sheppard, C. Winks, R. Wittenberg, and M. Rees. 2003. Are invasives bigger? A global study of seed size variation in two invasive shrubs. Ecology 84(6):1434-1440.	
Burke, M.P., T.S. Hogue, M. Ferreira, C.B. Mendez, B. Navarro, Sonya Lopez, and Jennifer A. Jay. 2010. The Effect of Wildfire on Soil Mercury Concentrations in Southern California Watersheds. Water, Air, & Soil Pollution 212:369-385. DOI 10.1007/s11270-010-0351-y.	
Burkhardt, J. W., and E. W. Tisdale. 1976. Causes of juniper invasion in southwestern Idaho. Ecology 57:472-484.	Burkhardt and Tisdale 1976
Burns, A.G., Drici, W., Dixon, G.L., and Rowley, P.O. 2011. Cave, Dry Lake, and Delamar Valleys Hydrogeologic Rebuttal Report in Response to Myers 2011. Presentation to the Office of the Nevada State Engineer for the Southern Nevada Water Authority, Las Vegas, Nevada.	
Burns, D. A. 2003. Atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming: A review and new analysis of past study results. Atmospheric Environment 37:921-932. DOI 10.1016/S1352-2310(02)00993-7.	
Burns, D. A. 2004. The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming, USA: A critical review. Environmental Pollution 127:257-269. DOI 10.1016/S0269-7491(03)00264-1.	
Busack, S. D., and R. B. Bury. 1974. Some effects of off-road vehicles and sheep grazing on lizard populations in the Mojave Desert. Biological Conservation 6:179-183. Bytnerowicz, A., P.E. Padgett, S.D. Parry, M.E. Fenn, and M.J. Arbaugh. 2001.	Busack and Bury 1974
Concentrations, Deposition, and Effects of Nitrogenous Pollutants in Selected California Ecosystems. In: Optimizing Nitrogen Management in Food and Energy Production and Environmental Protection: Proceedings of the 2nd International Nitrogen Conference on Science and Policy. The Scientific World 1(S2):304-311.	

Full Citation	Short Citation (used in text)
Calabrese, J. M., and W. F. Fagan. 2004. A comparison-shopper's guide to connectivity	Calabrese and
indicators. Frontier of Ecology and Evolution 2(10):529-536.	Fagan 2004
California Office of Environmental Health Hazard Assessment (OEHHA). 2012.	
Methylmercury in Sport Fish-Information for Fish Consumers. Online:	
http://oehha.ca.gov/fish/pdf/HGfacts.pdf.	
CAL-IPC [California Invasive Plant Council]. 2010. California Invasive Plant Council	CAL-IPC 2010
(Mojave Desert Floristic Province filter) [http://www.cal-	
ipc.org/ip/inventory/weedlist.php?region=DMoj] (accessed 8-26-2010).	
Campbell, V. O. 1977. Certain edaphic and biotic factors affecting vegetation in the	Campbell
shadscale community of the Kaiparowitz area. Unpublished thesis, Brigham Young	1977
University, Provo, UT. 59 pp.	
Caro, T. M., and G. O'Doherty. 1999. On the use of surrogate species in conservation	Caro and
biology. Conservation Biology 13:805-814.	O'Doherty
	1999
Carroll, C., R. F. Noss, and P. C. Paquet. 2001. Carnivores as focal species for	Carroll et al.
conservation planning in the Rocky Mountain region. Ecological Applications 11:961-	2001
980.	
Carpenter, S., B. Walker, J. M. Anderies, and N. Abel. 2001. From metaphor to	
measurement: Resilience of what to what? Ecosystems 4:765-781.	
Cayan, D. R., T. Das, D. W. Pierce, T. P. Barnett, M. Tyree, and A. Gershunov. 2010.	Cayan et al.
Future dryness in the southwest U.S. and the hydrology of the early 21st century	2010
drought. Proceedings of the National Academy of Sciences 107(50):21271-21276.	
Online: www.pnas.org/cgi/doi/10.1073/pnas.0912391107	
CDWR [California Department of Water Resources]. 2003. California's groundwater.	CDWR 2003
Bulletin 118 Update 2003. California Department of Water Resources, Sacramento, CA.	
[http://www.water.ca.gov/groundwater/bulletin118/update2003.cfm]	
CEC [California Environmental Commission]. 2010a. Geothermal energy in California.	CEC 2010a
California Environmental Commission. [http://www.energy.ca.gov/geothermal/]	
CEC [California Environmental Commission]. 2010b. Large solar energy projects.	CEC 2010b
[http://www.energy.ca.gov/siting/solar/index.html]	
CEC [California Environmental Commission]. 2010c. Wind energy in California.	CEC 2010c
[http://www.energy.ca.gov/wind/index.html]	
CEC [Commission for Environmental Cooperation]. 1997. Ecological regions of North	CEC 1997
America: Toward a common perspective. Commission for Environmental Cooperation,	
Montreal, Quebec, Canada. 71pp. Map (scale 1:12,500,000).	
Chalmers, A.T., D. M. Argue, D. A. Gay, M. E. Brigham, C. J. Schmitt, and D. L. Lorenz.	
2010. Mercury Trends in Fish from Rivers and Lakes in the United States, 1969–2005.	
Environmental Monitoring and Assessment 2010, Online: DOI 10.1007/s10661-010-	
1504-6.	
Chambers, J. C. 2005. Fire related restoration issues in woodland and rangeland	Chambers
ecosystems. In J. Agee, compiler. Mixed Fire Regimes Conference. 17-19 November,	2005
Spokane, WA.	2000
Chambers, J. C., and M. Pellant. 2008. Climate change impacts on northwestern and	Chambers and
intermountain United States. Rangelands:29-33.	Pellant 2008

Full Citation	Short Citation (used in text)
Chambers, J. C., and M. J. Wisdom. 2009. Priority research and management issues for the imperiled Great Basin of the western United States. Restoration Ecology 17(5):707-714.	Chambers and Wisdom 2009
Chambers, J. C., B. A. Roundy, R. R. Blank, S. E. Meyer and A. Whittaker. 2007. What makes Great Basin sagebrush ecosystems invasible by Bromus tectorum? Ecological Monographs 77:117-145.	Chambers et al. 2007
Chambers, J. C., B. Bradley, M. Germino, and C. Brown. 2011. Understanding, predicting and managing species invasions in a changing environment – the case of annual brome grasses. Great Basin Consortium Workshop. November 7-9, 2011, Reno, NV.	Chambers et al. 2011
Chambers, J. C., and J. R. Miller, editors. 2004. Great Basin riparian ecosystems. Island Press, Washington, DC. 303 pp.	Chambers and Miller 2004
Chambers, J. C., E. D. McArthur, S. B. Monson, S. E. Meyer, N. L. Shaw, R. J. Tausch, R. R. Blank, S. Bunting, R. R. Miller, M. Pellant, B. A. Roundy, S. C. Walker, and A. Whittaker. 2005. Sagebrush Steppe and Pinyon-Juniper Ecosystems - Effects of Changing Fire Regimes, Increased Fuel Loads, and Invasive Species. Joint Fire Sciences Report Project #00-1-1-03.	Chambers et al. 2005
Chapin, F. S., III, B. H. Walker, R. J. Hobbs, D. U. Hooper, J. H. Lawton, O. E. Sala, and D. Tilman. 1997. Biotic control over the functioning of ecosystems. Science 277:500-504.	Chapin et al. 1997
Chapman, D. W. 1988. Critical review of variables used to define effects of fines in redds of large salmonids. Transactions of the American Fisheries Society 117:1-21.	
Chardon, J. P., F. Adriaensen, and E. Matthysen. 2003. Incorporating landscape elements into a connectivity measure study for the speckled wood butterfly (Pararge aegeria L.). Landscape Ecology 18:561-573.	Chardon et al. 2003
Choi, Y. D. 2007. Restoration ecology to the future: A call for new paradigm. Restoration Ecology 15:351-353.	
Chornesky, E. A., and J. M. Randall. 2003. The threat of invasive alien species to biological diversity: Setting a future course. Annals of the Missouri Botanical Garden 90(1):67-76. URL: <u>http://www.jstor.org/stable/3298527.</u>	Chornesky and Randall 2003
Christensen, N. S., and D. P. Lettenmaier. 2007. A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. Hydrology and Earth System Sciences 11:1417-1434.	Christensen and Lettenmaier 2007
Chung-MacCoubrey, A. L., R. E. Truitt, C. C. Caudill, T. J. Rodhouse, K. M. Irvine, J. R. Siderius, and V. K. Chang. 2008. Mojave Desert Network vital signs monitoring plan. NPS/MOJN/NRR-2008/057. National Park Service, Fort Collins, CO. 146 pp. [http://science.nature.nps.gov/im/monitor/plans/MOJN_MonitoringPlan.pdf]	Chung- MacCoubrey et al. 2008
Clark, D. R., Jr., and R. L. Hothem. 1991. Mammal mortality at Arizona, California, and Nevada gold mines using cyanide extraction. California Fish and Game 77:61-69. CNHP [Colorado Natural Heritage Program]. 2005. Ecological system descriptions and	Clark and Hothem 1991 CNHP 2005
viability guidelines for Colorado. Colorado Natural Heritage Program, Colorado State University, Fort Collins.	2005
Coats, R.N. and C.R. Goldman. 2001. Patterns of Nitrogen Transport in Streams of the Lake Tahoe Basin, California-Nevada. Water Resources Research 37(2): 405–415.	

Full Citation	Short Citation (used in text)
Colautti, R. I., I. A. Grigorovich, and H. J. MacIsaac. 2007. Propagule pressure: A null	Colautii et al.
hypothesis for biological invasions. Biological Invasions 8:1023-1037.	2007
Cole, K., K. Ironside, J. Eischeid, and G. Garfin. 2009. Past and ongoing shifts in Joshua	Cole et al.
tree support future modeled range contraction. [in press]	2009
Collier, M., R.H. Webb, and J.C. Schmidt. 2000. Dams and Rivers: A Primer on the	
Downstream Effects of Dams. U.S. Department of the Interior, U.S. Geological Survey, Circular 1126, Second Revised Printing.	
Collins, J.N. et al. (2008) California rapid assessment method (CRAM) for wetlands.	
Version 5.0.2. San Francisco Estuary Institute. San Francisco, California. Available online at: http://www.cramwetlands.org/	
Comer, P. J., and J. Hak. 2009a. NatureServe landscape condition model. Technical	Comer and
documentation for NatureServe Vista decision support software engineering.	Hak 2009a
NatureServe, Boulder, CO.	1100 20030
Comer, P. J., and J. Hak. 2009b. NatureServe landscape condition model. Internal	Comer and
documentation for NatureServe Vista decision support software engineering, prepared by NatureServe, Boulder, CO.	Hak 2009b
Comer, P., and J. Hak. [2012]. Landscape condition model of the western United States.	Comer and
NatureServe, Boulder, CO. In preparation.	Hak in prep.
Comer, P. J., J. Hak, and G. Mendiguran. 2009. Alternative methods for mapping	Comer et al.
terrestrial ecosystems in the Great Basin of the western United States. Report to the	2009
U.S. Geological Survey, Biological Resources Division. 37 pp.	
Comer, P., and K. Schulz. 2007. Standardized ecological classification for meso-scale	Comer and
mapping in southwest United States. Rangeland Ecology and Management 60 (3)324-	Schulz 2007
335.	
Comer, P., D. Faber-Langendoen, R. Evans, S. Gawler, C. Josse, G. Kittel, S. Menard, M.	Comer et al.
Pyne, M. Reid, K. Schulz, K. Snow, and J. Teague. 2003. Ecological systems of the United	2003
States: A working classification of U.S. terrestrial systems. NatureServe, Arlington, VA.	
Concannon, D. 1978. Plant succession on burned areas of the Artemisia	Concannon
tridentata/Agropyron spicatum habitat type in southeastern Oregon. Master's thesis,	1978
Humbolt State University, Arcata, CA. 101 pp.	
Constantz, J. 1998. Interaction between stream temperature, streamflow, and	Constantz
groundwater exchanges in alpine streams. Water Resources Research 34(7):1609-1615.	1998
Coolbaugh, M. et al., 2005. Geothermal Potential Map of the Great Basin, Western	
United States. Nevada Bureau of Mines and Geology Map 151.	
Coppolillo, P., H. Gomez, F. Maisels, and R. Wallace. 2004. Selection criteria for suites	Coppolillo et
of landscape species as a basis for site-based conservation. Biological Conservation	al. 2004
115:419-430.	
Cordell et al. 2008. Off-highway vehicle recreation in the US (IRIS).	
Courtney, P. A., and M. B. Fenton. 1976. The effects of a small rural garbage dump on	Courtney and
populations of Peromyscus leucopus Rafinesque and other small mammals. Journal of	Fenton 1976
Applied Ecology 13(2):413-422.	
Covich, A. P. 2009. Emerging Climate Change Impacts on Freshwater Resources: A	Covich 2009
Perspective on Transformed Watersheds. A Resources for the Future (RFF) Report,	
June 2009. Online: www.rff.org/rff/documents/RFF-Rpt-Adaptation-Covich.pdf .	

Full Citation	Short Citation (used in text)
Craig, D.J., J.E. Craig, S.R. Abella, and C.H. Vanier. 2010. Factors affecting exotic annual plant cover and richness along roadsides in the eastern Mojave Desert, USA. Journal of Arid Environments 74:702-707.	
Cress, J., R. Sayre, P. Comer, and H. Warner. 2008. Terrestrial ecosystems - bioclimate. U.S. Geological Survey. Scale 1:7,000,000.	Cress et al. 2008
Crother, B. I., J. Boundy, J. A. Campbell, K. de Queiroz, D. R. Frost, R. Highton, J. B. Iverson, P. A. Meylan, T. W. Reeder, M. E. Seidel, J. W. Sites, Jr., T. W. Taggart, S. G. Tilley, and D. B. Wake. 2000 [2001]. Scientific and standard English names of amphibians and reptiles of North America north of Mexico, with comments regarding confidence in our understanding. Society for the Study of Amphibians and Reptiles, Herpetological Circular No. 29. 82 pp.	Crother et al. 2000
Culp, J. M., F. J. Wrona, and R. W. Davies. 1986. Response of stream benthos and drift to fine sediment deposition versus transport. Canadian Journal of Zoology 64:1345-1351.	
Curry, R. A., and W. S. MacNeill. 2004. Population-level responses to sediment during early life inbrook trout Journal of the North American Benthological Society 23(1):140-150.	
Dakheel, A. J., S. R. Radosevich, and M. G. Barbour. 1993. Effect of nitrogen and phosphorus on growth and interference between <i>Bromus tectorum</i> and <i>Taeniatherum asperum</i> . Weed Research 33(5):415-422.	Dakheel et al. 1993
Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson, and P. Pasteris. 2002. A knowledge- based approach to the statistical mapping of climate. Climate Research 22:99-113.	Daly et al. 2002
Danelski, D. 2008. Marines eye 400,000 acres for training expansion at Twentynine Palms. The Press Enterprise. Riverside, CA. September 18, 2008 [http://www.pe.com/localnews/inland/stories/PE_News_Local_S_marineland19.1cec2 11.html]	Danelski 2008
Danelski, D. 2010. Wind farms could interfere with flight patterns, radar systems, military says. The Press Enterprise. Riverside, CA. September 18, 2008 [http://www.pe.com/localnews/stories/PE_News_Local_D_wind01.1d3f22e.html]	Danelski 2010
Daniel, L. 2010. Officials work to resolve wind energy, radar dilemma. American Forces Press Service. July 2, 2010. [http://www.defense.gov/news/newsarticle.aspx?id=59879]	Daniel 2010
Danz, N. P., G. J. Niemi, R. R. Regal, T. Hollenhorst, L. B. Johnson, J. M. Hanowski, R. P. Axler, J. H. Ciborowski, T. Hrabik, V. J. Brady, J. R. Kelly, J. C. Brazner, R. W. Howe, C. A. Johnston, and G. E. Host. 2007. Integrated measures of anthropogenic stress in the U.S. Great Lakes basin. Environmental Management 39:631-647.	Danz et al. 2007
Darnall, N. L., and A. K. Miles. 2009. Dynamics of mercury in eared grebes on Great Salt Lake. Natural Resources and Environmental Issues Volume 15, Article 6. Available at: http://digitalcommons.usu.edu/nrei/vol15/iss1/6.	Darnall and Miles 2009
Das, T., H. G. Hidalgo, M. D. Dettinger, D. R. Cayan, D. W. Pierce, C. Bonfils, T. P. Barnett, G. Bala, and A. Mirin. 2009. Structure and detectability of trends in hydrological measures over the western United States. Journal of Hydrometeorology 10:871:892.	Das et al. 2009

Full Citation	Short Citation
	(used in text)
Daubenmire, R. F. 1970. Steppe vegetation of Washington. Technical Bulletin 62.	Daubenmire
Washington Agricultural Experiment Station, College of Agriculture, Washington State	1970
University, Pullman. 131 pp.	
Davies, K. W., T. J. Svejcar, and J. D. Bates. 2009. Interaction of historical and	Davies et al.
nonhistorical disturbances maintains native plant communities. Ecological Applications	2009
19(6):1536-1545.	
Davies, K. W., C. S. Boyd, J. L. Beck, J. D. Bates, T. J. Svejcar, and M. A. Gregg. 2011.	Davies et al.
Saving the sagebrush sea: An ecosystem conservation plan for big sagebrush plant	2011
communities. Biological Conservation (144):2573-2584.	
Davies, S. P., and S. K. Jackson. 2006. The biological condition gradient: A descriptive	Davies and
model for interpreting change in aquatic ecosystems. Ecological Applications	Jackson 2006
16(4):1251-1266.	
Deacon, J. E., A. E. Williams, C. Deacon Williams, and J. E. Williams. 2007. Fueling	Deacon et al.
population growth in Las Vegas: How large-scale groundwater withdrawal could burn	2007
regional biodiversity. BioScience 57(8):688-698.	
Demarais, S., D. J. Tazik, P. J. Guertin, and E. E. Jorgensen. 1999. Disturbance associated	Demarais et
with military exercises. Pages 385-396 in: L. R. Walker, editor. Ecosystems of disturbed	al. 1999
ground. Elsevier Science, New York.	
Dettinger, M. 2006. A component-resampling approach for estimating probability	Dettinger
distributions from small forecast ensembles. Climatic Change 76:149-168.	2006
Dettinger, M., H. Hidalgo, T. Das, D. Cayan, and N. Knowles. 2009. Projections of	Dettinger et
potential flood regime changes in California. Report CEC-500-2009-050-F by the	al. 2009
California Climate Change Center for the California Energy Commission (CEC) and the	
California Environmental Protection Agency (Cal/EPA).	202
DOE and BLM [U.S. Department of Energy & Bureau of Land Management]. 2008.	DOE and BLM
Programmatic Environmental Impact Statement, designation of energy corridors on	2008
Federal land in the 11 western states. U.S. Department of Energy and Bureau of Land	
Management. DOE/EIS-0386. [http://corridoreis.anl.gov/documents/fpeis/index.cfm]	DOF 1000
DOE [U.S. Department of Energy]. 1996. Final Environmental Impact Statement for the	DOE 1996
Nevada Test Site and off-site location in the State of Nevada. U.S. Department of	
Energy. DOE/EIS-0243. [http://www.globalsecurity.org/wmd/library/report/enviro/eis-	
0243/index.html]	Deceberat
Doescher, P. S., R. F. Miller, S. R. Swanson, and A. H. Winward. 1986. Identification of	Doescher et
the Artemisia tridentata ssp. wyomingensis/Festuca idahoensis habitat type in eastern Oregon. Northwest Science 60(1):55-60.	al. 1986
Doherty, K. E., J. D. Tack, J. S. Evans, and D. E. Naugle. 2010. Mapping breeding	
densities of greater sage-grouse: A tool for rangewide conservation planning. Prepared for the Bureau of Land Management. Interagency Agreement #L10PG00911.	
DOI [Department of Interior]. 2008. Inventory of Onshore Federal Oil and Natural Gas Resources and Restrictions to Their Development. Prepared by the U.S. Departments of	
the Interior, Agriculture and Energy.	
http://www.blm.gov/wo/st/en/prog/energy/oil_and_gas/EPCA_III.html Drevnick, P.E., A.L.C. Shinneman, C.H. Lamborg, D.R. Engstrom, M.H. Bothner, and J.T.	
Oris. 2010. Mercury Flux to Sediments of Lake Tahoe, California–Nevada. Water, Air, &	
Soil Pollution 210: 399-407. DOI 10.1007/s11270-009-0262-y.	
Juir Fundiun 210. 333-407. Dui 10.1007/311270-003-0202-y.	

Full Citation	Short Citation
	(used in text)
Drewitt, A. L., and R. H. W. Langston. 2006. Assessing the impacts of wind farms on	Drewitt and
birds. Ibis 148:29-42.	Langston 2006
Dunham, A. E. 1981. Populations in a fluctuating environment: The comparative	Dunham 1981
population ecology of the iguanid lizards Sceloporus merriami and Urosaurus ornatus.	
University of Michigan Museum of Zoology Miscellaneous Publications (158):1-62.	
Egan, R. S. 1987. A fifth checklist of the lichen-forming, lichenicolous and allied fungi of	
the continental United States and Canada. The Bryologist 90:77-173.	
Egan, R. S. 1989. Changes to the ""Fifth checklist of the lichen-forming, lichenicolous	
and allied fungi of the continental United States and Canada," edition I. The Bryologist 92:68-72.	
Elith, J., and C. Graham. 2009. How do they? Why do they differ? On finding reasons	
for differing performances of species distribution models. Ecography 32:66-77.	
Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. J. Hijmans, F.	Elith et al.
Huettmann, J. R. Leathwick, and A. Lehmann. 2006. Novel methods improve prediction	2006
of species' distributions from occurrence data. Ecography 29:129-151.	
Elith, J., S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee, and C. J. Yates. 2011. A statistical	Elith et al.
explanation of MaxEnt for ecologists. Diversity and Distributions 17:43-57.	2011
Elith, J., and J. Leathwick. 2009. Species distribution models: ecological explanation and	Elith and
prediction across space and time. Annual Review Ecology Evolution and Systematics	Leathwick
40:677-697.	2009
Elith, J., Phillips, S., Hastie, T., Dudík, M., Chee, Y.E., Yates, C., 2011. A statistical	Elith et al.
explanation of MaxEnt for ecologists. Ecology 45, 1372-1381.	2011
Ellis, D. H., C. H. Ellis, and D. P. Mindell. 1991. Raptor responses to low-level jet aircraft	Ellis et al.
and sonic booms. Environmental Pollution 74(1):53-83.	1991
Ellis, K. L. 1984. Behavior of lekking sage-grouse in response to a perched golden eagle.	Ellis 1984
Western Birds 15:37-38.	
Elton, C. S. 1958. The ecology of invasions by plants and animals. Methuen and Co.,	Elton 1958
London.	Encovint 1000
Enserink, M. 1999. Biological invaders sweep in. Science 285(5435):1834-1836.	Enserink 1999
Environmental Systems Research Institute. 2008. ArcGIS 1999-2008.	Environmental
	Systems
	Research
Epps, C. W., D. McCullough, J. D. Wehausen, V. C. Bleich, and J. L. Rechel. 2004. Effects	Institute 2008 Epps et al.
of climate change on population persistence of desert-dwelling mountain sheep in	2004
California. Conservation Biology 18:102-113.	2004
Erman, N. A. 2002. Lessons from a long-term study of springs and spring invertebrates	Erman 2002
(Sierra Nevada, California, USA) and implications for conservation and management. In:	
D. W. Sada and S. E. Sharpe, editors. Proceedings of the meeting on spring-fed	
wetlands: Important scientific and cultural resources of the intermountain region, May	
2002, Las Vegas, NV. Desert Research Institute, Reno, NV.	
Eslinger, David L., H. Jamieson Carter, Ed Dempsey, Margaret VanderWilt, Beverly	
Wilson, and Andrew Meredith. 2005. "The Nonpoint-Source Pollution and Erosion	
Comparison Tool." NOAA Coastal Services Center, Charleston, South Carolina. Accessed	
Nov 2011 at http://www.csc.noaa.gov/nspect/.	
	<u> </u>

Full Citation	Short Citation (used in text)
Esslinger, T. L., and R. S. Egan. 1995. A sixth checklist of the lichen-forming, lichenicolous, and allied fungi of the continental United States and Canada. The Bryologist 98:467-549.	
Faber-Langendoen, D., G. Kudray, C. Nordman, L. Sneddon, L. Vance, E. Byers, J. Rocchio, S. Gawler, G. Kittel, S. Menard, P. Comer, E. Muldavin, M. Schafale, T. Foti, C. Josse, J. Christy. 2008. Ecological Performance Standards for Wetland Mitigation: An Approach Based on Ecological Integrity Assessments. NatureServe, Arlington, VA. + Appendices.	
Faber-Langendoen, D., J. Rocchio, M. Schafale, C. Nordman, M. Pyne, J. Teague, T. Foti, and P. Comer. 2006. Ecological integrity assessment and performance measures for wetland mitigation. Final Report to USEPA, Office of Water and Wetlands. NatureServe, Arlington, VA.	Faber- Langendoen et al. 2006
Faber-Langendoen, D., C. Hedge, M. Kost, S. Thomas, L. Smart, R. Smyth, J. Drake, and S. Menard. 2012. Assessment of wetland ecosystem condition across landscape regions: A multi-metric approach. Part A. Ecological Integrity Assessment overview and field study in Michigan and Indiana. EPA/600/R-12/021a. U.S. Environmental Protection Agency Office of Research and Development, Washington, DC.	Faber- Langendoen et al. 2012
Fagan, W. F., C. M. Kennedy, and P. J. Unmack. 2005. Quantifying rarity, losses, and risks for native fishes of the Lower Colorado River Basin: Implications for conservation listing. Conservation Biology 19(6):1872-1882.	Fagan et al. 2005
Fagre D. B., C. W. Charles, C. D. Allen, C. Birkeland, F. S. Chapin III, P. M. Groffman, G. R. Guntenspergen, A. K. Knapp, A. D. McGuire, P. J. Mulholland, D. P. C. Peters, D. D. Roby, and G. Sugihara. 2009. Thresholds of Climate Change in Ecosystems. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. U.S. Geological Survey, Department of the Interior, Washington, DC, USA.	Fagre et al. 2009
Farig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics 34:487-515.	Farig 2003
Feinsinger, P., E. Spears, and R. Poole. 1981. A simple measure of niche breadth. Ecology 62:27-32.	Feinsinger et al. 1981
Fenn, M. E., R. Haeuber, G. Tonnesen, J. Baron, S. Grossman-Clarke, D. Hope, D. A. Jaffe, S. Copland, L. Geiser, H. M. Rueth, and J. O. Sickman. 2003. Nitrogen emissions, deposition, and monitoring in the western United States. BioScience 53:391-403.	Fenn et al. 2003
Fenn, M.E., E.B. Allen, S.B. Weiss, S. Jovan, L.H. Geiser, G.S. Tonnesen, R.F. Johnson, L.E. Rao, B.S. Gimeno, F. Yuan, T. Meixner, and A. Bytnerowicz. 2010. Nitrogen Critical Loads and Management Alternatives for N-Impacted Ecosystems in California. Journal of Environmental Management 91:2404–2423. DOI 10.1016/j.jenvman.2010.07.034.	
Fenn, M. E., J. S. Baron, E. B. Allen, H. M. Rueth, K. R. Nydick, L. Geiser, W. D. Bowman, J. O. Sickman, T. Meixner, D. W. Johnson, and P. Neitlich. 2003a. Ecological effects of nitrogen deposition in the Western United States. BioScience 53(4):404-420.	Fenn et al. 2003a
Fenn, M. E., R. Haeuber, G. S. Tonnesen, J. S. Baron, S. Grossman-Clarke, D. Hope, D. A. Jaffe, S. Copeland, L. Geiser, H. M. Rueth, and J. O. Sickman. 2003b. Nitrogen emissions, deposition, and monitoring in the western United States. BioScience 53(4):391-403.	Fenn et al. 2003b

Full Citation	Short Citation (used in text)
Fenn, M.E., S. Jovan, F. Yuan, L. Geiser, T. Meixner, and B.S. Gimeno. 2008. Empirical and Simulated Critical Loads for Nitrogen Deposition in California Mixed Conifer Forests. Environmental Pollution 155:492-511. DOI 10.1016/j.envpol.2008.03.019.	
Field, C. B., G. C. Daily, F. W. Davis, S. Gaines, P. A. Matson, J. Melack, and N. L. Miller. 1999. Confronting Climate Change in California: Ecological Impacts on the Golden State. Union of Concerned Scientists, Cambridge, MA, and Ecological Society of America, Washington, DC.	Field et al. 1999
Fielding, A. H., and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38-49.	Fielding and Bell 1997
Fiero, W. 1986. Geology of the Great Basin. University of Nevada Press, Reno, NV. 356 pp.	Fiero 1986
Finch, D. 2012. Climate change in grasslands, shrublands, and deserts of the interior American West: A review and needs assessment. General Technical Report RMRS-GTR- 285. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO. 139 pp.	Finch 2012
Fisher, J. C., Jr. 1978. Studies relating to the accelerated mortality of Atriplex hymenelytra in Death Valley National Monument. Unpublished Masters thesis, University of California, Riverside.	Fisher 1978
Fleishman, E., R. B. Blair, and D. D. Murphy. 2001. Empirical validation of a method for umbrella species selection. Ecological Applications 11(5):1489-1501.	Fleishman et al. 2001
Flint, A. L., and L. E. Flint. 2007. Application of the basin characterization model to estimate in-place recharge and runoff potential in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent areas in Nevada and Utah. U.S. Geological Survey Scientific Investigations Report 2007-5099.	Flint and Flint 2007
Floyd, T., C. S. Elphick, G. Chisholm, K. Mack, R. G. Elston, E. M. Ammon, and J. D. Boone. 2007. Atlas of the Breeding Birds of Nevada. Reno: University of Nevada Press.	
Fordham, D. A., T. M. L. Wigley, and B. W. Brook. 2011. Multimodel climate projections for biodiversity risk assessments. Ecological Applications 21(8):3317-3331.	
Forman, R. T. T., and L. E. Alexander. 1998. Roads and their major ecological effects. Annual Review of Ecology and Systematics 8:629-644.	Forman and Alexander 1998
Franklin, J. F. 1993. Preserving biodiversity: Species, ecosystems, or landscapes? Ecological Applications 3:202-205.	Franklin 1993
Fry, J.,G. Xian, S. Jin, J. Dewitz, C. Homer, L. Yang, C. Barnes, N. Herold, and J. Wickham. 2011. Completion of the 2006 National Land Cover Database for the Conterminous United States. Photogrammetric Engineering and Remote Sensing 77(9):858-864.	Fry et al. 2011
Garland, T. J., and W. G. Bradley. 1984. Effects of a highway on Mojave Desert rodent populations. American Midland Naturalist 111:47-56.	Garland and Bradley 1984
GBBO (Great Basin Bird Observatory). 2010. Nevada Comprehensive Bird Conservation Plan, ver. 1.0. Great Basin Bird Observatory, Reno, NV. Available online at www.gbbo.org/bird_conservation_plan.html	
Gelbard, J. L., and J. Belnap. 2003. Roads as conduits for exotic plants in a semi-arid landscape. Conservation Biology 17:420-432.	Gelbard and Belnap 2003

Full Citation	Short Citation
	(used in text)
Germano, D. J., and D. N. Lawhead. 1986. Species diversity and habitat complexity:	Germano and
Does vegetation organize vertebrate communities in the Great Basin? Great Basin	Lawhead 1986
Naturalist 46:711-719.	
Germano, D. J., R. Hungerford, and M. S. Clark. 1983. Responses of selected wildlife	Germano et
species to the removal of mesquite from desert grassland. Journal of Range	al. 1983
Management 36:309-311.	
Germano, D., and C. R. Hungerford. 1981. Reptile population changes with	Germano and
manipulation of Sonoran Desert shrub. Great Basin Naturalist 41(1):129-138.	Hungerford 1981
Gibson, W. P., C. Daly, T. Kittel, D. Nychka, C. Johns, N. Rosenbloom, A. McNab, and G.	Gibson et al.
Taylor. 2002. Development of a 103-year high-resolution climate data set for the	2002
conterminous United States. Pages 181-183 in: Proceedings of the 13th AMS	
Conference on Applied Climatology, American Meteorological Society, Portland, OR.	
Gleason, H. A. 1926. The individualistic concept of the plant association. Bulletin of the	Gleason 1926
Torrey Botanical Club 53:7-26.	
Gleick, P. H. 2010. Roadmap for sustainable water resources in southwestern North	
America. PNAS 107 (50): 21300–21305. Online:	
www.pnas.org/cgi/doi/10.1073/pnas.1005473107.	
Glick, P., B. A. Stein, and N. A. Edelson, editors. 2011. Scanning the Conservation	Glick et al.
Horizon: A Guide to Climate Change Vulnerability Assessment. National Wildlife	2011
Federation, Washington, DC.	
Gontier, M., U. Mörtberg, and B. Balfors. 2010. Comparing GIS-based habitat models	Gontier et al.
for applications in EIA and SEA. Environmental Impact Assessment Review 30:8-18.	2010
González, C., Wang, O., Strutz, S.E., González-Salazar, C., Sánchez-Cordero, V., Sarkar,	
S., 2010. Climate change and risk of Leishmaniasis in North America: predictions from	
ecological niche models of vector and reservoir species. PLoS neglected tropical	
diseases 4, 1169-1180.	
Gonzalez, P., R. P. Neilson, J. M. Lenihan, and R. J. Drapek. 2010. Global patterns in the	
vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecology	
and Biogeography 19:755-768.	
Goodrich, S. 1999. Multiple use management based on diversity of capabilities and	Goodrich
values within pinyon-juniper woodlands. Pages 164-171 in: S. B. Monsen and R.	1999
Stevens, compilers. Proceedings RMRS-P-9. Ecology and management of pinyon-	
juniper communities within the Interior West: Sustaining and restoring a diverse	
ecosystem, 1997 September 15-18, Provo, UT. USDA Forest Service, Rocky Mountain	
Research Station, Ogden, UT.	
Goodrich, S., and D. Rooks. 1999. Control of weeds at a pinyon-juniper site by seeding	Goodrich and
grasses. Pages 403-407 in: S. B. Monsen and R. Stevens, compilers. Proceedings RMRS-	Rooks 1999
P-9. Ecology and management of pinyon-juniper communities within the Interior West:	
Sustaining and restoring a diverse ecosystem, 1997 September 15-18, Provo, UT. USDA	
Forest Service, Rocky Mountain Research Station, Ogden, UT.	

Full Citation	Short Citation (used in text)
Gottfried, G. J., T. W. Swetnam, C. D. Allen, et al. 1995. Pinyon-juniper woodlands. Pages 95-132 in: D. M. Finch and J. A. Tainter, editors. Ecology, diversity, and sustainability of the Middle Rio Grande Basin. General Technical Report RM-GTR-268. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO.	Gottfried et al. 1995
Graf, W. G. 1999. Dam nation: A geographic census of American dams and their large- scale hydrologic impacts. Water Resources Research 35:1305-1311.	Graf 1999
Graf, W. G. 2006. Downstream Hydrologic and Geomorphic Effects of Large Dams on American Rivers. Geomorphology 79 (2006):336-360. DOI 10.1016/j.geomorph.2006.06.022.	
Grayson, D. K. 1993. The desert's past: A natural prehistory of the Great Basin. Smithsonian Institution Press, Washington, DC. 356 pp. Great Basin Water Network (GBWN). 2011. Response to the Clark, Lincoln and White	Grayson 1993
Pine Counties Groundwater Development Project DEIS. Gregory, S.V., F.J. Swanson, W.A. McKee, and K.W. Cummins. 1991. An Ecosystem Perspective of Riparian Zones. BioScience 41(8): 540-551.	
Grismer, L. L. 2002. Amphibians and reptiles of Baja California including its Pacific islands and islands in the Sea of Cortes. University of California Press, Berkeley. xiii + 399 pp.	Grismer 2002
Gross, J. E. 2005. Developing conceptual models for monitoring programs. National Park Service, Inventory and Monitoring Program, Fort Collins, CO. [http://science.nature.nps.gov/im/monitor/docs/Conceptual_Modelling.pdf]	Gross 2005
Groves, C. R. 2003. Drafting a conservation blueprint: A practitioner's guide to planning for biodiversity. Island Press, Washington, DC.	Groves 2003
Gucker, C. L. 2006. <i>Yucca brevifolia</i> . In: Fire Effects Information System [Online]. USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). [http://www.fs.fed.us/database/feis/] (accessed 2 January 2011).	Gucker 2006
Guisan, A., and W. Thuiller. 2005. Predicting species distribution: Offering more than simple habitat models. Ecology Letters 8:993-1009.	Guisan and Thuiller 2005
Hageman, K. J., S. L. Simonich, D. H. Campbell, G. R. Wilson, and D. H. Landers. 2006. Atmospheric deposition of current-use and historic-use pesticides in snow at national parks in the western United States. Environmental Science & Technology 40(10):3174- 3180.	Hageman et al. 2006
 Hagen, C. A., B. E. Jamison, K. M. Giesen, and T. Z. Riley. 2004. Guidelines for managing lesser prairie-chicken populations and their habitats. Wildlife Society Bulletin 32(1):69-82. Hak, J., and P. Comer. 2009. Great Basin Integrated Landscape Monitoring Analysis: 30 	Hagen et al. 2004
Years of Change. Report to U.S. Geological Survey, Biological Resources Division 19 p.	
Hall, R. O., M. F. Dybdahl, and M. C. Vander Loop. 2006. Extremely high secondary production of introduced snails in rivers. Ecological Applications 16(3):1121-1131.	Hall et al. 2006
Hamerlynck, E. P., J. R. McAuliffe, E. V. McDonald, and S. D. Smith. 2002. Ecological response of two Mojave Desert shrubs to soil horizon development and soil water dynamics. Ecology 83:768-779.	Hamerlynck et al. 2002

Full Citation	Short Citation (used in text)
Hamilton, H., S. Auer, M. Padron, M. Fernandez, O. Alvarez, and S. Christensen. In prep. Climate space trends in the Greater Yellowstone Ecosystem: Implications for climate adaptation planning.	Hamilton et al. in prep
Hansen, A. J., R. L. Knight, J. M. Marzluff, S. Powell, K. Brown, P. H. Gude, and K. Jones. 2005. Impacts of exurban development on biodiversity: Patterns, mechanisms, and research needs. Ecological Applications 15:1893-1905.	Hansen et al. 2005
Harju, T. K. 2007. Modeling regional distribution and local food web dynamics of the New Zealand mud snail (<i>Potamopyrgus antipodarum</i>). M.S. thesis, Utah State University, Logan. 88 pp.	Harju 2007
Harper, M. P., and B. L. Peckarsky. 2006. Emergence cues of a mayfly in a high-altitude stream ecosystem: Potential response to climate change. Ecological Applications 16(2):612-621.	Harper and Peckarsky 2006
Harris, G. A. 1967. Some competitive relationships between Agropyron spicatum and Bromus tectorum. Ecological Monographs 37(2):89-111.	Harris 1967
Harris, G. A., and C. J. Goebel. 1976. Factors of plant competition in seeding Pacific Northwest bunchgrass ranges. Bulletin 820. Washington State University, College of Agriculture Research Center, Pullman, WA. 27 pp.	Harris and Goebel 1976
Hauer, F. R., B. J. Cook, M. C. Gilbert, E. J. Clairain Jr., and R. D. Smith. 2002. A regional guidebook for applying the hydrogeomorphic approach to assessing wetland functions of riverine floodplains in the northern Rocky Mountains. ERDC/EL TR-02-21. U.S.Army Corps of Engineers, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS.	Hauer et al. 2002
He, Z., Z. Wang, C. J. Suen, and X. Ma. 2009. Climate change impacts on water availability in the Upper San Joaquin River watershed, California. [in review] [http://www.csufresno.edu/ees/Faculty&Staff/Wang/CV_Zhi_Wang.pdf]	He et al. 2009
Heath, J. E. 1965. Temperature regulation and diurnal activity in horned lizards. University of California Publications in Zoology 64 (3):97-136.	Heath 1965
Heilweil, V.M., and L. E. Brooks, L.E., editors. 2011. Conceptual Model of the Great Basin Carbonate and Alluvial Aquifer System. U.S. Department of the Interior, U.S. Geological Survey, Scientific Investigations Report 2010-5193.	
Heimann, D. C., and M. J. Roell. 2000 Sediment loads and accumulation in a small riparian wetland system in northern Missouri. Wetlands 20(2):219-231.	
 Henny, C. J., R. J. Hallock, and E. F. Hill. 1994. Cyanide and migratory birds at gold mines in Nevada, USA. Ecotoxicology 3:45-58. Henshaw, P.C. and Booth, D.B., 2000. Natural Restabilization of Stream Channels in Nevada and St	Henny et al. 1994
Urban Watersheds. Journal of the American Water Resources Association 36(6):1219- 1236.	
Hershler, R., and D. W. Sada. 2002. Biogeography of Great Basin aquatic snails of the genus Pyrgulopsis. Smithsonian Contributions to the Earth Sciences 33:255-276.	Hershler and Sada 2002
Hidy, G. M., and H. E. Klieforth. 1990. Atmospheric processes affecting the climate of the Great Basin. Pages 17-46 in: C. B. Osmond, L. F. Pitelka, and G. M. Hidy, editors. Plant biology of the Basin and Range. Springer-Verlag, New York, NY. 375 pp.	Hidy and Klieforth 1990
Hironaka, M., M. A. Fosberg, and A. H. Winward. 1983. Sagebrush-grass habitat types of southern Idaho. Forestry, Wildlife, and Range Experiment Station Bulletin No. 15, University of Idaho, Moscow. 44 pp.	Hironaka et al. 1983

Full Citation	Short Citation (used in text)
Holland, V. L., and D. J. Keil. 1995. California vegetation. Kendall/Hunt Publishing	Holland and
Company, Dubuque, IA. 516 pp.	Keil 1995
Hostetler, S. W., J. R. Alder, A. M. and Allan. 2011. Dynamically downscaled climate	Hostetler et
simulations over North America: Methods, evaluation and supporting documentation	al. 2011
for users: U.S. Geological Survey Open-File Report 2011-1238. 64 pp.	
Houlahan, Jeff E. and Findlay, C. Scott. 2004. Effect of Invasive Plant Species on	
Temperate Wetland Plant Diversity. Conservation Biology v18, n4, pp. 1132-1138	
Hull, A. C., Jr., and J. F. Pechanec. 1947. Cheatgrassa challenge to range research.	Hull and
Journal of Forestry 45(8):555-564.	Pechanec
	1947
Hultine, K. R., S. E. Bush, A. G. West, and J. R. Ehleringer. 2007. Population structure,	Hultine et al.
physiology and ecohydrological impacts of dioecious riparian tree species of western	2007
North America. Oecologia 154(1):85-93. Online: DOI 10.1007/s00442-007-0813-0.	
Hunsaker, C. A. Bytnerowicz, J. Auman, and R. Cisneros. 2007. Air Pollution and	
Watershed Research in the Central Sierra Nevada of California: Nitrogen and Ozone.	
Proceedings: Impacts of Air Pollution and Climate Change on Forest Ecosystems. The	
Scientific World 7(S1), 206–221. DOI 10.1100/tsw.2007.82.	
Hunter, M. L., Jr. 1990. Wildlife, forests, and forestry: Principles of managing forests for	Hunter 1990
biological diversity. Prentice Hall Career & Technology, Englewood Cliffs, NJ. 370 pp.	
Hunter, R. 1991. Bromus invasions on the Nevada Test Site: Present status of Bromus	Hunter 1991
rubens and Bromus tectorum with notes on their relationship to disturbance and	
altitude. Great Basin Naturalist 51:176-182.	
Hunter, R., F. B. Turner, R. G. Lindberg, and KB. Hunter. 1987. Effects of land clearing	Hunter et al.
on bordering winter annual populations in the Mohave Desert. Great Basin Naturalist	1987
47:234-238.	
Ingelfinger, F., and S. Anderson. 2004. Passerine response to roads associated with	Ingelfinger
natural gas extraction in a sagebrush steppe habitat. Western North American	and Anderson
Naturalist 64(3):385-395.	2004
Ingersoll, G.P., M.A. Mast, D.H. Campbell, D.W. Clow, L. Nanus, and J.T. Turk. 2008.	
Trends in Snowpack Chemistry and Comparison to National Atmospheric Deposition	
Program Results for the Rocky Mountains, U.S., 1993–2004. Atmospheric Environment	
42: 6098–6113. DOI 10.1016/j.atmosenv.2008.02.030	
IPCC [Intergovernmental Panel on Climate Change]. 2000. Emissions Scenarios. A	IPCC 2000
Special Report of Working Group II of the Intergovernmental Panel on Climate Change.	
Cambridge University Press, Cambridge.	
IPCC [Intergovernmental Panel on Climate Change]. 2007a. Climate Change 2007:	IPCC 2007a
Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment	
Report of the Intergovernmental Panel on Climate Change [Core Writing Team: R. K.	
Pachauri and A. Reisinger, editors]. IPCC, Geneva, Switzerland. 104 pp.	
IPCC [Intergovernmental Panel on Climate Change]. 2007b. Climate Change 2007:	IPCC 2007b
Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth	
Assessment Report of the Intergovernmental. Panel on Climate Change, Cambridge	
University Press, Cambridge, UK.	

Full Citation	Short Citation (used in text)
Isaak, D. J., C. H. Luce, B. E. Rieman, D. E. Nagel, E. E. Peterson, D. L. Horan, S. Parkes, and G. L. Chandler. 2010. Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network. Ecological Applications 20(5):1350-1371.	Isaak et al. 2010
Isaak, D. J., S. Wollrab, D. Horan, and G. Chandler. 2011. Climate change effects on stream and river temperatures across the northwest U.S. from 1980-2009 and implications for salmonid fishes. Climatic Change 0165-0009:1-26. DOI 10.1007/s10584-011-0326-z.	Isaak et al. 2011
Ito, T. Y., N. Miura, B. Lhagvasuren, D. Enkhbileg, S. Takatsuki, A. Tsunekawa, and Z. Jiang. 2005. Preliminary evidence of barrier effect of a railroad on the migration of Mongolian gazelles. Conservation Biology 19(3):945-948.	Ito et al. 2005
Jackson, S. T., J. L. Betancourt, R. K. Booth, and S. T. Gray. 2009. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions. Proceedings of the National Academy of Sciences 106, supplement 2:19685-19692. Online: www.pnas.org_cgi_doi_10.1073_pnas.0901644106.	Jackson et al. 2009
Jager, H. I., W. Van Winkle, and B. D. Holcomb. 1999. Would hydrologic climate changes in Sierra Nevada streams influence trout persistence? Transactions of the American Fisheries Society 128:222-240.	Jager et al. 1999
Janicki, A. 2008. Estimates Of Total Nitrogen, Total Phosphorus, Total Suspended Solids, And Biochemical Oxygen Demand Loadings To Tampa Bay, Florida: 2004-2007. Prepared for: Florida Department of Environmental Protection 2600 Blair Stone Road, MS 3500 Tallahassee, FL 32399	
Jenkins, R. E. 1976. Maintenance of natural diversity: Approach and recommendations. Pages 441-451 in: K. Sabol, editor. Transactions of the forty-first North American Wildlife and Natural Resources conference. March 21-25, 1976. Washington, DC.	Jenkins 1976
Jennings, B. W. 1991. Desert tortoise carcass surveys along State Highways 58 and 395, San Bernardino Co., California. Prepared for the USDI Bureau of Land Management, Riverside, CA.	Jennings 1991
Jiguet, F., Brotons, L., Devictor, V., 2011. Community responses to extreme climatic conditions. Current Zoology 57, 406-413.	Jiguet et al. 2011
Jimenez-Valverde, A., Lobo, J.M., 2007. Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecologica 31, 361-369.	Jimenez- Valverde and Lobo 2007
Johansen, J. R., and L. St. Clair. 1986. Cryptogamic soil crusts: Recovery from grazing near Camp Floyd State Park, Utah. Great Basin Naturalist 45(4):632-640.	Johansen and St. Clair 1986
Johnson, K. A. 2000. Artemisia tridentata ssp. vaseyana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). [http://www.fs.fed.us/database/feis/] (accessed 2 January 2011).	Johnson 1999
Johnson, K. N., and M. Herring. 1999. Understanding bioregional assessments. In: K. N. Johnson, F. Swanson, M. Herring, and S. Greene, editors. Bioregional assessments: Science at the crossroads of management and policy. Island Press, Washington, DC.	Johnson and Herring 1999

Full Citation	Short Citation (used in text)
Johnson, T. D., T. E. Kolb, and A. L. Medina. 2009. Do riparian plant community characteristics differ between <i>Tamarix</i> (L.) invaded and non-invaded sites on the upper Verde River, Arizona? Biological Invasions 12(8):2487-2497. DOI 10.1007/s10530-009-9658-2.	Johnson et al. 2009
Jones, B. F., D. L. Naftz, R. J. Spencer, and C. G. Oviatt. 2009. Geochemical evolution of Great Salt Lake, Utah, USA. Aquatic Geochemistry 15:95-121. DOI 10.1007/s10498-008-9047-y.	Jones et al. 2009
Jones, M. E., T. D. Paine, M. E. Fenn, and M. A. Poth. 2004. Influence of ozone and nitrogen deposition on bark beetle activity under drought conditions. Forest Ecology and Management 200:67-76. DOI 10.1016/j.foreco.2004.06.003.	
Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant, and I. J. Schlosser. 1986. Assessment of biological integrity in running waters: A method and its rationale. Illinois Natural History Survey Special Publication 5.	Karr et al. 1986
Kartesz, J. T. 1999. A synonymized checklist and atlas with biological attributes for the vascular flora of the United States, Canada, and Greenland. First edition. In: J. T. Kartesz and C. A. Meacham. Synthesis of the North American Flora, Version 1.0. North Carolina Botanical Garden, Chapel Hill, NC.	
Keane, R. E., T. L. Frescino, M. C. Reeves, and J. Long. 2006. Mapping wildland fuels across large regions for the LANDFIRE prototype project. Pages 367-396 in: M. G. Rollins and C. Frame, editors. The LANDFIRE Prototype Project: Nationally consistent and locally relevant geospatial data for wildland fire management. General Technical Report RMRS-GTR-175. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO.	Keane et al. 2006
Keeler-Wolf, T. 2007. Mojave Desert scrub vegetation. Pages 609-656 in: M. G. Barbour, T. Keeler-Wolf, and A. A. Schoenherr, editors. 2007. Terrestrial vegetation of California. Third edition. University of California Press, Berkeley.	Keeler-Wolf 2007
Keller, R., M. J. Drake, and D. M. Lodge. 2007. Fecundity as a basis for risk assessment of nonindigenous freshwater molluscs. Conservation Biology 21(1):191-200.	Keller et al. 2007
Kintsch, J. A., and D. L. Urban. 2002. Focal species, community representation, and physical proxies as conservation strategies: A case study in the Amphibolite Mountains, North Carolina, U.S.A. Conservation Biology 16:936-947.	Kintsch and Urban 2002
Knapp, P. A. 1992. Soil loosening process following the abandonment of two arid western Nevada townsites. Great Basin Naturalist 52(2):149-154.	Knapp 1992
Knapp, P. A. 1996. Cheatgrass (Bromus tectorum L.) dominance in the Great Basin Desert. Global Environmental Change 6:37-52.	Knapp 1996
Knick, S. T., and J. T. Rotenberry. 1995. Landscape characteristics of fragmented shrub steppe habitats and breeding passerine birds. Conservation Biology 9:1059-1071.	Knick and Rotenberry 1995
Knick, S. T., and S. E. Hanser. 2011. Connecting pattern and process in greater sage- grouse populations and sagebrush landscapes. In S. T. Knick and J. W. Connelly, editors. Greater sage-grouse: Ecology and conservation of a landscape species and its habitats. Studies in Avian Biology Series (volume 38), University of California Press, Berkeley.	Knick and Hanser 2011
Knight, D. H. 1994. Mountains and plains: Ecology of Wyoming landscapes. Yale University Press, New Haven, MA. 338 pp.	Knight 1994

Full Citation	Short Citation (used in text)
Knight, D. H., G. P. Jones, Y. Akashi, and R. W. Myers. 1987. Vegetation ecology in the Bighorn Canyon National Recreation Area. Unpublished report prepared for the USDI National Park Service and University of Wyoming-National Park Service Research.	Knight et al. 1987
Knight, R. L., H. A. Knight, and R. J. Camp. 1993. Raven populations and land-use patterns in the Mojave Desert, California. Wildlife Society Bulletin 21:469-471.	
Komarkova, V., R. R. Alexander, and B. C. Johnston. 1988. Forest vegetation of the Gunnison and parts of the Uncompany national forests: A preliminary habitat type classification. General Technical Report RM-163. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO. 65 pp.	Komorkova et al. 1988
Krausman, P. R., M. C. Wallace, C. L. Hayes, and D. W. DeYoung. 1998. Effects of jet aircraft on mountain sheep. The Journal of Wildlife Management 62(4):1246-1254.	Krausman et al. 1998
Kremen, C., A. Cameron, A. Moilanen, S. J. Phillips, C. D. Thomas, H. Beentje, J. Dransfield, B. L. Fisher, F. Glaw, T. C. Good, G. J. Harper, R. J. Hijmans, D. C. Lees, E. Louis, Jr., R. A. Nussbaum, C. J. Raxworthy, A. Razafimpahanana, G. E. Schatz, M. Vences, D. R. Vieites, P. C. Wright, and M. L. Zjhra. 2008. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320:222-226.	Kremen et al. 2008
Krzysik, A. J. 1997. Desert tortoise populations in the Mojave Desert and a half-century of military training activities. Proceedings of the Conservation, Restoration, and Management of Tortoises and Turtles - An International Conference. 1997:61-73.	Krzysik 1997
Lambeck, R. J. 1997. Focal species: A multi-species umbrella for nature conservation. Conservation Biology 11:849-856.	Lambeck 1997
Lawler, J. J., D. White, J. C. Sifneos, and L. L. Master. 2003. Rare species and the use of indicator groups for conservation planning. Conservation Biology 17:875-882.	Lawler et al. 2003
Lee, G. F., and A. Jones-Lee. 2005a. Municipal solid waste landfills - water quality issues. Pages 63-169 in: Water Encyclopedia: Water Quality and Resource Development. Wiley, Hoboken, NJ.	Lee and Jones- Lee 2005a
Lee, G. F., and A. Jones-Lee. 2005b. Monitoring the impacts of landfills during their active life. Report of G. Fred Lee & Associates, El Macero, CA.	Lee and Jones- Lee 2005b
Lee, G. F., and A. Jones-Lee. 2010. Flawed technology of landfill of municipal solid waste. [http://www.gfredlee.com/Landfills/SubtitleDFlawedTechnPap.pdf]	Lee and Jones- Lee 2010
Lee, T. C. K., F. Zwiers, X. Zhang, and M. Tsao. 2006. Evidence of decadal climate prediction skill resulting from changes in anthropogenic forcing. Journal of Climate 19:5305-5318.	Lee et al. 2006
Leu, M., S. E. Hanser, and S. T. Knick. 2008. The human footprint in the West: A large- scale analysis of anthropogenic impacts. Ecological Applications 18(5):1119-1139.	Leu et al. 2008
Lewis, M. E. 1971. Flora and major plant communities of the Ruby-East Humboldt Mountains with special emphasis on Lamoille Canyon. Unpublished report compiled for USDA Forest Service, Region IV, Ogden, UT. 62 pp.	Lewis 1971
Lin, Jeff P. 2004. Review of Published Export Coefficient and Event Mean Concentration (EMC) Data. Wetlands Regulatory Assistance Program ERDC TN-WRAP-04-3	
Link, S. O., W. J. Waugh, J. L. Downs, et al. 1994. Effects of coppice dune topography and vegetation on soil water dynamics in a cold-desert ecosystem. Journal of Arid Environments 27:265-278.	Link et al. 1994

Full Citation	Short Citation
	(used in text)
Linsdale, J. M. 1938. Environmental responses of vertebrates in the Great Basin. American Midland Naturalist 19:1-206.	Linsdale 1938
Linsdale, J. M. 1940. Amphibians and reptiles in Nevada. Proceedings og the American	Linsdale 1940
Academy of Arts and Sciences 73:197-257.	
Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson. 2005. Selecting thresholds of	Liu et al. 2005
occurrence in the prediction of species distributions. Ecography 28:385-393.	
Lobo, J.M., Baselga, A., Hortal, J., Jiménez-Valverde, A., Gómez, J.F., 2007. How does the knowledge about the spatial distribution of Iberian dung beetle species accumulate over time? Diversity and Distributions 13, 772-780.	Lobo et al. 2007
Lockwood, J. L., and M. L. McKinney. 2001. Biotic homogenization. Dordrecht, The Netherlands: Kluwer.	Lockwood and McKinney 2001
Lockwood, J. L., P. Cassey, and T. Blackburn. 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution 20:223-228.	Lockwood et al. 2005
Lodge, D. M. 2001. Responses of lake biodiversity to global changes. In: O. E. Sala, F. S. Chapin, and E. Huber-Sannwald, editors. Future scenarios of global change. Springer-Verlag, Berlin.	Lodge 2001
Lovich, J. E., and D. Bainbridge. 1999. Anthropogenic degradation of the southern California desert ecosystem and prospects for natural recovery and restoration. Environmental Management 24:309-326.	Lovich and Bainbridge 1999
Lowe, P. N., W. K. Lauenroth, and I. C. Burke. 2002. Effects of nitrogen availability on the growth of native grasses exotic weeds. Journal of Range Management 55(1):94-98.	Lowe et al. 2002
Lowry, J., R. D. Ramsey, K. Thomas, D. Schrupp, T. Sajwaj, J. Kirby, E. Waller, S. Schrader, S. Falzarano, L. Langs, G. Manis, C. Wallace, K. Schulz, P. Comer, K. Pohs, W. Rieth, C. Velasquez, B. Wolk, W. Kepner, K. Boykin, L. O'Brian, D. Bradford, B. Thompson, and J. Prior-Magee. 2007. Mapping moderate-scale land-cover over very large geographic areas within a collaborative framework: A case study of the Southwest Regional Gap Analysis Project (SWReGAP). Remote Sensing and Environment 108:59-73.	Lowry et al. 2007
Lyman, S.N. and M.S. Gustin. 2008. Speciation of Atmospheric Mercury at Two Sites in Northern Nevada, USA. Atmospheric Environment 42: 927–939. DOI 10.1016/j.atmosenv.2007.10.012.	
Lyman, S.N., M.S. Gustin, E.M. Prestbo, and F.J. Marsik. 2007. Estimation of Dry Deposition of Atmospheric Mercury in Nevada by Direct and Indirect Methods. Environmental Science & Technology 41: 1970-1976. DOI 10.1021/es062323m.	
MacArthur, R. H. and E. O. Wilson. 1967. The Theory of Island Biogeography. Princeton University Press. 203 pp.	
Mack, R. N. 1981. Invasion of <i>Bromus tectorum</i> L. into western North America: An ecological chronicle. Agro-Ecosystems 7:145-165.	Mack 1981
Mack, R., D. Simberloff, W. M. Lonsdale, H. Evans, M. Clout, and F. Bazzaz. 2000. Biotic invasions: Causes, epidemiology, global consequences and control. Ecological Applications 10(3):689-710.	Mack et al. 2000
MacMahon, J. A. 1988. Warm deserts. Pages 232-264 in M. G. Barbour and W. D. Billings, editors. North American terrestrial vegetation. Cambridge University Press, New York.	MacMahon 1988

Full Citation	Short Citation (used in text)
Major, R. E., and H. Parsons. 2010. What do museum specimens tell us about the impact of urbanisation? A comparison of the recent and historical bird communities of Sydney. Emu 110(1):92-103.	Major and Parsons 2010
Manning, S. J. 1999. The effects of water table decline on groundwater-dependent Great Basin plant communities in the Owens Valley, CA. Pages 231-237 in: E. D. McArthur, W. K. Ostler, and C. L. Wambolt, compilers. Proceedings: Shrubland Ecotones; 1998 August 12-14; Ephraim, UT. USDA Forest Service Proceedings RMRS-P- 11. USDA Forest Service, Rocky Mountain Research Station, For Collins, CO.	Manning 1999
Margules, C. R., and R. L. Pressey. 2000. Systematic conservation planning. Nature 405:243-253.	Margules and Pressey 2000
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K., Thuiller, W., 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15, 59-69.	Marmion et al. 2009
Marshall, K. A. 1995. <i>Larrea tridentata</i> . In: Fire Effects Information System [Online]. USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). [http://www.fs.fed.us/database/feis/] (accessed 2 January 2011).	Marshall 1995
Martin, J., M. C. Runge, J. D. Nichols, B. C. Lubow, and W. L. Kendall. 2009. Structured decision making as a conceptual framework to identify thresholds for conservation and management. Ecological Applications 19(5):1079-1090.	Martin et al. 2009
Martin, T. E. 2007. Climate correlates of 20 years of trophic changes in a high-elevation riparian system. Ecology 88(2):367-380.	Martin 2007
Martinez-Meyer, E. 2005. Climate change and biodiversity: Some considerations in forecasting shifts in species' potential distributions. Biodiversity Informatics 2:42-55.	Martinez- Meyer 2005
Mast, M. A., D. J. Manthorne, and D. A. Roth. 2010. Historical deposition of mercury and selected trace elements to high-elevation national parks in the western U.S. inferred from lake-sediment cores. Atmospheric Environment 44:2577-2586. DOI 10.1016/j.atmosenv.2010.04.024.	
Maurer, E. P., L. Brekke, T. Pruitt, and P. B. Duffy. 2007. Fine-resolution climate projections enhance regional climate change impact studies. Eos, Transactions, American Geophysical Union 88(47):504. [http://www.agu.org/eos_elec/2007/47-504.html]	Maurer et al. 2007
McCabe, G. J., and D. M. Wolock. 2009. Recent declines in western U.S. snowpack in the context of twentieth-century climate variability. Earth Interactions 13(12):1-15.	McCabe and Wolock 2009
McKinney, M. L., and J. L. Lockwood. 1999. Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14:450-453.	McKinney and Lockwood 1999
McKinney, T. S., and D. W. Anning. 2009. Geospatial data to support analysis of water- quality conditions in basin-fill aquifers in the southwestern United States. U.S. Geological Survey Scientific Investigations Report 2008-5239. [http:// pubs.er.usgs.gov/sir/2008/5239]	McKinney and Anning 2009
McNab, W. H., D. T. Cleland, J. A. Freeouf, J. E. Keys, Jr., G. J. Nowacki, and C. A. Carpenter, compilers. 2007. Description of ecological subregions: Sections of the conterminous United States [CD-ROM]. General Technical Report WO-76B. USDA Forest Service, Washington, DC. 80 pp.	McNab et al. 2007

Full Citation	Short Citation (used in text)
McNaughton, C. 2008. Mercury Concentrations in Fish: Implications of Dissolved Organic Matter (DOM) on Methylation Rates in Aquatic Systems. Utah Department of Health, Mercury Workgroup Meeting Presentation, January 31, 2008.	
McRae, B. H. 2006. Isolation by resistance. Evolution 60:1551-1561.	McRae 2006
McRae, B. H., and P. Beier. 2007. Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences of the USA 104(50):19885-19890.	McRae and Beier 2007
McRae, B. H., and V. B. Shah. 2009. Circuitscape user's guide. The University of California, Santa Barbara. [http://www.circuitscape.org]	McRae and Shah 2009
McRae, B. H., B. G. Dickson, T. H. Keitt, and V. B. Shah. 2008. Using circuit theory to model connectivity in ecology and conservation. Ecology 10:2712-2724.	McRae et al. 2008
McRae, B. H. 2006. Isolation by resistance. Evolution 60:1551-1561	Medica et al.
Medica, P. A., F. B. Turner, and D. D. Smith. 1973. Effects of radiation on a fenced population of horned lizards (<i>Phrynosoma platyrhinos</i>) in southern Nevada. Journal of Herpetology 7:79-85.	1973
Medina, A., and A. C. Martin. 1988. Stream channel and vegetation changes in section of McKnight Creek, New Mexico. Great Basin Naturalist 48(3):373-381.	Medina and Martin 1988
Meinke, C. W., S. T. Knick, and D. A. Pyke. 2009. A spatial model to prioritize sagebrush landscapes in the Intermountain West (U.S.A.) for restoration. Restoration Ecology 17:652-659	Meinke et al. 2009
Meinzer, F. C., C. S. Wisdom, A. Gonzales-Coloma, P. W. Rundel, and L. M. Shultz. 1990. Effects of leaf resin on stomatal behavior and gas exchange of Larrea tridentata. Functional Ecology 4:579-584.	Meinzer et al. 19990
Melack, J. M., J. Dozier, C. R. Goldman, D. Greenland, A. M. Milner, and R. J. Naiman. 1997. Effects of climate change on inland waters of the Pacific coastal mountains and western Great Basin of North America. Hydrological Processes 11:971-992.	Melack et al. 1997
Mensing, S., S. Livinston, and P. Barker. 2006. Long-term fire history in great basin sagebrush reconstructed from macroscopic charcoal in spring sediments, Newark Valley, Nevada. Western North American Naturalist 66:64-77.	
Merritt, D.M., M.L. Scott, N.L. Poff, G.T. Auble, and D.A. Lytle. 2010. Theory, Methods and Tools for Determining Environmental Flows for Riparian Vegetation: Riparian Vegetation-Flow Response Guilds. Freshwater Biology 55:206-225. DOI 10.1111/j.1365- 2427.2009.02206.x.	
Middendorf, G. A., III, and W. C. Sherbrooke. 1992. Canid elicitation of blood-squirting in a horned lizard (Phrynosoma cornutum). Copea 1992:519-527.	Middendorf and Sherbrooke 1992
Mihlmester, P. E., J. B. Thomasian, and M. R. Riches. 1980. Environmental and health safety issues. Pages 731-762 in: W. C. Dickinson and P. N. Cheremisinoff, editors. Solar Energy Technology Handbook. Marcel Dekker, New York	Mihlmester et al. 1980
Milchunas, D. G, K. A. Schulz, and R. B. Shaw. 2000. Plant community structure in relation to long-term disturbance by mechanized military maneuvers in a semiarid region. Environmental Management 25:525-539.	Milchunas et al. 2000
Millar, C. I., and W. Wolfenden. 1999. The role of climate change in interpreting historic variability. Ecological Applications 9:1207-1216.	

Full Citation	Short Citation (used in text)
Miller, D. M., S. P. Finn, A. Woodward, A. Torregrosa, M. E. Miller, D. R. Bedford, and A. M. Brasher. 2010. Conceptual ecological models to guide integrated landscape monitoring of the Great Basin. U.S. Geological Survey, Scientific Investigations Report 2010-5133. Reston, VA.	Miller et al. 2010
Miller, M. E. 2005. The structure and functioning of dryland ecosystems: Conceptual models to inform long-term ecological monitoring. U.S. Geological Survey, Scientific Investigations Report 2005-5197. 73 pp.	Miller 2005
Miller, R. F., and J. A. Rose. 1999. Fire history and western juniper encroachment in sagebrush steppe. Journal of Range Management 52:550-559.	
Miller, R. F., and P. E. Wiegand. 1994. Holocene changes in Pinyon-juniper woodlands. Bioscience 44:465-474.	Miller and Wiegand 1994
Miller, R. F., S. T. Knick, D. A. Pyke, C. W. Meinke, S. E. Hanser, M. J. Wisdom, and A. L. Hild. 2011. Characteristics of sagebrush habitats and limitations to long-term conservation. Pages 145-184 in: S. T. Knick and J. W. Connelly, editors. Greater sage-grouse: Ecology and conservation of a landscape species and its habitats. Studies in Avian Biology (Volume 38), University of California Press, Berkeley.	Miller et al. 2011
Milly, P. C. D., J. Betencourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmair, and R. J. Stouffer. 2008. Stationarity is dead: Whither water management? Science 319:573-574.	
Milstead, W. W. 1965. Changes in competing populations of whiptail lizards (<i>Cnemidophorus</i>) in southwestern Texas. American Midland Naturalist 73:75-80.	Milstead 1965
Minckley, W. L., P. C. Marsh, J. E. Deacon, T. E. Dowling, P. W. Hedrick, W. J. Matthews, and G. Mueller. 2003. A conservation plan for native fishes of the Lower Colorado River. BioScience 53(3):219-234.	Minckley et al. 2003
Minnich, R. A. 2007. Southern California conifers. Pages 502-538 in: M. G. Barbour, T. Keeler-Wolf, and A. A. Schoenherr, editors. Terrestrial vegetation of California. Third edition. University of California Press, Berkeley.	Minnich 2007
Moline, A. B., and N. L. Poff. 2008. Growth of an invertebrate shredder on native (<i>Populus</i>) and non-native (<i>Tamarix, Elaeagnus</i>) leaf litter. Freshwater Biology 53(5):1012-1020. DOI: 10.1111/j.1365-2427.2008.01960.x	
Moore, J., C. Rumsey, T. Knight, J. Nachlinger, P. Comer, D. Dorfman, and J. Humke. 2001. Mojave Desert: An ecoregion-based conservation blueprint. The Nature Conservancy, Las Vegas, NV. 150 pp. plus appendices.	Moore et al. 2001
Moritz, C., J. L. Patton, C. J. Conroy, J. L. Parra, G. C. White, and S. R. Beissinger. 2008. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261-264.	Moritz et al. 2008
Morrison, M., and S. Fox. 2009. Bats associated with inactive mines in the Great Basin. Western North American Naturalist 69(1):6912.	Morrison and Fox 2009
Mosely, J. C., S. C. Bunting, and M. E. Manoukian. 1999. Cheatgrass. Pages 175-188 in: R. L. Sheley and J. K. Petroff, editors. Biology and management of noxious rangeland weeds. Oregon State University Press, Corvallis.	Mosely et al. 1999
Mote, P. W. 2006. Climate-driven variability and trends in mountain snowpack in western North America. Journal of Climate 19:6209-6220.	Mote 2006

Full Citation	Short Citation
Mulcahy, D. G., A. W. Spaulding, J. R. Mendelson, III, and E. D. Brodie, Jr. 2006.	(used in text) Mulcahy et al.
Phylogeography of the flat-tailed horned lizard (<i>Phrynosoma mcallii</i>) and systematics of	2006
the <i>P. mcallii-platyrhinos</i> mtDNA complex. Molecular Ecology 15(7):1807-1826.	2000
Nachlinger, J., K. Sochi, P. Comer, G. Kittel, and D. Dorfman. 2001. Great Basin: An	Nachlinger et
ecoregion-based conservation blueprint. The Nature Conservancy, Reno, NV. 160 pp.	al. 2001
plus appendices.	01. 2001
Naftz, D., C. Fuller, J. Cederberg, D. Krabbenhoft, J. Whitehead, J. Garberg, and K.	Naftz et al.
Beisner. 2009. Mercury Inputs to Great Salt Lake, Utah: Reconnaissance-Phase Results.	2009
Natural Resources and Environmental Issues 15, Issue 1, Saline Lakes Around the	2005
World: Unique Systems with Unique Values, Article 5. Online:	
http://digitalcommons.usu.edu/nrei/vol15/iss1/5.	
Naphan E. A. 1966. Soils of the salt desert shrub areas and their productive capabilities.	Naphan 1966
Pages 44-68 in: Proceeding: Salt desert shrub symposium. USDI, Bureau of Land	·
Management. Cedar City, UT.	
National Atmospheric Deposition Program (NADP). 2012. National Atmospheric	
Deposition Program Website, http://nadp.sws.uiuc.edu/.	
NPCA [National Parks Conservation Association]. 2008. Dark Horizons: 10 National	NPCA 2008
Parks Most Threatened by New Coal-Fired Power Plants. National Parks Conservation	
Association, Washington, DC. Online: http://www.npca.org/protecting-our-parks/air-	
land-water/clean-air/.	
NatureServe Explorer. 2007. Descriptions of Ecological Systems for the State of	
Washington. Data current as of October 06, 2007. NatureServe, Arlington, VA.	
[http://www.natureserve.org/explorer/index.htm]	
NatureServe Explorer. 2009. Descriptions of ecological systems for the state of	NatureServe
Washington. Data current as of February 02, 2009. NatureServe, Arlington, VA.	Explorer 2009
[http://www.natureserve.org/explorer/index.htm]	
NatureServe. 2009. Terrestrial ecological systems of the conterminous United States.	NatureServe
Version 2.7. Completed in cooperation with USGS Gap Analysis Program and inter-	2009
agency LANDFIRE. MMU approx. 2 hectares. NatureServe, Arlington, VA. Digital map.	Noff at al
Neff, J. C., A. P. Ballantyne, G. L. Farmer, N. M. Mahowald, J. L. Conroy, C. C. Landry, J.	Neff et al.
T. Overpeck, T. H. Painter, C. R. Lawrence, and R. L. Reynolds. 2008. Increasing eolian	2008
dust deposition in the western United States linked to human activity. Nature 1:189- 195.	
Neilson, R. P., J. M. Lenihan, D. Bachelet, and R. J. Drapek. 2005. Climate change	Neilson et al.
implications for sagebrush ecosystems. In: Transactions of the 70 th North American	2005
Wildlife and Natural Resources Conference (R. D. Sparrowe and L. H. Carpenter, co-	2005
chairs). Wildlife Management Institute.	
NDEP [Nevada Division of Environmental Protection]. 2005. Air Quality Permitted Coal-	NDEP 2005
Fired Power Plants in Nevada. Nevada Division of Environmental Protection, Bureau of	
Air Quality Control. Online: http://ndep.nv.gov/docs_04/power_plants05.pdf.	
NDEP [Nevada Division of Environmental Protection]. 2012 Mercury in Water. Online:	
http://ndep.nv.gov/mercury/water_monitoring.htm.	
Newbold, T. A. S. 2005. Desert horned lizard (<i>Phrynosoma platyrhinos</i>) locomotor	Newbold 2005
performance: The influence of cheatgrass (<i>Bromus tectorum</i>). Southwestern Naturalist	
50:17-23.	

Full Citation	Short Citation (used in text)
Newbold, T. A. S., and J. A. MacMahon. 2008. Consequences of cattle introduction in a shrubsteppe ecosystem: Indirect effects on desert horned lizards (<i>Phrynosoma platyrhinos</i>). Western North American Naturalist 68:291-302.	Newbold and MacMahan 2008
Newbold, T. A. S., and J. A. MacMahon. 2009. Spatial and seasonal dietary patterns of the desert horned lizard (<i>Phrynosoma platyrhinos</i>): Harvester ant specialist or generalist ant feeder? Canadian Journal of Zoology 87:112-123.	Newbold and MacMahan 2009
Newbold, T.A.S. 2005. Desert horned lizard (<i>Phrynosoma platyrhinos</i>) locomotor performance: the influence of cheatgrass (<i>Bromus tectorum</i>). Southwestern Naturalist 50:17-23.	
Nicholson, L. 1978. The effects of roads on desert tortoise populations. Pages 127-129 in: M. Trotter, editor. Proceedings of the 1978 symposium of the Desert Tortoise Council.	Nicholson 1978
Noss, R. F. 1987. From plant communities to landscapes in conservation inventories: A look at The Nature Conservancy (USA). Biological Conservation 41:11-37.	Noss 1987
Noss, R. F., C. Carroll, K. Vance-Borland, and G. Wuerthner. 2002. A multicriteria assessment of the irreplaceability and vulnerability of sites in the Greater Yellowstone Ecosystem. Conservation Biology 16(4):895-908.	Noss et al. 2002
Noss, R. F., E. T. LaRoe III, and J. M. Scott. 1995. Endangered ecosystems of the United States: A preliminary assessment of loss and degradation. USDI National Biological Service, Washington, DC (USA).	Noss et al. 1995
NRCS [USDA Natural Resources Conservation Service]. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. 663 pp.	NRSC 2006
NREL [National Renewable Energy Laboratory]. 1986. Wind energy resource atlas of the United States. National Renewable Energy Laboratory. [http://rredc.nrel.gov/wind/pubs/atlas/]	NREL 1986
NREL [National Renewable Energy Laboratory]. 2005. A geographic perspective on the current biomass resource availability in the United States. National Renewable Energy Laboratory. [http://www.nrel.gov/docs/fy06osti/39181.pdf]	NREL 2005
NREL [National Renewable Energy Laboratory]. 2005b. Southwest US DNI Filtered 5- percent High Resolution. National Renewable Energy Laboratory. http://www.nrel.gov/gis/data_solar.html	
NREL [National Renewable Energy Laboratory]. 2008a. Photovoltaic solar resource map of the United States. National Renewable Energy Laboratory. [http://www.nrel.gov/gis/data_analysis.html]	NREL 2008a
NREL [National Renewable Energy Laboratory]. 2008b. Biomass resources in the United States. National Renewable Energy Laboratory. [http://www.nrel.gov/docs/fy06osti/39181.pdf]	NREL 2008b
NREL [National Renewable Energy Laboratory]. 2010. Concentrating solar power resource maps. National Renewable Energy Laboratory. [http://www.nrel.gov/csp/maps.html]	NREL 2010
NSPECT [Nonpoint Source Pollution and Erosion Comparison Tool]. 2004. Nonpoint Source Pollution and Erosion Comparison Tool (NSPECT) User's Manual. Coastal Services Center National Oceanic and Atmospheric Administration. Version 8.x.	NSPECT 2004

Full Citation	Short Citation (used in text)
Nussbaum, R. A., E. D. Brodie, Jr., and R. M. Storm. 1983. Amphibians and reptiles of	Nussbaum et
the Pacific Northwest. University Press of Idaho, Moscow. 332 pp.	al. 1983
Nydick, K. and K. Williams. 2010. Pilot Study of the Ecological Effects of Mercury	
Deposition in Mesa Verde National Park, Colorado. Mountain Studies Institute, Report	
2010-01.	
Obrist, D., D. W. Johnson, and S. E. Lindberg. 2009. Mercury Concentrations and Pools in Four Sierra Nevada Forest Sites, and Relationships to Organic Carbon and Nitrogen. Biogeosciences Discussions 6:1777-1809. Online: www.biogeosciences- discuss.net/6/1777/2009/.	
Obrist, D., D. W. Johnson, S. E. Lindberg, Y. Luo, O. Hararuk, R. Bracho, J. J. Battles, D. B.	
Dail, R. L. Edmonds, R. K. Monson, S. V. Ollinger, S. G. Pallardy, K. S. Pregitzer, and D. E.	
Todd. 2011. Mercury distribution across 14 U.S. forests, Part I: Spatial patterns of	
concentrations in biomass, litter, and soils. Environmental Science & Technology	
45:3974-3981. DOI 10.1021/es104384m.	
Ode, P. R., C. P. Hawkins, and R. D. Mazor. 2008. Comparability of biological	Ode et al.
assessments derived from predictive models and multiindicator indices of increasing	2008
geographic scope. Journal of the North American Benthological Society 27(4):967-985.	
Omernik, J. M. 1987. Ecoregions of the conterminous United States. Annals of the	Omernik 1987
Association of American Geographers 77:118-125.	
Omernik, J. M., and R. G. Bailey. 1997. Distinguishing between watersheds and	Omernik and
ecoregions. Journal of the American Water Resources Association 33(5): 935-949.	Bailey 1997
Opdam, P., J. Verboom, and R. Pouwels. 2003. Landscape cohesion: An index for the	Opdam et al.
conservation potential of landscapes for biodiversity. Landscape Ecology 18:113-126.	2003
Orloff, S., and A. Flannery. 1992. Wind turbine effects on avian activity, habitat use,	Orloff and
and mortality in Altamont Pass and Solano County Wind Resource Areas, 1989-1991.	Flannery 1992
Final report to the California Energy Commission, Sacramento, CA. 150 pp.	
Orwell, G. 1951. Animal Farm.	Orwell 1951
Osborn, R. G., K. F. Higgins, R. E. Usgaard, C. D. Dieter, and R. D. Neiger. 2000. Bird	Osborn et al.
mortality associated with wind turbines at the Buffalo Ridge Wind Resource Area,	2000
Minnesota. The American Midland Naturalist 143:41-52.	
Osborne, P. E., J. C. Alonso, and R. G. Bryant. 2001. Modelling landscape-scale habitat	Osborn et al.
use using GIS and remote sensing: a case study with great bustards. Journal of Applied	2001
Ecology 38:458-471.	
Ostler, W. K., D. J. Hansen, D. C. Anderson, and D. B. Hall. 2000. Classification of	Ostler et al.
vegetation on the Nevada Test Site. U.S. Department of Energy, DOE/NV/11718-477.	2000
Bechtel Nevada Ecological Services, Las Vegas, NV. 102 pp.	
Owens, P. N., K. A. Caley, S. Campbell, A. J. Koiter, I. G. Droppo, and Kevin G. Taylor.	
2011. Total and size-fractionated mass of road-deposited sediment in the city of Prince	
George, British Columbia, Canada: Implications for air and water quality in an urban	
environment. Journal of Soils Sediments 11:1040-1051.	
Painter, T. H., A. P. Barrett, C. C. Landry, J. C. Neff, M. P. Cassidy, C. R. Lawrence, K. E	Painter et al.
McBride, and G L. Farmer. 2007. Impact of disturbed desert soils on duration of	2007
mountain snowcover. Geophysical Research Letters 34:L12502. 6 pp.	

Full Citation	Short Citation (used in text)
Parker, I. M., D. Simberloff, W. M. Lonsdale, K. Goodell, M. Wonham, P. M. Kareiva, M. H. Williamson, B. Von Holle, P. B. Moyle, J. E. Byers, and L. Goldwasser. 1999. Impact: Toward a framework for understanding the ecological effects of invaders. Biological Invasions 1:3-19.	Parker et al. 1999
Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37-42.	Parmesan and Yohe 2003
Parrish, J. D., D. P. Braun, and R. S. Unnasch. 2003. Are we conserving what we say we are? Measuring ecological integrity within protected areas. BioScience 53(9):851-860.	Parrish et al. 2003
Patten, D. T., L. Rouse, and J. C. Stromberg. 2007. Isolated spring wetlands in the Great Basin and Mojave deserts, USA: Potential response of vegetation to groundwater withdrawal. Environmental Management 41(3):398-413. Online: DOI 10.1007/s00267- 007-9035-9.	Patten et al. 2007
Paysen, T. E., R. J. Ansley, J. K. Brown, et al. 2000. Fire in western shrubland, woodland, and grassland ecosystems. Pages 121-159 in: J. K. Brown and J. K. Smith, editors. Wildland fire in ecosystems: Effects of fire on flora. General Technical Report RMRS- GTR-42-volume 2. USDA Forest Service, Rocky Mountain Research Station, Ogden, UT.	Paysen et al. 2000
Pearson, R. G., W. Thuiller, M. B. Araújo, E. Martinez-Meyer, L. Brotons, C. McClean, L. Miles, P. Segurado, T. P. Dawson, and D. Lees. 2006. Model-based uncertainty in species' range prediction. Journal of Biogeography 33:1704-1711.	Pearson et al. 2006
Pellant, M. 1990. The cheatgrass wildfire cycle – are there any solutions? Pages 11-18 in E.D. McArthur, E.M. Romney, S.D. Smith, and P.T. Tueller, compilers. Proceedings – symposium on cheatgrass invasion, shrub die-off and other aspects of shrub biology and management. USDA Forest Service General Technical Report INT-276, Ogden, Utah, USA.	
Pellant, M. 1996. Cheatgrass: The invader that won the west. Interior Columbia Basin Ecosystem Mangement Project. 22 pp.	
 Pellant, M., and C. Hall. 1994. Distribution of two exotic grasses on Intermountain rangelands: Status in 1992. Pages 109-112 in: S. B. Monsen and S. G. Kitchen, compilers. Proceedingsecology and management of annual rangelands, 1992 May 18-22, Boise, ID. General Technical Report INT-GTR-313. USDA Forest Service, Intermountain Research Station, Ogden, UT. 	Pellant and Hall 1994
Pellant, M., P. Shaver, D. A. Pyke and J. E. Herrick. 2005. Interpreting indicators of rangeland health, Version 4. Technical Reference 1734-6. U.S. Department of the Interior, Bureau of Land Management, National Science and Technology Center, Denver, CO. BLM/WO/ST-00.001+1734/REV05. 122 pp.	
Pepper, C. B., M. A. Nascarella, and R. A. Kendall. 2003. A review of the effects of aircraft noise on wildlife and humans, current control mechanisms and the need for further study. Environmental Management 32:418-432.	Pepper et al. 2003
Perry, C. H., M. C. Amacher, W. Cannon, R. K. Kolka, and L. Woodruff. 2009. The distribution of mercury in a forest floor transect across the central United States. Pages 103-108 in R. E. McRoberts, G. A. Reams, P. C. Van Deusen, and W. H. McWilliams, editors. Proceedings of the Eighth Annual Forest Inventory and Analysis Symposium, 2006. General Technical Report WO-79. USDA Forest Service, Research and Development, Washington, DC.	

Full Citation	Short Citation (used in text)
Peters, E. F., and S. C. Bunting. 1994. Fire conditions pre- and postoccurrence of annual grasses on the Snake River Plain. Pages 31-36 in: S. B. Monsen and S. G. Kitchen, compilers. Proceedingsecology and management of annual rangelands, 1992 May 18-22, Boise, ID. General Technical Report INT-GTR-313. USDA Forest Service, Intermountain Research Station, Ogden, UT.	Peters and Bunting 1994
Peterson, C., and M. Gustin. 2008. Mercury in the air, water and biota at the Great Salt Lake (Utah, USA). Science of the Total Environment 405:255-268. DOI 10.1016/j.scitotenv.2008.06.046.	
Peterson, C., M. Gustin, and S. Lyman. 2009. Atmospheric mercury concentrations and speciation measured from 2004 to 2007 in Reno, Nevada, USA. Atmospheric Environment 43:4646-4654. DOI 10.1016/j.atmosenv.2009.04.053.	Peterson et al. 2009
Peterson, E. B. 2005. Estimating cover of an invasive grass (<i>Bromus tectorum</i>) using tobit regression and phenology derived from two dates of Landsat ETM+ data. International. Journal of Remote Sensing 26:2491-2507.	Peterson 2005
Peterson, E. B. 2006. A map of invasive annual grasses in Nevada derived from multitemporal Landsat 5 TM imagery. Report for the USDI Bureau of Land Management, Nevada State Office, Reno, by the Nevada Natural Heritage Program, Carson City, NV.	Peterson 2006
Phillips, S. J., M. Dudik, and R. E. Schapire. 2004. A maximum entropy approach to species distribution modeling. Pages 655-662 in: Proceedings of the Twenty-First International Conference on Machine Learning.	Phillips et al. 2004
Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231-259.	Phillips et al. 2006
Phillips, S. J., and M. Dudik. 2008. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31:161-175.	Phillips and Dudik 2008
Pianka, E. R. 1991. <i>Phrynosoma platyrhinos</i> . Catalogue of American Amphibians and Reptiles 517.1-517.4.	Pianka 1991
Pianka, E. R., and W. S. Parker. 1975. Ecology of horned lizards: A review with special reference to <i>Phrynosoma platyrhinos</i> . Copeia 1975(1):141-162.	Pianka and Parker 1975
Pickford, G. D. 1932. The influence of continued heavy grazing and of promiscuous burning on spring-fall ranges in Utah. Ecology 13(2):159-171.	Pickford 1932
Pierce, J. 2012. Personal communication. Western Governors Association Landscape Working Group, State of Washington.	Pierce pers. comm. 2012
Pimm, S. L. 1989. Theories of predicting success and impact of introduced species. Pages 351-367 in: J. A. Drake, H. A. Mooney, F. diCastri, R. H. Groves, F. J. Kruger, M. Rejmànek, and M. Williamson, editors. Biological invasions: A global perspective. SCOPE 37, John Wiley and Sons, New York.	Pimm 1989
PLOAD. 2001. An ArcView GIS Tool to Calculate Nonpoint Sources of Pollution in Watershed and Stormwater Projects: User's manual v3.0.	
Poff, N. L., B. Richter, A. H. Arthington, S. E.Bunn, R. J. Naiman, E. Kendy, M. Acreman, C. Apse, B. P. Bledsoe, M. Freeman, J. Henriksen, R. B. Jacobson, J. Kennen, D. M. Merritt, J. O'Keeffe, J. D. Olden, K. Rogers, R. E. Tharme, and A. Warner. 2010. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards. Freshwater Biology 55:147-170.	Poff et al. 2010

Full Citation	Short Citation
Poff, N., D. Allan, M. Bain, J. Karr, K. Prestegaard, B. Richter, R. Sparks, and J.	(used in text) Poff et al.
Stromberg. 1997. The natural flow regime: A paradigm for river conservation and restoration. BioScience 47(11):769-784.	1997
Poff, N. L., and D. D. Hart. 2002. How dams vary and why it matters for the emerging science of dam removal. BioScience 52:659-738.	
Pringle, C. M. 2001. Hydrologic connectivity and the management of biological reserves: A global perspective. Ecological Applications 11:981-998.	Pringle 2001
Pringle, C. M., M. C. Freeman, and B. J. Freeman. 2000. Regional effects of hydrologic alterations on riverine macrobiota in the New World: Tropical-temperate comparisons. BioScience 50(9):807-823.	Pringle et al. 2000
Prose, D.V. 1985. Persisting effects of armored military maneuvers on some soils of the Mojave Desert. Environmental Geology of Water Science 7(3):163-170.	Prose 1985
Protected Areas Database of the United States (PADUS) version 1.2, April 2011. http://gapanalysis.usgs.gov/padus/	
Provencher, L., and T. Anderson. 2011. Climate Change Revisions to Nevada's Wildlife Action Plan: Vegetation Mapping and Modeling. Report to the Nevada Department of Wildlife	Provencher and Anderson 2011
Pruett, C. L., M. A. Patten, and D. H. Wolfe. 2009. Avoidance behavior by prairie grouse: Implications for wind energy development. Conservation Biology 23:1253-1259.	Pruett et al. 2009
Pryor, S. C., and T. E. Hoffer. 1991. A case study of pollutant transport from Los Angeles to the desert south-west. Atmospheric Environment 26A:243-250.	Pryor and Hoffer 1991
Pyke, D. A., and S. J. Novak. 1994. Cheatgrass demographyestablishment attributes, recruitment, ecotypes, and genetic variability. Pages 12-21 in: S. B. Monsen and S. G. Kitchen, compilers. Proceedingsecology and management of annual rangelands, 1992 May 18-22, Boise, ID. General Technical Report INT-GTR-313. USDA Forest Service, Intermountain Research Station, Ogden, UT.	Pyke and Novak 1994
Quinn, M. A. 2004. Influence of habitat fragmentation and crop system on Colombia Basin strubsteppe communities. Ecological Applications 14:1634-1655.	Quinn 2004
Raffa, K. F., B. H. Aukema, B. J. Bentz, A. L. Carroll, J. A. Hicke, M. G. Turner, and W. H. Romme. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: Dynamics of biome-wide bark beetle eruptions. BioScience 58:501-517.	Raffa et al. 2008
Ranalli, A. J., and D.L. Macalady. 2010. The importance of the riparian zone and in- stream processes in nitrate attenuation in undisturbed and agricultural watersheds: A review of the scientific literature. Journal of Hydrology 389:406-415	
Randall, J. M., S. S. Parker, J. Moore, B. Cohen, L. Crane, B. Christian, D. Cameron, J. MacKenzie, K. Klausmeyer, and S. Morrison. 2010. Mojave Desert ecoregional assessment. Unpublished report. The NatureConcervancy, San Francisco, CA. 106 pages plus appendices. [http://conserveonline.org/workspaces/mojave/documents/mojave-desert-ecoregional-2010/@@view.html]	Randall et al. 2010
Rao, L. E., and E. B. Allen. 2010. Combined Effects of Precipitation and Nitrogen Deposition on Native and Invasive Winter Annual Production in California Deserts. Oecologia (2010) 162:1035-1046. DOI 10.1007/s00442-009-1516-5.	

Full Citation	Short Citation (used in text)
Rao, L. E., E. B. Allen, and T. Meixner. 2010. Risk-based determination of critical nitrogen deposition loads for fire spread in southern California deserts. Ecological Applications 20(5):1320-1335.	
Redford, K. H., E. W. Sanderson, J. G. Robinson, and A. Vedder. 2000. Landscape species and their conservation: Report from a WCS meeting, May 2000. Wildlife Conservation Society, Bronx, NY.	Redford et al. 2000
Reed, S. E., and A. M. Merenlender. 2008. Quiet, nonconsumptive recreation reduces protected area effectiveness. Conservation Letters 1(3):146-154.	Reed and Merenlender 2008
Reeder, T. W., and R. R. Montanucci. 2001. Phylogenetic analysis of the horned lizards (Phrynosomatidae: <i>Phrynosoma</i>): Evidence from mitochondrial DNA and morphology. Copeia 2001:309-323.	Reeder and Montanucci 2001
Reheis, M. C. 1997. Dust deposition downwind of Owens (dry) Lake, 1991-1994: Preliminary findings. Journal of Geophysical Research 102(D22):25,999-26,008.	Reheis 1997
Rehfeldt, G .E., N. L. Crookston, M. V. Warwell, and J. S. Evans. 2006. Empirical analysis of plant-climate relationships for the western United States. International Journal of Plant Sciences 167(6):1123-1150.	Rehfeldt et al. 2006
Reid, C. R., S. Goodrich, and J. E. Bowns. 2008. Cheatgrass and red brome: History and biology of two invaders. USDA Forest Service Proceedings RMRS-P-52. 6 pp.	
Reid, M. S., K. A. Schulz, P. J. Comer, M. H. Schindel, D. R. Culver, D. A. Sarr, and M. C. Damm. 1999. An alliance level classification of vegetation of the coterminous western United States. Unpublished final report to the University of Idaho Cooperative Fish and Wildlife Research Unit and National Gap Analysis Program, in fulfillment of Cooperative Agreement 1434-HQ-97-AG-01779. The Nature Conservancy, Western Conservation Science Department, Boulder, CO.	Reid et al. 1999
Revkin, A. C. 2009. California utility looks to Mojave Desert project for solar power. The New York Times. [http://www.nytimes.com/2009/02/12/science/earth/12solar.html]	Revkin 2009
Richards, D. C. Personal communication. EcoAnalysts, Inc., Bozeman, MT.	Richards pers. comm.
Richter, B. D., D. P. Braun, M. A. Mendelson, and L. L. Master. 1997. Threats to imperiled freshwater fauna. Conservation Biology 11:1081-1095. Richter, B. D., J. V. Baumgartner, J. Powell, and D. P. Braun. 1996. A method for	Richter et al. 1997
assessing hydrologic alteration within ecosystems. Conservation Biology 10:1163-1174.	
Rieman, B., D. Lee, D. Burns, R. Gresswell, M. Young, R. Stowell, J. Rinne, and P. Howell. 2003. Status of native fishes in the western United States and issues of fire and fuels management. Forest Ecology and Management 178(1-2):197-211.	
Riitters, K. H., and J. D. Wickham. 2003. How far to the nearest road? Frontiers in Ecology and the Environment 1:125-129.	Riiters and Wickham 2003
Rivera, S., N. E. West, A. J. Hernandez, and R. D. Ramsey. 2011. Predicting the impact of climate change on cheat grass (<i>Bromus tectorum</i>) invasibility for northern Utah: A GIS and remote sensing approach. Natural Resources and Environmental Issues 17(13).	Rivera et al. 2011

Full Citation	Short Citation (used in text)
Rocchio, F. J., and R. C. Crawford. 2009. Monitoring Desired Ecological Conditions on Washington State Wildlife Areas Using an Ecological Integrity Assessment Framework. Washington Natural Heritage Program, Washington Department of Natural Resources, Olympia, WA.	
Rocchio, F. J., and R. C. Crawford. 2011. Applying NatureServe's Ecological Integrity Assessment Methodology to Washington's Ecological Systems. Washington Natural Heritage Program, Washington Department of Natural Resources, Olympia, WA.	Rocchio and Crawford 2011
Rollins, M. G., and C. Frame. 2006. The LANDFIRE Prototype Project: Nationally consistent and locally relevant geospatial data for wildland fire management. General Technical Report RMRS-GTR-175. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO.	Rollins and Frame 2006
Rollins, M. G., R. E. Keane, R. A. and Parsons. 2004. Mapping fuels and fire regimes using remote sensing, ecosystem simulation, and gradient modeling. Ecological Applications 14:75-95.	Rollins et al. 2004
Rosen, P. C., and C. H. Lowe. 1994. Highway mortality of snakes in the Sonoran Desert of southern Arizona. Biological Conservation 68:143-148.	Rosen and Lowe 1994
Rosentreter, R. A., and D. J. Eldridge. 2002. Monitoring biodiversity and ecosystem function: Grasslands, deserts, and steppe. Pages 199-233 in: P. L. Nimis, C. Scheidegger, and P. A. Wolseley, editors. Monitoring with lichens: Monitoring lichens. Dordrect: Kluwer Academic Publishers.	Rosentreter and Eldridge 2002
Rosentreter, R., and M. Pellant. No date. Site potential for biological soil crusts crust development based on biological and physical factors. Internal draft BLM document. [in prep]	Rosentreter and Pellant
Rowe, R. J. 2007. Legacies of land use and recent climate change: The small mammal fauna in the mountains of Utah. The American Naturalist 170:242-257.	Rowe 2007
Rowland, E. L., J. E. Davison, and L. J. Graumlich. 2011. Approaches to evaluating climate change impacts on species: A guide to initiating the adaptation planning process. Environmental Management. DOI 10.1007/s00267-010-9608-x.	
Sada, D. 2001. Springsnails of Nevada. Unpublished draft manuscript. Desert Research Institute, Reno, NV.17 pp.	Sada 2001
Sada, D. W., J. E. Williams, J. C. Silvey, A. Halford, J. Ramakka, P. Summers, and L. Lewis. 2001. A guide to managing, restoring, and conserving springs in the western United States. Technical Reference 1737-17. USDI Bureau of Land Management, Denver, CO. 70 pp.	Sada et al. 2001
Sala, O. E., F. Stuart Chapin, III, J, J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker, and D. H. Wall. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770-1774.	Sala et al. 2000
Salathé, Jr., E. P., P. W. Mote, and M. W. Wiley. 2007. Review of scenario selection and downscaling methods for the assessment of climate change impacts on hydrology in the United States pacific northwest. International Journal of Climatology 27:1611-1621.	Salathé et al. 2007
Salo, L. F. 2005. Red brome (<i>Bromus rubens subsp madritensis</i>) in North America: Possible modes for early introductions, subsequent spread. Biological Invasions 7:165- 180.	Salo 2005

Full Citation	Short Citation (used in text)
Salomons, W., N. M. de Rooij, H. Kerdijk, and J. Brils. 1987. Sediments as a source for	Salomons et
contaminants? Hydrobiologia 149:13-30.	al. 1987
Sanders, R.D., K.H. Coale, G.A. Gill, A.H. Andrews, and M. Stephenson. 2008. Recent	
Increase in Atmospheric Deposition of Mercury to California Aquatic Systems Inferred	
from a 300-Year Geochronological Assessment of Lake Sediments. Applied	
Geochemistry 23 (2008) 399-407.	
Sanderson, E. W., K. H. Redford, A. Vedder, S. E. Ward, and P. B. Coppolillo. 2002. A	Sanderson et
conceptual model for conservation planning based on landscape species requirements. Landscape and Urban Planning 58:41-56.	al. 2002
Sanderson, E. W., M. Jaiteh, M. A. Levy, K. H. Redford, A. V. Wannebo, and G.	Sanderson et
Woolmer. 2002. The human footprint and the last wild. BioScience 52:891-904.	al. 2002
Saros, J. E., D. W. Clow, T. Blett, and A. P. Wolfe. 2010. Critical nitrogen deposition	
loads in high-elevation lakes of the western U.S. inferred from paleolimnological	
records. Water Air Soil Pollution, DOI 10.1007/s11270-010-0526-6.	
Sawyer, J. O., and T. Keeler-Wolf. 1995. A manual of California vegetation. California Native Plant Society, Sacramento. 471 pp.	Sawyer and Keeler-Wolf 1995
Sawyer, J. O., T. Keeler-Wolf, and J. Evens. 2009. A manual of California vegetation.	Sawyer et al.
Second edition. California Native Plant Society, Sacramento CA. 1300 pp.	2009
Sayre, R., P. Comer, H. Warner, and J. Cress. 2009. A new map of standardized	Sayre et al.
terrestrial ecosystems of the conterminous United States: U.S. Geological Survey	2009
Professional Paper 1768. 17 pp.	
Scanlon, B.R., R.C. Reedy, D.A Stonestrom, D.E. Prudicz and K.F. Dennehy. 2005.	
Impact of land use and land cover change on groundwater recharge and quality in the	
Southwestern US. Global Change Biology 11:1577–1593	
Schlatterer, E. F. 1972. A preliminary description of plant communities found on the	Schlatterer
Sawtooth, White Cloud, Boulder, and Pioneer mountains. Unpublished report prepared	1972
for USDA Forest Service, Intermountain Region, Ogden, UT. On file with USDA Forest	
Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, MT. 111	
pp.	
Schoenherr, A. A., and J. H. Burk. 2007. Colorado Desert vegetation. Pages 657-682 in:	Schoenherr
M. G. Barbour, T. Keeler-Wolf, and A. A. Schoenherr, editors. Terrestrial vegetation of	and Burk 2007
California. Third edition. University of California Press, Berkeley.	
Schumaker, N. H. 1996. Using landscape indicators to predict habitat connectivity.	Schumaker
Ecology 77(4):1210-1225.	1996
Schwindt, A. R., J. W. Fournie, D. H. Landers, C. B. Schreck, and M. L. Kent. 2008.	
Mercury Concentrations in Salmonids from Western U.S. National Parks and	
Relationships with Age and Macrophage Aggregates. Environmental Science and	
Technology 42:1365-1370. DOI 10.1021/es702337m.	
Schwinning, S., B. I. Starr, and J. R. Ehleringer. 2003. Summer and winter drought in a	Schwinning et
cold desert ecosystem (Colorado Plateau). Part 1: Effects on soil water and plant water	al. 2003
uptake. Journal of Arid Environments 60(4):547-566.	
Science AGILE (Association of Geographic Information Labs Europe), Girona, Spain. 7	

Full Citation	Short Citation (used in text)
Scott, N. A., S. Saggar, and P. D. McIntosh. 2001. Biogeochemical impact of Hieracium invasion in New Zealand's grazed tussock grasslands: Sustainability implications. Ecological Applications 11(5):1311-1322.	
Scudder, B.C., L.C. Chasar, D.A. Wentz, N.J. Bauch, M.E. Brigham, P.W. Moran, and D.P. Krabbenhoft. 2009. Mercury in Fish, Bed Sediment, and Water from Streams across the United States, 1998–2005. U.S. Department of the Interior, U.S. Geological Survey, Scientific Investigations Report 2009-5109. Reston, Virginia.	
Seager, R., M. Ting, I. Held, Y. Kushnir, J. Lu, G. Vecchi, H. P. Huang, N. Harnik, A. Leetmaa, N. C. Lau, C. L.i, J. Velez, and N. Naik. 2007. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181-1184.	Seager et al. 2007
Seavy, N. E., T. Gardali, G. H. Golet, F. T. Griggs, C. A. Howell, R. Kelsey, S. L. Small, J. H. Viers, and J. F. Weigand. 2009. Why climate change makes riparian restoration more important than ever: Recommendations for practice and research. Ecological Restoration 27(3):330-338.	Seavy et al. 2009
Seiler, A. 2001. Ecological Effects of Roads, A review. Introductory Research Essay No. 9. Department of Conservation Biology, Swedish University of Agricultural Science, Upsalla.	Seiler 2001
Selin, N. E. 2009. Global Biogeochemical Cycling of Mercury: A Review. Annual Review of Environment and Resources 34:43-63. DOI 10.1146/annurev.environ.051308.084314.	
Shah, V. B. 2007. An interactive system for combinatorial scientific computing with an emphasis on on programmer productivity. PhD. thesis, University of California, Santa Barbara. 204 pp.	Shah 2007
Shah, V. B., and B. H. McRae. 2008. Circuitscape: A tool for landscape ecology. Pages 62-66 in: G. Varoquaux, T. Vaught, and J. Millman, editors. Proceedings of the 7th Python in Science Conference (SciPy 2008).	Shah and McRae 2008
Sharifi, M. R., A. C. Gibson, and P. W. Rundel. 1999. Phenological and physiological responses of heavily dusted creosote bush (Larrea tridentata) to summer irrigation in the Mojave Desert. Flora 194:369-378.	Sharifi et al. 1999
Shepard, W. D. 1993. Desert springs-both rare and endangered. Aquatic Conservation: Marine and Freshwater Ecosystems 3(4):351-359.	Shepard 1993
Sherbrooke, W. C., and G. A. Middendorf, III. 2004. Responses of kit foxes (<i>Vulpes macrotis</i>) to antipredator blood-squirting and blood of Texas horned lizards (<i>Phrynosoma cornutum</i>). Copeia 2004:652-658.	Sherbrooke and Middendorf 2004
Shiflet, T. N., editor. 1994. Rangeland cover types of the United States. Society for Range Management. Denver, CO. 152 pp.	Shiflet 1994
Shigesada, N., and K. Kawasaki. 1997. Biological Invasions: Theory and Practice. Oxford University Press, New York, NY.	Shigesada and Kawasaki 1997
Shinneman, D. J., and W. L. Baker. 2009. Environmental and climate variables of potential drivers of post-fire cover of cheatgrass (<i>Bromus tectorum</i>) in seeded and unseeded semiarid ecosystems. International Journal of Wildland Fire 18:191-202.	Shinneman and Baker 2009

Full Citation	Short Citation (used in text)
Shupe, J. B., and J. D. Brotherson. 1985. Differential effects of cattle and sheep grazing on high mountain meadows in the Strawberry Valley of central Utah. Great Basin Naturalist 45(1):141-149.	Shupe and Brotherson 1985
Smith, D. C., S. E. Meyer, and V. J. Anderson. 2008. Factors affecting <i>Bromus tectorum</i> seed bank carryover in western Utah. Rangeland Ecology and Management 61:430-436.	
Sogge, M. K., S. J. Sferra, and E. H. Paxton. 2008. Tamarix as habitat for birds: Implications for riparian restoration in the Southwestern United States. Restoration Ecology 16(1):146-154.	
Soller, D. R., M. C. Reheis, C. P. Garrity, and D. R. Van Sistine. 2009. Map database for surficial materials in the conterminous United States, 2009. Data Series, 425, scale 1:5,000,000.	Soller et al. 2009
Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, editors. 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.	Solomon et al. 2007
Southern Nevada Water Authority (SNWA). 2011. Clark, Lincoln, and White Pine Counties Groundwater Development Project Conceptual Plan of Development. March 2011, Southern Nevada Water Authority, Las Vegas, Nevada.	
Spaulding, S. A., and L. Elwell. 2007. Increase in nuisance blooms and geographic expansion of the freshwater diatom <i>Didymosphenia geminata</i> . U.S. Geological Survey Open-File Report 2007-1425. 38 pp.	Spaulding and Elwell 2007
St. Amand, P., L. Mathews, C. Gaines, and R. Reinking. 1986. Dust storms from Owens and Mono lakes. TP. 6731. Naval Weapons Center, China Lake, CA.	St. Amand et al. 1986
St. John, A. 2002. Reptiles of the northwest. Lone Pine Publishing, Renton, WA. 272 pp. Stebbins, R. C. 2003. A field guide to western reptiles and amphibians. Third edition. Houghton Mifflin Company, Boston.	St. John 2002 Stebbins 2003
Steiger, J. W., and R. H. Webb. 2000. Recovery of perennial vegetation in military target sites in the eastern Mojave Desert, Arizona. U.S. Geological Survey Open- [®] le Report OF 00-355. [http://geology.usgs.gov/open- [®] le]	Steiger and Webb 2000
Stephenson, N. 1998. Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography 25:855-870.	Stephenson 1998
Stephenson, N. L. 1990. Climatic control of vegetation distribution: The role of the water balance. The American Naturalist 135(5):649-670.	Stephenson 1990
Stewart, G., and A. C. Hull, Jr. 1949. Cheatgrass (<i>Bromus tectorum</i> L.)an ecologic intruder in southern Idaho. Ecology 30:58-74.	Stewart and Hull 1949
Stoms, D. M., P. J. Comer, P. J. Crist, and D. H. Grossman. 2005. Choosing surrogates for biodiversity conservation in complex planning environments. Journal of Conservation Planning 1:44-63.	Stoms et al. 2005
Stone, C. P., C. W. Smith, and J. T. Tunison, editors. 1992. Alien plant invasions in native ecosystems of Hawaii: Management and research. University of Hawaii Cooperative National Park Resources Studies Unit, Honolulu. ISBN:0-8248-1474-6.	Stone et al. 1992
Stotler, R., and B. Crandall-Stotler. 1977. A checklist of liverworts and hornworts of North America. The Bryologist 80:405-428.	

Full Citation	Short Citation
Stromberg, J., M. K. Chew, P. L. Nagler, and E. P. Glenn. 2009. Changing perceptions of	(used in text) Stromberg et
change: The role of scientists in Tamarix and river management. Restoration Ecology 17(2):177-186.	al. 2009
Suazo, A.A., J.E. Spencer, E.C. Engel, and S.R. Abella. 2012. Responses of native and	
non-native Mojave Desert winter annuals to soil disturbance and water additions. Biological Invasions 14:215-227.	
Sutherland, R. A., and C. A. Tolosa. 2000. Variation in total and extractable elements	
with distance from roads in an urban watershed, Honolulu, Hawaii. Water, Air, and Soil Pollution 127:315-338.	
Swift, T. L., and S. J. Hannon. 2010. Critical thresholds associated with habitat loss: A	Swift and
review of the concepts, evidence and applications. Biological Review 85:35-53.	Hannon 2010
Tabor, K., and J. W. Williams. 2010. Globally downscaled climate projections for	Tabor and
assessing the conservation impacts of climate change. Ecological Applications 20:554- 565.	Williams 2010
Tanner, W. W., and J. E. Krogh. 1973. Ecology of <i>Phrynosoma platyrhinos</i> at the Nevada Test Site, Nye County, Nevada. Herpetologica 29:327-342.	Tanner and Krogh 1973
Taylor, F. R., L. A. Gillman, and J. W. Pedretti. 1989. Impact of cattle on two isolated fish populations in Pahranagat Valley, Nevada. Great Basin Naturalist 49(4):491-495.	Taylor et al. 1989
Tebaldi, C., J. M. Arblaster, and R. Knutti. 2011. Mapping model agreement on future climate projections. Geophysical Research Letters 38, L23701.	Tebaldi et al. 2011
Tebaldi, C., and R. Knutti. 2007. The use of the multi-model ensemble in probabilistic	Tebaldi and
climate projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365:2053-2075.	Knutti 2007
The Nature Conservancy Ecoregional Portfolio Sites, 1990s-2000.	
http://maps.tnc.org/files/metadata/ERA_STEWARD_TNC_Portfolio_Terr_Phase1.xml	
Theobald, D. M. 2001. Land-use dynamics beyond the American urban fringe. Geographical Review 91(3):544-564.	Theobald 2001
Theobald, D. M. 2005. Landscape patterns of exurban growth in the USA from 1980 to	Theobald
2020. Ecology and Society 10(1):32.	2005
[http://www.ecologyandsociety.org/vol10/iss1/art32/]	
Theobald, D. M. 2008. Network and accessibility methods to estimate the human use	Theobald
of ecosystems. Proceedings of the International Conference on Geographic Information	2008
Science AGILE (Association of Geographic Information Labs Europe), Girona, Spain. 7	
pp.	
Theobald, D. M. 2010. Estimating natural landscape changes from 1992 to 2030 in the	Theobald
conterminous US. Landscape Ecology 25:999-1011.	2010
Theobald, D. M., D. L. Stevens, Jr., D. White, N. S. Urquhart, A. R. Olsen, and J. B.	Theobald et
Norman. 2007. Using GIS to generate spatially-balanced random survey designs for	al. 2007
natural resource applications. Environmental Management 40(1):134-146.	Thoohold ++
Theobald, D. M., D. M. Merritt, and J. B. Norman, III. 2010a. Assessment of threats to	Theobald et
riparian ecosystems in the western U.S. Prepared for the Western Environmental Threats Assessment Center, Prineville, OR. June 2010.	al. 2010a
Theobald, D. M., J. B. Norman, III, and P. Newman. 2010b. Estimating visitor use of	Theobald et
protected areas by modeling accessibility: A case study in Rocky Mountain National	al. 2010b
Park, Colorado, USA. Journal of Conservation Planning 6:1-20.	

Full Citation	Short Citation (used in text)
Thomas, K., T. K. Keeler-Wolf, J. Franklin, and P. Stine. 2004. Central Mojave vegetation database final report. Prepared for Mojave Desert Ecosystem Program, U.S. Geological Survey, Western Ecological Research Center & Southwest Biological Science Center. 251 pp.	Thomas et al. 2004
Thompson, B. C., P. L. Matusik-Rowan, and K. G. Boykin. 2002. Prioritizing conservation potential of arid-land montane natural springs and associated riparian areas. Journal of Arid Environments 50(4):527-547.	Thompson et al. 2002
Thompson, C. R. 1995. Air pollution effects on desert plants. Pages 481-488 in: J. Latting, and P. G. Rowlands, editors. The California desert: An introduction to natural resources and man's impact. Volume II. June Latting Books, Riverside, CA.	Thompson 1995
Thompson, C. R., G. Kats, and R. W. Lennox. 1980. Effects of SO2 and/or NO2 on native plants of the Mojave Desert and eastern Mojave-Colorado Desert. Journal of the Air Pollution Control Association 30:1304-1309.	Thompson et al. 1980
Thorne, R. F., A. A. Schoenherr, C. D. Clements, and J. A. Young. 2007. Transmontane coniferous vegetation. Pages 574-586 in: M. G. Barbour, T. Keeler-Wolf, and A. A. Schoenherr, editors. Terrestrial vegetation of California. Third edition. University of California Press, Berkeley.	Thorne et al. 2007
Tinkle, D. W., and A. E. Dunham. 1983. Demography of the tree lizard, Urosaurus ornatus, in central Arizona. Copeia 1983:585-598.	Tinkle and Dunham 1983
Tirmenstein, D. 1999. Artemisia tridentata ssp. tridentata. In: Fire Effects Information System [Online]. USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). [http://www.fs.fed.us/database/feis/] (accessed 2 January 2011).	Tirmenstein 1999
TNC [The Nature Conservancy]. 2001. Ecoregion-based conservation in the Mojave Desert. Mojave Desert Ecoregional Planning Team. Unpublished report by TNC California Field Office and TNC Nevada Field Office, Las Vegas, NV. 148 pp. plus appendices.	TNC 2001
Tobler, W. R. 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography. 46: 234-240.	
Tonnesen, G., Z. Wang, M. Omary, and C. J. Chien. 2007. Assessment of Nitrogen Deposition: Modeling and Habitat Assessment. California Energy Commission, PIER Energy-Related Environmental Research. CEC-500-2005-032.	
Trimble, S. 1989. The sagebrush ocean: A natural history of the Great Basin. University of Nevada Press, Reno, NV. 248 pp.	Trimble 1989
Trombulak, S. C., and C. A. Frissel. 1999. Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology 14:18-30.	Trombulak and Frissel 1999
Trzcinski, M. K., L. Fahrig, and G. Merriam. 1999. Independant effects of forest cover and fragmentation on the distribution of forest breeding birds. Ecological Applications 9(2):586-593.	Trzcinski et al. 1999
Tueller, P. T., and R. E. Eckert, Jr. 1987. Big sagebrush (<i>Artemisia tridentata vaseyana</i>) and longleaf snowberry (<i>Symphoricarpos oreophilus</i>) plant associations in northeastern Nevada. Great Basin Naturalist 47(1):117-131.	Tueller and Eckert 1987

Full Citation	Short Citation (used in text)
Turnbull, L., J. Wainwright, and R. E. Brazier. 2008. A conceptual framework for understanding semi-arid land degradation: Ecohydrological interactions across multiple-space and time scales. Ecohydrology 1:23-34. DOI: 10.1002/eco.4.	(
Turner, R. M. 1982. Mohave desertscrub. Pages 157-168 in: D. E. Brown, editor. Biotic communities of the American Southwest-United States and Mexico. Desert Plants Special Issue 4(1-4).	Turner 1982
Underwood, E. C., and B. L. Fisher. 2006. The role of ants in conservation monitoring: If, when, and how. Biological Conservation 132:166-182.	Underwood and Fisher 2006
University of Montana, Division of Biological Sciences. 2001. INVADERS Database System [Online].[http://invader.dbs.umt.edu/]	University of Montana 2001
Unnasch, R. S., D. P. Braun, P. J. Comer, and G. E. Eckert. 2008. The Ecological Integrity Assessment Framework: A framework for assessing the ecological integrity of biological and ecological resources of the National Park System. Report to the National Park Service.	Unnasch et al. 2008
USACE [U.S. Army Corps of Engineers]. 2008. National inventory of dams. U.S. Army Engineer Research and Development Center, U.S. Army Corps of Engineers. [http://www.erdc.usace.army.mil/pls/erdcpub/docs/erdc/images/ERDC_FS_Product_N ID.pdf]	USACE 2008
USBOR [U.S. Bureau of Reclamation]. 2011. Reclamation, SECURE Water Act Section 9503(c) - Reclamation Climate Change and Water, Report to Congress, 2011. Report prepared for the United States Congress by the U.S. Department of the Interior Bureau of Reclamation, April 2011.	USBOR 2011
USBOR [U.S. Bureau of Reclamation]. 2012. Lower Colorado River Multi-Species Conservation Program. U.S. Department of the Interior Bureau of Reclamation. [http://www.lcrmscp.gov/]	USBOR 2012
USDA [U.S. Department of Agriculture]. 2007. Agriculture census of the United States. U.S. Department of Agriculture, National Agricultural Statistics Service. [http://www.agcensus.usda.gov/]	USDA 2007
USDI [U.S. Departments of the Interior]. 2008. Inventory of onshore Federal oil and natural gas resources and restrictions to their development. Prepared by the U.S. Departments of the Interior, Agriculture and Energy. [http://www.blm.gov/wo/st/en/prog/energy/oil_and_gas/EPCA_III.html]	USDI 2008
USEPA [U.S. Environmental Protection Agency] (Bierwagen, B., D. M. Theobald, C. R. Pyke, A. Choate, P. Groth, J. V. Thomas, and P. Morefield). 2009. Land-use scenarios: National-scale housing-density scenarios consistent with climate change storylines. EPA/600/R-08/076F. Global Change Research Program, National Center for Environmental Assessment, Washington, DC. http://www.epa.gov/ncea.	USEPA 2009
USEPA [U.S. Environmental Protection Agency]. 2004. Overview of Current Total Maximum Daily Load - TMDL - Program and Regulations. Available at <u>http://www.epa.gov/owow/tmdl.html</u> . Accessed on August 23, 2012.	USEPA 2004
USEPA [U.S. Environmental Protection Agency]. 2005. Use of biological information to better define designated aquatic life uses in state and tribal water quality standards: Tiered aquatic life uses. EPA-822-R-05-001. Draft, August 10, 2005.	USEPA 2005

Full Citation	Short Citation
	(used in text)
USEPA [U.S. Environmental Protection Agency]. 2007. Level III ecoregions of the	USEPA 2007
conterminous United States. Map.	
[http://www.epa.gov/wed/pages/ecoregions/level_iii_iv.htm#Level III]	
USEPA [U.S. Environmental Protection Agency]. 2009. The National Study of Chemical	
Residues in Lake Fish Tissue. U.S. Environmental Protection Agency, Office of Water,	
EPA-823-R-09-006. Washington, D.C.	
USEPA [U.S. Environmental Protection Agency]. 2010. ICLUS v1.3 User's Manual: ArcGIS	USEPA 2010
Tools and Datasets for Modeling US Housing Density Growth. Global Change Research	
Program, National Center for Environmental Assessment, Washington, DC; EPA/600/R-	
09/143F. Available from the National Technical Information Service, Springfield, VA,	
and online at http://www.epa.gov/ncea/global.	
USEPA [U.S. Environmental Protection Agency]. 2011. National Center for	USEPA 2011
Environmental Research. [website: http://epa.gov/ncer] (accessed 2011).	
USFWS [U.S. Fish & Wildlife Service]. 2003. Biological assessment for the proposed	USFWS 2003
addition of maneuver training land at Fort Irwin, CA. Executive summary. U.S. Fish &	
Wildlife Service. [http://www.fortirwinlandexpansion.com/BA.htm]	
USGCRP [U.S. Global Change Research Program]. 2009. Global climate change impacts	USGCRP 2009
in the United States. U.S. Global Change Research Program report. Cambridge	
University Press. 189 pp.	
USGS [U.S. Geological Survey]. 2006. National hydrography dataset.	USGS 2006
[http://nhd.usgs.gov/index.html]	
USGS [U.S. Geological Survey]. 2009. Nonindigenous aquatic species.	USGS 2009
[http://nas.er.usgs.gov/default.aspx]	
USGS [U.S. Geological Survey]. 2011. StreamStats. Online:	
http://water.usgs.gov/osw/streamstats/.	
Utah Department of Environmental Quality (UDEQ). 2011. Utah Mercury Sampling	
Sites and Consumption Advisories, August 2011. Online:	
http://www.fishadvisories.utah.gov/map.htm.	
Utah Department of Environmental Quality (UDEQ). 2012. Mercury Information for the	
State of Utah. Online: http://www.mercury.utah.gov/.	
Van Donk, S. J., X. Huang, E. L. Skidmore, A. B. Anderson, D. Gebhart , V. Prehoda, and	Van Donk et
E. M. Kellogg. 2003. Wind erosion from military training lands in the Mojave Desert,	al. 2003
California, USA. Journal of Arid Environments 54(4):687-703.	
Vander Haegen, W. M., S. M. McCorquodale, C. R. Pearson, G. A. Green, and E.Yensen.	Vander
2001. Wildlife of eastside shrubland and grassland habitats. Chapter 11, pages 317-341	Haegen et al.
in: D. H. Johnson and T. A. O'Neil. Wildlife-habitat relationships in Oregon and	2001
Washington. Oregon State University Press, Corvallis.	
Vander Haegen, W. M., F. C. Dobler, and D. J. Pierce. 2000. Shrubsteppe bird response	Vander
to habitat and landscape variables in eastern Washington, USA. Conservation Biology	Haegen et al.
14:1145-1160.	2000
Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell, and C. E. Cushing. 1980. The	Vannote et al.
river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37:130-	1980
137.	
Vasek, F. C. 1980. Creosote bush: Long-lived clones in the Mojave Desert. American	Vasek 1980
Journal of Botany 67:246-255.	

Full Citation	Short Citation (used in text)
Vasek, F. C., H. B. Johnson, and D. H. Eslinger. 1975. Effects of pipeline construction on Vasek	
creosote bush scrub vegetation of the Mojave Desert. Madrono 23(1):1-13.	1975
VDDT [Vegetation Dynamics Development Tool]. (VDDT V.6)	VDDT
[http://www.essa.com/tools/vddt/download.html]	
Veltman, C. J., S. Nee, and M. J. Crawley. 1996. Correlates of introduction success in	Veltman et al.
exotic New Zealand birds. American Naturalist 147:542-557.	1996
Vitousek, P. M., C. M. D'Antonio, L. L. Loope, and R. Westbrooks. 1996. Biological	Vitousek et al.
invasions as global environmental change. American Scientist 84:468-478.	1996
Vogelmann, J. E., J. R. Kost, B. Tolk, S. Howard, K. Short, X. Chen, C. Huang, K. Pabst, and M. G. Rollins. 2011. Monitoring landscape change for LANDFIRE using multi- temporal satellite imagery and ancillary data. Journal of Selected Topics in Applied Earth Observations and Remote Sensing 4(2):252-264.	Vogelmann et al. 2011
Wade, A. A., and D. M. Theobald. 2010. Residential encroachment on U.S. protected areas. Conservation Biology 24(1):151-161.	Wade and Theobald 2010
Wainwright, J., A. J. Parsons, and A. D. Abrahams. 1999. Field and computer simulation experiments on the formation of desert pavement. Earth Surface Processes and Landforms (24):1025-1037.	Wainwright et al. 1999
Wang, U. 2009. The rush for gigawatts in the desert explodes. Green Tech Media, January 9, 2009. [http://www.greentechmedia.com/articles/read/the-rush-for- gigawatts-in-the-desert-explodes-5483/]	Wang 2009
Wangler, M. J., and R. A. Minnich. 2006. Fire succession in pinyon-juniper woodlands in	Wangler and
the San Bernardino Mountains. Madrono 43:493-514.	Minnich 2006
WAPT [Wildlife Action Plan Team]. 2006. Nevada wildlife action plan. Nevada Department of Wildlife, Reno, NV.	WAPT 2006
Ward, D. M., K. H. Nislow, and C. L. Folt. 2010. Bioaccumulation syndrome: Identifying factors that make some stream food webs prone to elevated mercury bioaccumulation. Annals of the New York Academy of Science 1195: 62-83. DOI 10.1111/j.1749-6632.2010.05456.x	Ward et al. 2010
Ward, J. V., and J. A. Stanford. 1989. Riverine ecosystems: The influence of man on catchment dynamics and fish ecology. Pages 56-64 in D. P. Dodge, editor. Proceedings of the International Large River Symposium. Canadian Special Publication. Fisheries and Aquatic Science 106:56-64.	Ward and Stanford 1989
Warren, D., and S. Seifert. 2010. Environmental niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications 21:335-342.	Warren and Seifert 2010
Webb, R. H., and S. S. Stielstra. 1979. Sheep grazing on Mojave Desert vegetation and soils. Environmental Management 3(6):517-529.	Webb and Stielstra 1979
Webb, R.H, L. Fenstermaker, J. Heaton, D. Hughson, E. McDonald, D. Millar, Editors. 2009. The Mojave Desert: Ecosystem Processes and Sustainability, University of Nevada Press.	Webb et al. 2009
Webb, R.H, S.A. Leake, and R.M. Turner. 2007. The ribbon of green: Change in riparian vegetation in the southwestern United States. University of Arizona Press. 462 pp.	Webb et al. 2007

Full Citation	Short Citation	
	(used in text)	
Weisenberger, M. E., P. R. Krausman, M. C. Wallace, D. W. DeYoung, and O. E.	Weisenberger	
Maughan. 1996. Effects of simulated jet aircraft noise on heart rate and behavior of	et al. 1996	
desert ungulates. The Journal of Wildlife Management 60(1):52-61.		
Wells, P. V. 1983. Paleobiogeography of montane islands in the Great Basin since the	Wells 1983	
last glaciopluvial. Ecological Monographs 53:341-382. Online:		
<u>http://dx.doi.org/10.2307/1942644</u> .		
West, N. E. 1979. Survival patterns of major perennials in salt desert shrub	West 1979	
communities of southwestern Utah. Journal of Range Management 32(6):442-445.		
West, N. E. 1982. Approaches to synecological characterization of wildlands in the	West 1982	
Intermountain West. Pages 633-643 in: In-place resource inventories: Principles &		
practices. A national workshop, University of Maine, Orono. Society of American		
Foresters, McClean, VA. August 9-14, 1981.		
West, N. E. 1983a. Great Basin-Colorado Plateau sagebrush semi-desert. Pages 331-349	West 1983a	
in: N. E. West, editor. Temperate deserts and semi-deserts. Ecosystems of the world,		
Volume 5. Elsevier Publishing Company, Amsterdam.		
West, N. E. 1983b. Intermountain salt desert shrublands. Pages 375-397 in: N. E. West,	West 1983b	
editor. Temperate deserts and semi-deserts. Ecosystems of the world, Volume 5.		
Elsevier Publishing Company, Amsterdam.		
West, N. E. 1983c. Western Intermountain sagebrush steppe. Pages 351-374 in: N. E.	West 1983c	
West, editor. Temperate deserts and semi-deserts. Ecosystems of the world, Volume 5.		
Elsevier Publishing Company, Amsterdam.		
West, N. E. 1988. Intermountain deserts, shrub steppes, and woodlands. Pages 207-	West 1988	
230 in: M. G. Barbour and W. D. Billings, editors. North American terrestrial vegetation.		
Cambridge University Press, New York.		
West, N. E., and J. A. Young. 2000. Intermountain valleys and lower mountain slopes.	West and	
Pages 255-284 in: M. G. Barbour and W. D. Billings, editors. North American Terrestrial	Young 2000	
Vegetation, second edition. Cambridge University Press, Cambridge.		
West, N. E., and K. I. Ibrahim. 1968. Soil-vegetation relationships in the shadscale zone	West and	
of southeastern Utah. Ecology 49(3):445-456.	Ibrahim 1968	
West, N. E. 1999. Synecology and disturbance regimes of sagebrush steppe		
ecosystems. In: Entwistle, P. G., A. M. DeBolt, J. H. Kaltenecker, and K. Steenhof,		
compilers. 2000. Proceedings: Sagebrush Steppe Ecosystems Symposium. Bureau of		
Land Management Publication No. BLM/ID/PT-001001+1150, Boise, Idaho, USA.		
Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam. 2006. Warming and	Westerling et	
earlier spring increase western U.S. wildfire activity. Science 313:940-943.	al. 2006	
Westerling, A. L., and B. P. Bryant. 2008. Climate change and wildfire in California.		
Climatic Change 87:231-249.		
Westoby, M., B. Walker, and I. Moy-Meir. 1989. Opportunistic Management for	Westoby et al.	
Rangelands Not at Equilibrium. Journal of Range Management 42:266-274.	1989	
Whisenant, S. G. 1990. Changing fire frequencies on Idaho's Snake River Plains:	Whisenant	
Ecological and management implications. Pages 4-10 in: E. D. McArthur, E. M. Romney,	1990	
S. D. Smith, and P. T. Tueller, compilers. Proceedingssymposium on cheatgrass		
invasion, shrub die-off, and other aspects of shrub biology and management, 1989		
April 5-7, Las Vegas, NV. General Technical Report INT-276. USDA Forest Service,		

Full Citation	Short Citation
	(used in text)
Whisenant, S. G., and F. J. Wagstaff. 1991. Successional trajectories of a grazed salt	Whisenant
desert shrubland. Vegetatio 94:133-140.	and Wagstaff
	1991
Whitford, W. G., and M. Bryant. 1979. Behavior of a predator and its prey: The horned	Whitford and
lizard (Phrynosoma cornutum) and harvester ants (Pogonomyrmex spp.). Ecology	Bryant 1979
60:686-694.	
Wiemeyer, S. N., J. F. Miesner, P. L. Tuttle, E. C. Murphy, L. Sileo, and D. Withers. 2007.	Wiemeyer et
Mercury and selenium in American White Pelicans breeding at Pyramid Lake, Nevada.	al. 2007
Waterbirds 30(2):284-295.	
Williams, M. W., and K. A. Tonnessen. 2000. Critical loads for inorganic nitrogen	
deposition in the Colorado Front Range, USA. Ecological Applications 10:1648-1665.	
Williamson, M. 1996. Biological invasions. Chapman & Hall, London.	Williamson
	1996
Wilshire, H. G. 1983. The impact of vehicles on desert soil stabilizers. Pages 31-50 in: R.	Wilshire 1983
H. Webb and H. G. Wilshire, editors. Environmental effects of off-road vehicles:	
Impacts and management in arid regions. Springer-Verlag, New York.	
Wilshire, H., and D. Prose. 1987. Wind energy development in California, USA.	Wilshire and
Environmental Management 11:13.	Prose 1987
Winkler, D. W., editor. 1977. An Ecological Study of Mono Lake, California. Institute of	Winkler 1977
Ecology Publication, No. 12, University of California, Davis.	
Wisdom, M. J., C. W. Meinke, S. T. Knick, and M. A. Schroeder. 2011. Factors associated	Wisdom et al.
with extirpation of sage-grouse. In: S. T. Knick and J. W. Connelly, editors. Greater sage-	2011
grouse: Ecology and conservation of a landscape species and its habitats. Studies in	
Avian Biology Series (volume 38), University of California Press, Berkeley.	
Wisdom, M. J., M. M. Rowland, and L. H. Suring, editors. 2005. Habitat threats in the	Wisdom et al.
sagebrush ecosystem: Methods of regional assessment and applications in the Great	2005
Basin. Alliance Communications Group, Allen Press, Lawrence, KS.	
Wisdom, M. J., and J. C. Chambers. 2009. A landscape approach to ecologically based	
management of Great Basin shrublands. Restoration Ecology 17(5):740-749.	
With, K. 1997. Application of neutral landscape models in conservation biology.	With 1997
Conservation Biology 11(5):1069-1080.	
Wolfe, A. P., A. C. Van Gorp, and J. S. Baron. 2003. Recent ecological and	
biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado,	
USA): A response to anthropogenic nitrogen deposition. Geobiology 1:153-168.	
Wolfe, A. P., J. S. Baron, and R. J. Cornett. 2001. Anthropogenic Nitrogen Deposition	
Induces Rapid Ecological Changes in Alpine Lakes of the Colorado Front Range (USA).	
Journal of Paleolimnology 25:1-7.	
Worthington, R. D. 1982. Dry and wet year comparisons of clutch and adult body sizes	Worthington
of Uta stansburiana stejnegeri. Journal of Herpetology 16:332-334.	1982
Wurtsbaugh, W. A., J. Gardberg, and C. Izdepski. 2011. Biostrome communities and	
	Wurtsbaugh et al. 2011
mercury and selenium bioaccumulation in the Great Salt Lake (Utah, USA). Science of	
the Total Environment 409:4425-4434.	

Full Citation	Short Citation (used in text)
Young, B. E., K. R. Hall, E. Byers, K. Gravuer, G. Hammerson, A. Redder, and K. Szabo. In press. Rapid assessment of plant and animal vulnerability to climate change. In Conserving Wildlife Populations in a Changing Climate, edited by J. Brodie, E. Post, and D. Doak. University of Chicago Press, Chicago, IL.	
Young, B., E. Byers, K. Gravuer, K. Hall, G. Hammerson, and A. Redder with input from J. Cordeiro and K. Szabo. 2011. The NatureServe Climate Change Vulnerability Index Release 2.1. NatureServe, Arlington, VA. Spreadsheet and guidelines (58 pp.) available for download at: http://www.natureserve.org/prodServices/climatechange/ccvi.jsp.	
Young, J. 2000. Bromus tectorum L. In: C. C. Bossard, J. M. Randall, and M. C. Hoshovsky, editors. Invasive plants of California's wildlands. University of California Press, Berkeley.	Young 2000
Young, J. A., and D. E. Palmquist. 1992. Plant age/size distributions in black sagebrush (<i>Artemisia nova</i>): Effects on community structure. The Great Basin Naturalist 52(4):313-320.	Young and Palmquist 1992
Young, J. A., and F. L. Allen. 1997. Cheatgrass and range science: 1930-1950. Journal of Range Management 50(5):530-535.	Young and Allen 1997
Young, J. A., R. A. Evans, R. E. Eckert, Jr., and B. L. Kay. 1987. Cheatgrass. Rangelands 9(6):266-270.	Young et al. 1987
Zamora, B., and P. T. Tueller. 1973. <i>Artemisia arbuscula, A. longiloba</i> , and <i>A. nova</i> habitat types in northern Nevada. Great Basin Naturalist 33(4):225-242.	Zamora and Tueller 1973
Zehner, R., M. Coolbaugh, and L. Shevenell. 2009. Preliminary geothermal potential and exploration in the Great Basin. Nevada Bureau of Mines and Geology Open-File Report 09-1, University of Nevada, Reno. 5 pp.	Zehner et al. 2009
Ziegler, A. D., and R. A. Sutherland. 2006. Effectiveness of a coral-derived surfacing material for reducing sediment production on unpaved roads, Schoffield Barracks, Oahu, Hawaii. Environmental Management 37(1):98-110.	
Zink, T. A., M. F. Allen, B. Heindl-Tenburen, and E. B. Allen. 1995. The effect of a disturbance corridor on an ecological reserve. Restoration Ecology 3:304-310.	Zink et al. 1995
Zouhar, K. L. 2001. <i>Pinus monophylla</i> . In: Fire Effects Information System [Online]. USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). [http://www.fs.fed.us/database/feis/] (accessed 2 January 2011).	Zouhar 2001
Zouhar, K. 2003. <i>Bromus tectorum</i> . In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2009, November 20].	Zouhar 2003

E-1.2 Other Sources: Websites

Listed here are websites cited in the reports, and some additional sites.

There are many dozens more that could be added; we have not attempted to be comprehensive; the references cited above often have URLs listed as well.

NatureServe websites

http://www.natureserve.org/ http://www.natureserve.org/explorer/ http://www.natureserve.org/explorer/ranking.htm http://www.natureserve.org/prodServices/heritagemethodology.jsp

Federal Agency Websites

http://plants.usda.gov/dl_all.html http://soils.usda.gov/ http://soils.usda.gov/use/hydric/intro.html http://fishadvisories.utah.gov/advisories.htm#utah http://fishadvisories.utah.gov/advisories.htm#utah http://www.cec.org/Page.asp?PageID=122&ContentID=1329&SiteNodeID=498 http://www.gap.uidaho.edu/padus/State_Standard2011_May24.pdf http://www.mojavedata.gov/mdi.html http://www.landfire.gov/index.php http://sagemap.wr.usgs.gov/

Natural Heritage Programs and Conservation Data Centers

http://www.azgfd.gov/w c/edits/species concern.shtml http://www.dfg.ca.gov/biogeodata/ http://heritage.nv.gov/index.htm http://dwrcdc.nr.utah.gov/ucdc/

Miscellaneous software, University, and NGO Websites

http://www.circuitscape.org http://essa.com/tools/vddt/ http://www.drecp.org/about/index.html http://www.usu.edu/buglab/ http://www.gbfiresci.org/

E-2 Glossaries

E-2.1 Project glossary

Table E - 2. Glossary of terms used in the REA.

Term	Definition
Areas of Critical Environmental	Areas within the public lands where special management attention is
Concern (ACEC)	required to protect and prevent irreparable damage to important
	historic, cultural, or scenic values, fish and wildlife resources or other
	natural systems or processes, or to protect life and safety from natural
	hazards (FLPMA 1976).
Aridisols	The central concept of Aridisols is that of soils that are too dry for
	mesophytic plants to grow. They have either:
	(1) an aridic moisture regime and an ochric or anthropic epipedon and
	one or more of the following with an upper boundry within 100 cm of
	the soil surface: a calcic, cambic, gypsic, natric, petrocalcic petrogypsic,
	or a salic horizon or a duripan or an argillic horizon, or
	(2)A salic horizon and saturation with water within 100 cm of the soil
	surface for one month or more in normal years.
	An aridic moisture regime is one that in normal years has no water
	available for plants for more than half the cumulative time that the soil
	temperature at 50 cm below the surface is $>5^{\circ}$ C. and has no period as
	long as 90 consecutive days when there is water available for plants
	while the soil temperature at 50 cm is continuously >8° C.
Assessment Management	BLM's team that provides overall direction and guidance to the REA
Team (AMT)	and makes decisions regarding ecoregional goals, resources of
	concern, conservation elements, change agents, management
	questions, tools, methodologies, models, and output work products.
	The team generally consists of State Resources Branch Managers from
A++	the ecoregion, a POC, and possibly agency partners.
Attribute	A defined characteristic of a geographic feature or entity.
Biophysical Setting (BpS)	As developed for LANDFIRE aims to depict the potential distribution of
	the ecosystem, given natural landscape disturbance regimes like
	wildfire. As used by LANDFIRE, the biophysical setting equates to the
	historic distribution of the ecosystem type, prior to alterations by
	European settlement and current human activities.
Change Agent	An environmental phenomenon or human activity that can
	alter/influence the future status of resource condition. Some change
	agents (e.g., roads) are the result of direct human actions or influence.
	Others (e.g., climate change, wildland fire, and invasive species) may
	involve natural phenomena or be partially or indirectly related to
	human activities.
Coarse Filter	
Coarse Filter	human activities.
Coarse Filter	human activities. A focus of ecoregional analysis that is based upon conserving resource
Coarse Filter	human activities. A focus of ecoregional analysis that is based upon conserving resource elements that occur at coarse scales, such as ecosystems, rather than
Coarse Filter	human activities. A focus of ecoregional analysis that is based upon conserving resource elements that occur at coarse scales, such as ecosystems, rather than upon finer scale elements, such as specific species. The concept behind
Coarse Filter Community	human activities. A focus of ecoregional analysis that is based upon conserving resource elements that occur at coarse scales, such as ecosystems, rather than upon finer scale elements, such as specific species. The concept behind a coarse filter approach is that preserving coarse-scale conservation

Conservation Element	A renewable resource object of high conservation interest often called a conservation target by others. For purposes of this TO, conservation elements will likely be types or categories of areas and/or resources including ecological communities or larger ecological assemblages.
Core Conservation Elements	The set of conservation elements that has been reduced from the complete set of conservation elements identified during the assessment initiation and pre-assessment phases.
Data Management Plan (DMP)	The assessment's plan for managing data, provided by the BLM, describing data standards, responsibilities, security, and other requirements for data management.
Dataset	A collection of related data.
Deductive models	Using existing mapped information, and then recombine them according to a set of rules determined by the modeler; typically working within ArcGIS, ModelBuilder TM was used to describe interactions among spatial datasets.
Development	A type of change (change agent) resulting from urbanization, industrialization, transportation, mineral extraction, water development, or other non-agricultural/silvicultural human activities that occupy or fragment the landscape or that develops renewable or non-renewable resources.
Didymo	<i>Didymosphenia geminate</i> , a species of diatom considered to be a nuisance species
Distribution (as in <i>species distribution</i>)	In this REA the spatial methods employed was mapping of actual distribution as best possible, whether current known occupied habitat or predicted habitat. (see <i>Range Mapping</i>)
Ecological Integrity	The ability of an ecological system to support and maintain a community of organisms that have the species composition, diversity, and functional organization comparable to those of natural habitats within the ecoregion.
Ecological Status	The condition of a criterion (biological or socio-economic resource values or conditions) within a geographic area (e.g., watershed, grid). A rating (e.g., low, medium, or high) or ranking (numeric) is assigned to specific criteria to describe status. The rating or ranking will be relative, either to the historical range of variability for that criterion (e.g., a wildland fire regime criterion) or relative to a time period when the criterion did not exist (e.g., an external partnerships/collaboration criterion). (also see <i>Status</i>)
Ecoregion	An ecological region or ecoregion is defined as an area with relative homogeneity in ecosystems. Ecoregions depict areas within which the mosaic of ecosystem components (biotic and abiotic as well as terrestrial and aquatic) differs from those of adjacent regions (Omernik and Bailey 1997).
Ecosystem	The interactions of communities of native fish, wildlife, and plants with

Element Occurrence	A term used by Natural Heritage Programs. An element occurrence generally delineates the location and extent of a species population or ecological community stand, and represents the geo-referenced biological feature that is of conservation or management interest. Element occurrences are documented by voucher specimens (where appropriate) or other forms of observations. A single element occurrence may be documented by multiple specimens or observations taken from different parts of the same population, or from the same population over multiple years.
Extent	The total area under consideration for an ecoregional assessment. For the BLM, this is a CEC Level III ecoregion or combination of several such ecoregions plus the buffer area surrounding the ecoregion. (see <i>Grain</i>).
Fine Filter	A focus of ecoregional analyses that is based upon conserving resource elements that occur at fine scale, such as specific species. A fine-filter approach is often used in conjunction with a coarse-filter approach (i.e., a coarse-filter/fine-filter framework) because coarse filters do not always capture some concerns, such as when a T&E species is a conservation element.
Fire Regime	Description of the patterns of fire occurrences, frequency, size, severity, and sometimes vegetation and fire effects as well, in a given area or ecosystem. A fire regime is a generalization based on fire histories at individual sites. Fire regimes can often be described as cycles because some parts of the histories usually get repeated, and the repetitions can be counted and measured, such as fire return interval (NWCG 2006).
Forecast; Forecasted	referring to future predicted distributions or future conditions, such as climate change, future development, or future ecological status of CEs. In some places "projections" is a term used interchangeably with forecasts.
Fragmentation	The process of dividing habitats into smaller and smaller units until their utility as habitat is lost (BLM 1997).
Geographic Information System (GIS)	A computer system designed to collect, manage, manipulate, analyze, and display spatially referenced data and associated attributes.
Grain	Grain is the spatial unit of analysis for ecoregional assessment and is the smallest area analyzed and used for regional planning purposes. The many data and model outputs incorporated into an ecoregional analysis are usually upscaled or downscaled to grain scale. The grain for ecoregional analysis may be a regular size and shape (e.g., square, hexagon) but also may be defined by a particular level of hydrologic unit or similar geographic feature.
Grid Cell	When used in reference to raster data, a grid cell is equivalent to a pixel (also see <i>pixel</i>). When a raster data layer is converted to a vector format, the pixels may instead be referred to as grid cells.
Habitat	A place where an animal or plant normally lives for a substantial part of its life, often characterized by dominant plant forms and/or physical characteristics (BLM 1990).

Heritage	See Natural Heritage Program.
Heritage Program	See Natural Heritage Program.
Hydrologic Unit	An identified area of surface drainage within the U.S. system for cataloging drainage areas, which was developed in the mid-1970s under the sponsorship of the Water Resources Council and includes drainage-basin boundaries, codes, and names. The drainage areas are delineated to nest in a multilevel, hierarchical arrangement. The hydrologic unit hierarchical system has four levels and is the theoreti- cal basis for further subdivisions that form the <i>watershed boundary</i> <i>dataset</i> 5th and 6th levels. (USGS 2009).
Indicator	Components of a system whose characteristics (e.g., presence or absence, quantity, distribution) are used as an index of an attribute (e.g., land health) that are too difficult, inconvenient, or expensive to measure (USDA et al. 2005).
Inductive models	Geo-referenced observations (e.g., known observations of a given species) are combined with maps of potential explanatory variables (climate, elevation, landform, soil variables, etc.). Statistical relationships between dependent variables (observations) and independent explanatory variables are used to derive a new spatial model.
Information Platform	Information Technology infrastructure used to support communication and collaboration of BLM's Ecoregional Assessments. Platform includes GIS hardware and software tools to manage, store, archive, and share data within the BLM and with our partners.
Invasive Species	Species that are not part of (if exotic non-natives), or are a minor component of (if native), an original community that have the potential to become a dominant or co-dominant species if their future establishment and growth are not actively controlled by management interventions, or that are classified as exotic or noxious under state or federal law. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasives (Modified from BLM Handbook 1740-2, Integrated Vegetation Handbook).
Key Ecological Attribute	An attribute, feature, or process that defines and characterizes an ecological community or system or entity; in conjunction with other key ecological attributes, the condition or function of this attribute or process is considered critical to the integrity of the ecological community or system in question. In the BLM REAs, various analyses were conducted to calculate scores or indexes indicating the status of key ecological attributes for various Conservation Elements (CEs).
Land Health	Degree to which the integrity of the soil and the ecological processes of ecosystems are sustained (BLM Handbook H-4180-1).
Landscape Species	Biological species that use large, ecologically diverse areas and often have significant impacts on the structure and function of natural ecosystems (Redford et al. 2000).

Landscape Unit	Because an REA considers a variety of phenomena, there will be many phenomena and process (or intrinsic) grain sizes. These will necessarily be scaled to a uniform support unit, which herein is called a <i>landscape</i> <i>unit</i> . This landscape unit will be the analysis scale used for reporting and displaying ecoregional analyses.
Land-Use Plan (LUP)	A set of decisions that establishes management direction for land within an administrative area, as prescribed under the planning provisions of FLPMA; an assimilation of land-use-plan-level decisions developed through the planning process outlined in 43 CFR 1600, regardless of the scale at which the decisions were developed. The term includes both resource management plans and management framework plans (BLM 2007).
Management Questions	Questions from decision-makers that usually identify problems and request how to fix or solve those problems.
Metadata	The description and documentation of the content, quality, condition, and other characteristics of geospatial data.
Model	Any representation, whether verbal, diagrammatic, or mathematical, of an object or phenomenon. Natural resource models typically characterize resource systems in terms of their status and change through time. Models imbed hypotheses about resource structures and functions, and they generate predictions about the effects of management actions. (Adaptive Management: DOI Technical Guide).
Mollisols	The central concept of Mollisols is that of soils that have a dark colored surface horizon and are base rich; they are typically formed in grasslands. Nearly all have a mollic epipedon. Many also have an argillic or natric horizon or a calcic horizon. A few have an albic horizon. Some also have a duripan or a petrocalic horizon.
Native Plant and Animal Populations and Communities	Populations and communities of all species of plants and animals naturally occurring, other than as a result of an introduction, either presently or historically in an ecosystem. (BLM Manual H-4180-1).
Native Species	Species that historically occurred or currently occur in a particular ecosystem and were not introduced (BLM 2007b).
Natural Community	An assemblage of organisms indigenous to an area that is characterized by distinct combinations of species occupying a common ecological zone and interacting with one another (BLM 2007b).
Natural Heritage Program	An agency or organization, usually based within a state or provincial natural resource agency, whose mission is to collect, document, and analyze data on the location and condition of biological and other natural features (such as geologic or aquatic features) of the state or province. These programs typically have particular responsibility for
	documenting at-risk species and threatened ecosystems. (See natureserve.org/ for additional information on these programs.)

Pixel	A pixel is a cell or spatial unit comprising a raster data layer; within a single raster data layer, the pixels are consistently sized; a common pixel size is 30 x 30 meters square. Pixels are usually referenced in relation to spatial data that are in raster format. In this REA, some pixels sizes included 90 x 90 m, 4 x 4 km, and 15 x 15 km (also see <i>Grid Cell</i>).
Population	Individuals of the same species that live, interact, and migrate through the same niche and habitat.
Projection	referring to future predicted distributions or future conditions, such as climate change, future development, or future ecological status of CEs. In most places "forecast" is the term used interchangeably with projection.
Range Mapping (as in <i>Species Range</i>)	A spatially coarse depiction; the generalized area of possible occurrence of a species or ecosystem, such as one might find in a wildlife field guide; was not utilized in this REA.
Rapid Ecoregional Assessment (REA)	The methodology used by the BLM to assemble and synthesize that regional-scale resource information, which provides the fundamental knowledge base for devising regional resource goals, priorities, and focal areas, on a relatively short time frame (less than 2 years).
Rapid Ecoregional Assessment Work Plan (REAWP)	The work plan (scope of services) that guides the Phase II Assessment component of a REA. This document fully establishes the design of the Phase II effort, and is essentially the 'blueprint' for that work effort and resulting products.
Regionally-Significant Resource	A native plant, wildlife, or fish resource or other ecosystem resource or service that has more than locally significant qualities, which give it special worth, consequence, meaning, distinctiveness, or cause for concern, especially compared to other similar resources. Generally, regionally-significant resources within a specific ecoregion occur in two or more field offices.
Resource Value	An ecological value, as opposed to a cultural value. Examples of resource values are those species, habitats, communities, features, functions, or services associated with areas with abundant native species and few non-natives, having intact, connected habitats, and that help maintain landscape hydrologic function. Resource values of concern to the BLM can be classified into three categories: native fish, wildlife, or plants of conservation concern; regionally-important terrestrial ecological features, functions, and services; and regionally- important aquatic ecological features, functions, and services.

Scale	 Refers to the characteristic time or length of a process, observation, model, or analysis. <i>Intrinsic scale</i> refers to the scale at which a pattern or process actually operates. Because nature phenomena range over at least nine orders of magnitude, the intrinsic scale has wide variation. This is significant for ecoregional assessment, where multiple resources and their phenomena are being assessed. <i>Observation scale</i>, often referred to as sampling or measurement scale, is the scale at which sampling is undertaken. Note that once data are observed at a particular scale, that scale becomes the limit of analysis, not the phenomenon scale. <i>Analysis</i> or <i>modeling scale</i> refers to the resolution and extent in space and time of statistical analyses or simulation modeling. <i>Policy scale</i> is the scale at which policies are implemented and is influenced by social, political, and economic policies.
Scaling	The transfer of information across spatial scales. <i>Upscaling</i> is the process of transferring information from a smaller to a larger scale. <i>Downscaling</i> is the process of transferring information to a smaller scale.
Special Status Species (SSS)	Plant and animal species that are federally listed as threatened or endangered; proposed threatened or endangered; candidate species; state listed as threatened or endangered or listed by a BLM state director as sensitive (BLM 2001b).
Status	The condition of a criterion (biological or socio-economic resource values or conditions) within a geographic area (e.g., watershed, grid). A rating (e.g., low, medium, or high) or ranking (numeric) is assigned to specific criteria to describe status. The rating or ranking will be relative, either to the historical range of variability for that criterion (e.g., a wildland fire regime criterion) or relative to a time period when the criterion did not exist (e.g., an external partnerships/collaboration criterion).
Step-Down	A step-down is any action related to regionally-defined goals and priorities discussed in the REA that are acted upon through actions by specific State and/or Field Offices. These step-down actions can be additional inventory, a finer-grained analysis, or a specific management activity.
Stressor	A factor causing negative impacts to the biological health or ecological integrity of a Conservation Element. Factors causing such impacts may or may not have anthropogenic origins. In the context of the REAs, these factors are generally anthropogenic in origin.
Subwatershed	A subdivision of a <i>watershed</i> . A <i>subwatershed</i> is the 6th-level, 12-digit unit and smallest of the hydrologic unit hierarchy. Subwatersheds generally range in size from 10,000 to 40,000 acres. (USGS 2009).
Value	See Resource Value.
Watershed	A watershed is the 5th-level, 10-digit unit of the hydrologic unit hierarchy. Watersheds range in size from 40,000 to 250,000 acres. Also used as a generic term representing a drainage basin or combination of hydrologic units of any size (USGS 2009).

Watershed Boundary Dataset (WBD)	A National geospatial database of drainage areas consisting of the 1st through 6th hierarchical hydrologic unit levels. The WBD is an ongoing multiagency effort to create hierarchical, and integrated hydrologic units across the Nation (USGS 2009).
Wildland Fire	Any non-structure fire that occurs in the wildland. Three distinct types of wildland fire have been defined and include wildfire, wildland fire use, and prescribed fire (NWCG 2006).

E-2.2 Acronym List

Acronym	Definition
AADT	Annual Average Daily Traffic
ACEC	Area of Critical Environmental Concern
AFB	Air Force Base
AGI	Annual Grasses Index
AML	Appropriate Management Level
AMT	Assessment Management Team
AR4	Intergovernmental Panel on Climate Change - Fourth Assessment Report
ArcGIS	Arc Geographic Information System
ARRA	American Recovery and Reinvestment Act
AUC	Area Under the (ROC) Curve
AUM	Animal Unit Month
AWC	Available Water Capacity
AWS	Associate Weather Services
BCM	Basin Characterization Model
BLM	Bureau of Land Management
BpS	Biophysical Settings
СА	Change Agent
CA GAP	California Gap Analysis Project
CA ReGAP	California Regional Gap Analysis Project
CART	Classification and Regression Tree
CBR	Central Basin and Range
CCVI	Climate Change Vulnerability Index
CD	Compact Disc
CE	Conservation Element
CEC	Commission for Environmental Cooperation
СО	Contracting Officer
COR	Contracting Officer's Representative
CVS	Conservation Value Summary
DCMP	Desert Conservation Management Plan
DDTF	Data Delivery Tracking Form
DEM	Digital Elevation Model
DMP	Data Management Plan
DOD	Department of Defense
DOE	Department of Energy
DOI	Department of Interior
DQE	Data Quality Evaluation
DQL	
DRECP	Desert Renewable Energy Conservation Plan Desert Research Institute

Table E - 3. List of acronyms used in the REA.

Acronym	Definition
DRS	Division of Resource Services
DSS	Decision Support System
DVD	Digital Versatile Disc
EFC	Environmental Flow Components
EIA	Ecological Integrity Assessment
EIS	Environmental Impact Statement
ENSO	El Nino Southern Oscillation
EO	Element Occurrence
EPA	Environmental Protection Agency
EPCA	Energy Policy and Conservation Act
ERA	Ecoregional Assessment
ESA	Endangered Species Act
ESD	Ecological Site Description
ESRI®	Environmental Systems Research Institute, Inc.
ET	Evapotranspiration
EVT	Existing Vegetation Type
FAO	Food and Agriculture Organization
FCC	Federal Communications Commission
FGDC	Federal Geographic Data Committee
FLPMA	Federal Land Policy and Management Act
FO	Field Office
FRCC	Fire Regime Condition Class
FRI	Fire Return Interval
FTP	File Transfer Protocol
G-1, G-3	Globally Imperiled-Globally Vulnerable
GA	Grazing Allotment
GAP	Gap Analysis Project
GBPJW	Great Basin Pinyon-Juniper Woodland
GCM	General Circulation Model
GFDL	Geophysical Fluid Dynamics Laboratory
GFF	government-furnished facilities
GFM	government-furnished material
GFP	government-furnished property
GIS	Geographic Information System
GSG	Greate
НА	Herd Area
HMA	Herd Management Area
HMAs	Herd Management Areas
HRV	Historic Range of Variation
HU	Hydrologic Unit
HUC	Hydrologic Unit Code
IBA	Important Bird Areas

Acronym	Definition
ICLUS	Integrated Climate and Land Use Scenarios
IDIQ	Indefinite Delivery/Indefinite Quantity
IPCC	Intergovernmental Panel on Climate Change
ISO	International Organization for Standardization
JPEG	Joint Photographic Experts Group
KEA	Key Ecological Attribute
Kw	K factor (soil erodibility)
LANDFIRE	Landscape Fire and Resource Management Planning Tools Project
LCM	Landscape Condition Model
LF	LANDFIRE
LFRDB	LANDFIRE Reference Database
LRU	Landscape Reporting Unit
LU/LC	Land Use/Land Cover
LUP	Land Use Plan
MaxEnt	Maximum Entropy (modeling software)
MBR	Mojave Basin and Range
MDI	Mojave Desert Initiative
MQ	Management Question
MRDS	USGS Mineral Resource Data System
MRLA	Multiple Resource Land Area
NADP	National Atmospheric Deposition Program
NAMC	National Aquatic Monitoring Center
NAS	USGS Nonindigenous Aquatic Species
NCAR	National Center for Atmospheric Research
NCEP	National Centers for Environmental Prediction
NED	National Elevation Dataset
NEPA	National Environmental Policy Act
NGO	Non-Governmental Organization
NHD	National Hydrography Dataset
NHD Plus	National Hydrography Dataset Plus
NID	National Inventory of Dams
NL	Natural Landscapes
NLCD	National Land Cover Dataset
NOC	BLM National Operations Center
NPMS	National Pipeline Mapping System
NRCS	Natural Resource Conservation Service
NREL	National Renewable Energy Laboratory
NRV	Natural Range of Variability
NTAD	National Transportation Atlas Database
NVDEP	Nevada Department Environmental Protection
NWI	National Wetland Inventory
OHV	Off-Highway Vehicles

Acronym	Definition
ORV	Off-road Vehicle
PADUS	Protected Area Database of the U.S. (see USPAD)
PCM	Parallel Climate Model
PEIS	Programmatic Environmental Impact Statement
PET	Potential Evapotranspiration
PJ	Pinyon-Juniper
PL	Place
PLSS	Public Land Survey System
POC	Point-of-Contact
PRISM	Parameter-elevation Regressions on Independent Slopes Model
PWS	Public Water Supply
QA/QC	Quality Assurance/Quality Control
QC	Quality Control
RAS	Rangeland Administration System
REA	Rapid Ecoregional Assessment
REAWP	Rapid Ecoregional Assessment Work Plan
ReGAP	Regional Gap Analysis Project
RegCM	International Centre for Theoretical Physics Regional Climate Model
RETI	Renewable Energy Transmission Initiative
RMP	Resource Management Plan
ROC	Receiver Operating Characteristic
SAGEMAP	Sagebrush and Grassland Ecosystem Map Assessment Project
SAR	Sodium Adsorption Ratio
SClass	Succession Class
SDM	Species Distribution Model
SERGoM	Spatially Explicit Regional Growth Model
SMA	Surface Management Agency
SO	State Office
SOW	Statement of Work
SSURGO	Soil Survey Geographic Database
STATSGO	State Soil Geographic Database
STDV (stdv)	Standard Deviation (also stdev)
SUNY	State University of New York
SW ReGAP	Southwest Regional Gap Analysis Project
SWAP	State Wildlife Action Plan
SWEMP	Southwest Exotic Plant Mapping Program
SWPA	Southwest Principal Aquifer study
T&E	Threatened and Endangered
TNC	The Nature Conservancy
ТО	Task Order
USACE	United States Army Corps of Engineers
USDA	United States Department of Agriculture

Acronym	Definition
USFWS	United States Fish and Wildlife Service
USGS	United States Geological Survey
USGS-CD	USGS 15km dynamically downscaled climate model outputs
USPAD	U.S. Protected Areas Database (see PADUS)
VDDT	Vegetation Dynamics Development Tool
WBD	Watershed Boundary Dataset
WGA	Western Governors' Association
WHB	Wild Horse and Burro
WMC	Western Center for Monitoring and Assessment of Freshwater
	Ecosystems

E-2.3 Scientific-common name master list for plants

Many hundreds of plant species are listed in the coarse filter conceptual models. At the request of AMT reviewers, the below crosswalk from the Contractor's taxonomy to the USDA Natural Resources Conservation Service (NRCS) PLANTS Database is provided (**Error! Reference source not found.**). Readers of the conceptual models can look up plant scientific names to find the common name and NRCS PLANTS scientific name (if different). The NRCS PLANTS names were downloaded from <u>http://plants.usda.gov/dl_all.html</u> in January 2011.

Table E - 4. Plant scientific names used in the coarse-filter conceptual models , with NRCS PLANTS common name and scientific name (if different) . The USDA Natural Resources Conservation Service (NRCS) PLANTS Database checklist used here was downloaded in January 2011 from http://plants.usda.gov/dl_all.html.

Scientific Name	PLANTS Common Name	PLANTS Scientific Name
Abies concolor	white fir	
Abies grandis	grand fir	
Abies lasiocarpa	subalpine fir	
Acacia greggii	catclaw acacia	
Acacia neovernicosa	viscid acacia	
Acamptopappus sphaerocephalus	rayless goldenhead	
Acer glabrum	Rocky Mountain maple	
Acer grandidentatum	bigtooth maple	
Acer negundo	boxelder	
Achillea millefolium	common yarrow	
Achnatherum	needlegrass	
Achnatherum hymenoides	Indian ricegrass	
Achnatherum nelsonii ssp. dorei	Dore's needlegrass	
Achnatherum nelsonii ssp. nelsonii	Columbia needlegrass	
Achnatherum occidentale	western needlegrass	
Achnatherum speciosum	desert needlegrass	
Achnatherum thurberianum	Thurber's needlegrass	
Agrostis stolonifera	creeping bentgrass	

Scientific Name	PLANTS Common Name	PLANTS Scientific Name
Allenrolfea occidentalis	iodinebush	
Alnus incana	gray alder	
Alnus oblongifolia	Arizona alder	
Ambrosia deltoidea	triangle bur ragweed	
Ambrosia dumosa	burrobush	
Amelanchier	serviceberry	
Amelanchier alnifolia	Saskatoon serviceberry	
Amelanchier utahensis	Utah serviceberry	
Antennaria rosea	rosy pussytoes	
Aquilegia scopulorum	Utah columbine	
Arabis drummondii	Drummond's rockcress	
Arceuthobium campylopodum	western dwarf mistletoe	
Arctostaphylos	manzanita	
Arctostaphylos glauca	bigberry manzanita	
Arctostaphylos patula	greenleaf manzanita	
Arctostaphylos pringlei	Pringle manzanita	
Arctostaphylos pungens	pointleaf manzanita	
Arctostaphylos uva-ursi	kinnikinnick	
Arenaria	sandwort	
Arenaria congesta	ballhead sandwort	
Arenaria kingii	King's sandwort	
Aristida	threeawn	
Aristida purpurea	purple threeawn	
Aristida purpurea var. fendleriana	Fendler's threeawn	
Aristida ternipes	spidergrass	
Arnica cordifolia	heartleaf arnica	
Artemisia	sagebrush	
Artemisia arbuscula	little sagebrush	
Artemisia arbuscula ssp. arbuscula	little sagebrush	
Artemisia arbuscula ssp. longicaulis	little sagebrush	
Artemisia arbuscula ssp. longiloba	little sagebrush	
Artemisia arctica	boreal sagebrush	
Artemisia bigelovii	Bigelow sage	
Artemisia cana	silver sagebrush	
Artemisia cana ssp. cana	silver sagebrush	
Artemisia cana ssp. viscidula	silver sagebrush	
Artemisia filifolia	sand sagebrush	
Artemisia frigida	prairie sagewort	
Artemisia ludoviciana	white sagebrush	
Artemisia nova	black sagebrush	
Artemisia tridentata	big sagebrush	
Artemisia tridentata ssp. spiciformis	big sagebrush	
Artemisia tridentata ssp. tridentata	basin big sagebrush	
Artemisia tridentata ssp. vaseyana	mountain big sagebrush	
Artemisia tridentata ssp. wyomingensis	Wyoming big sagebrush	

Scientific Name	PLANTS Common Name	PLANTS Scientific Name
Artemisia tridentata ssp. xericensis	big sagebrush	
Artemisia tripartita ssp. tripartita	threetip sagebrush	
Astragalus	milkvetch	
Astragalus kentrophyta	spiny milkvetch	
Astragalus lentiginosus	freckled milkvetch	
Astragalus platytropis	broadkeel milkvetch	
Atriplex	saltbush	
Atriplex canescens	fourwing saltbush	
Atriplex confertifolia	shadscale saltbush	
Atriplex gardneri	Gardner's saltbush	
Atriplex hymenelytra	desertholly	
Atriplex lentiformis	big saltbush	
Atriplex parryi	Parry's saltbush	
Atriplex polycarpa	cattle saltbush	
Atriplex spinifera	spinescale saltbush	
Baccharis salicifolia	mule-fat	
Baccharis sarothroides	desertbroom	
Balsamorhiza	balsamroot	
Balsamorhiza sagittata	arrowleaf balsamroot	
Bebbia juncea	sweetbush	
Betula glandulosa	resin birch	
Betula occidentalis	water birch	
Boerhavia	spiderling	
Bothriochloa barbinodis	cane bluestem	
Bouteloua breviseta	gypsum grama	
Bouteloua curtipendula	sideoats grama	
Bouteloua eriopoda	black grama	
Bouteloua gracilis	blue grama	
Bouteloua hirsuta	hairy grama	
Brassica tournefortii	Asian mustard	
Brickellia laciniata	splitleaf brickellbush	
Bromus carinatus	California brome	
Bromus inermis	smooth brome	
Bromus japonicus	field brome	Bromus arvensis
Bromus madritensis	compact brome	
Bromus rubens	red brome	
Bromus tectorum	cheatgrass	
Bursera microphylla	elephant tree	
Calamagrostis montanensis	plains reedgrass	
Calamagrostis purpurascens	purple reedgrass	
Calamagrostis rubescens	pinegrass	
Calamovilfa longifolia	prairie sandreed	
Canotia holacantha	crucifixion thorn	
Carex	sedge	
Carex duriuscula	needleleaf sedge	

Scientific Name	PLANTS Common Name	PLANTS Scientific Name
Carex elynoides	blackroot sedge	
Carex filifolia	threadleaf sedge	
Carex geyeri	Geyer's sedge	
Carex haydeniana	cloud sedge	
Carex nardina	spike sedge	
Carex rossii	Ross' sedge	
Carex rupestris	curly sedge	
Carex scirpoidea	northern singlespike sedge	
Carex siccata	dryspike sedge	
Carnegia gigantea	saguaro	Carnegiea gigantea
Castilleja	Indian paintbrush	
Ceanothus greggii	desert ceanothus	
Ceanothus leucodermis	chaparral whitethorn	
Ceanothus martinii	Martin's ceanothus	
Ceanothus prostratus	prostrate ceanothus	
, Ceanothus velutinus	snowbrush ceanothus	
Celtis laevigata var. reticulata	netleaf hackberry	
Cercocarpus intricatus	littleleaf mountain mahogany	
Cercocarpus ledifolius	curl-leaf mountain mahogany	
Cercocarpus ledifolius var. intercedens	curl-leaf mountain mahogany	
Cercocarpus ledifolius var. ledifolius	curl-leaf mountain mahogany	
Cercocarpus montanus	alderleaf mountain mahogany	
Cercocarpus montanus var. glaber	birchleaf mountain mahogany	
Chamaebatiaria millefolium	desert sweet	
Chamaesyce	sandmat	
Chilopsis linearis	desert willow	
Chorizanthe rigida	devil's spineflower	
Chrysolepis sempervirens	bush chinquapin	
Chrysothamnus	rabbitbrush	
Chrysothamnus viscidiflorus	yellow rabbitbrush	
Chrysothamnus viscidiflorus ssp.	yellow rabbitbrush	
lanceolatus		
Chrysothamnus viscidiflorus ssp. puberulus	yellow rabbitbrush	
Cirsium eatonii	Eaton's thistle	
Cleome isomeris	bladderpod spiderflower	
Coleogyne	coleogyne	
Coleogyne ramosissima	blackbrush	
Collinsia parviflora	maiden blue eyed Mary	
Cornus sericea	redosier dogwood	
Crataegus rivularis	river hawthorn	
Croton californicus	California croton	
Croton wigginsii	Wiggins' croton	
Cryptantha	cryptantha	
Cymopterus cinerarius	gray springparsley	
Cymopterus nivalis	snowline springparsley	

Scientific Name	PLANTS Common Name	PLANTS Scientific Name
Dactylis glomerata	orchardgrass	
Dalea	prairie clover	
Dalea purpurea	purple prairie clover	
Danthonia intermedia	timber oatgrass	
Danthonia parryi	Parry's oatgrass	
Dasyochloa pulchella	low woollygrass	
Delphinium	larkspur	
Deschampsia caespitosa	tufted hairgrass	Deschampsia cespitosa
Descurainia	tansymustard	
Dicoria canescens	desert twinbugs	
Digitaria californica	Arizona cottontop	
Distichlis spicata	saltgrass	
Dryas octopetala	eightpetal mountain-avens	
Echinocactus polycephalus	cottontop cactus	
Elaeagnus angustifolia	Russian olive	
Eleocharis palustris	common spikerush	
Elymus elymoides	squirreltail	
Elymus glaucus	blue wildrye	
Elymus lanceolatus	thickspike wheatgrass	
Elymus lanceolatus ssp. lanceolatus	thickspike wheatgrass	
Elymus trachycaulus	slender wheatgrass	
Encelia	brittlebush	
Encelia farinosa	brittlebush	
Ephedra	jointfir	
Ephedra californica	California jointfir	
Ephedra cutleri	Cutler's jointfir	
Ephedra funerea	Death Valley jointfir	
Ephedra nevadensis	Nevada jointfir	
Ephedra torreyana	Torrey's jointfir	
Ephedra viridis	mormon tea	
Eragrostis intermedia	plains lovegrass	
Ericameria	goldenbush	
Ericameria discoidea	whitestem goldenbush	
Ericameria linearifolia	narrowleaf goldenbush	
Ericameria nauseosa	rubber rabbitbrush	
Ericameria nauseosa var. hololeuca	rubber rabbitbrush	
Ericameria nauseosa var. salicifolia	rubber rabbitbrush	
Ericameria nauseosa var. speciosa	rubber rabbitbrush	
Ericameria parryi	Parry's rabbitbrush	
Ericameria teretifolia	green rabbitbrush	
Erigeron	fleabane	
Erigeron compositus	cutleaf daisy	
Erigeron pygmaeus	pygmy fleabane	
Erigeron speciosus	aspen fleabane	
Erigeron tener	slender fleabane	

Scientific Name	PLANTS Common Name	PLANTS Scientific Name
Eriogonum	buckwheat	
Eriogonum deserticola	Colorado Desert buckwheat	
Eriogonum fasciculatum	Eastern Mojave buckwheat	
Eriogonum gracilipes	White Mountain buckwheat	
Eriogonum holmgrenii	Snake Range buckwheat	
Eriogonum inflatum	desert trumpet	
Eriogonum ovalifolium	cushion buckwheat	
Eriogonum umbellatum	sulphur-flower buckwheat	
Eucephalus engelmannii	Engelmann's aster	
Fallugia paradoxa	Apache plume	
Ferocactus	barrel cactus	
Festuca	fescue	
Festuca arizonica	Arizona fescue	
Festuca brachyphylla	alpine fescue	
Festuca campestris	rough fescue	
Festuca idahoensis	Idaho fescue	
Festuca thurberi	Thurber's fescue	
Forestiera pubescens	stretchberry	
Fouquieria splendens	ocotillo	
Fragaria vesca	woodland strawberry	
Fragaria virginiana	Virginia strawberry	
Fraxinus velutina	velvet ash	
Fremontodendron californicum	California flannelbush	
Galium boreale	northern bedstraw	
Garrya flavescens	ashy silktassel	
Garrya wrightii	Wright's silktassel	
Geraea canescens	hairy desertsunflower	
Geranium viscosissimum	sticky purple geranium	
Geum	avens	
Geum rossii	Ross' avens	
Glossopetalon spinescens	spiny greasebush	
Glyceria striata	fowl mannagrass	
Gravia spinosa	spiny hopsage	
Gutierrezia sarothrae	broom snakeweed	
Halogeton glomeratus Helianthus annuus	saltlover	
	common sunflower	
Heracleum sphondylium	eltrot needle and thread	
Hesperostipa	needle and thread	
Hesperostipa comata		
Heterotheca	false goldenaster	
Holodiscus	oceanspray	
Holodiscus discolor	oceanspray	
Hymenoclea monogyra	singlewhorl burrobrush	
Hymenoclea salsola	burrobrush	
Hymenoxys hoopesii	owl's-claws	

Scientific Name	PLANTS Common Name	PLANTS Scientific Name
Iris missouriensis	Rocky Mountain iris	
Jatropha dioica var. graminea	leatherstem	
Juglans major	Arizona walnut	
Juglans microcarpa	little walnut	
Juncus	rush	
Juniperus	juniper	
Juniperus californica	California juniper	
Juniperus communis	common juniper	
Juniperus deppeana	alligator juniper	
Juniperus monosperma	oneseed juniper	
Juniperus occidentalis	western juniper	
Juniperus occidentalis var. australis	western juniper	
Juniperus osteosperma	Utah juniper	
Juniperus scopulorum	Rocky Mountain juniper	
Kobresia myosuroides	Bellardi bog sedge	
Kochia americana	green molly	Bassia americana
Koeleria macrantha	prairie Junegrass	
Krameria	ratany	
Krameria erecta	littleleaf ratany	
Krameria grayi	white ratany	
Krascheninnikovia lanata	winterfat	
Lactuca serriola	prickly lettuce	
Larrea tridentata	creosote bush	
Lathyrus	реа	
Lepidium perfoliatum	clasping pepperweed	
Leptochloa dubia	green sprangletop	
Leptodactylon pungens	granite prickly phlox	Linanthus pungens
Leucopoa kingii	spike fescue	
Leymus cinereus	basin wildrye	
Leymus flavescens	yellow wildrye	
Leymus salinus	saline wildrye	
Liatris punctata	dotted blazing star	
Ligusticum filicinum	fernleaf licorice-root	
Lupinus	lupine	
Lupinus argenteus	silvery lupine	
Lycium	desert-thorn	
Lycium andersonii	water jacket	
Lycium shockleyi	Shockley's desert-thorn	
Lycurus phleoides	common wolfstail	
Mahonia repens	creeping barberry	
Maianthemum stellatum	starry false lily of the valley	
Menodora spinescens	spiny menodora	
Mertensia arizonica	aspen bluebells	
Mertensia lanceolata	prairie bluebells	
Muhlenbergia	muhly	

Scientific Name	PLANTS Common Name	PLANTS Scientific Name
Muhlenbergia montana	mountain muhly	
Muhlenbergia porteri	bush muhly	
Muhlenbergia pungens	sandhill muhly	
Muhlenbergia richardsonis	mat muhly	
Nama	fiddleleaf	
Nassella	needlegrass	
Nassella viridula	green needlegrass	
Nolina	beargrass	
Nolina bigelovii	Bigelow's nolina	
Nolina parryi	Parry's beargrass	
Oenothera	evening primrose	
Olneya tesota	desert ironwood	
Opuntia	pricklypear	
Opuntia acanthocarpa	buckhorn cholla	Cylindropuntia acanthocarpa
Opuntia basilaris	beavertail pricklypear	
Opuntia bigelovii	teddybear cholla	Cylindropuntia bigelovii
Opuntia schottii	Big Bend pricklypear	Grusonia schottii
Oryzopsis	ricegrass	
Osmorhiza berteroi	sweetcicely	
Packera werneriifolia	hoary groundsel	
Palafoxia arida var. gigantea	giant Spanish needle	
Palafoxia arida var. gigantea		Palafoxia linearis
Panicum urvilleanum	desert panicgrass	
Parkinsonia florida	blue paloverde	
Parkinsonia microphylla	yellow paloverde	
Parthenium incanum	mariola	
Pascopyrum smithii	western wheatgrass	
Paxistima myrsinites	Oregon boxleaf	
Penstemon	beardtongue	
Penstemon caespitosus	mat penstemon	
Penstemon leiophyllus	smoothleaf beardtongue	
Penstemon thurberi	Thurber's penstemon	
Peraphyllum ramosissimum	wild crab apple	
Petalonyx thurberi	Thurber's sandpaper plant	
Petrophyton caespitosum	mat rockspirea	Petrophytum caespitosum
Peucephyllum schottii	Schott's pygmycedar	
Phacelia	phacelia	
Phleum pratense	timothy	
Phlox	phlox	
Phlox hoodii	spiny phlox	
Phlox pulvinata	cushion phlox	
Physocarpus malvaceus	mallow ninebark	
Physocarpus monogynus	mountain ninebark	
Picea engelmannii	Engelmann spruce	
Picea engelmannii X glauca		

Scientific Name	PLANTS Common Name	PLANTS Scientific Name
Picea pungens	blue spruce	
Picrothamnus desertorum	bud sagebrush	
Pinus	pine	
Pinus albicaulis	whitebark pine	
Pinus balfouriana	foxtail pine	
Pinus contorta	lodgepole pine	
Pinus contorta var. murrayana	Sierra lodgepole pine	
Pinus edulis	twoneedle pinyon	
Pinus flexilis	limber pine	
Pinus jeffreyi	Jeffrey pine	
Pinus longaeva	Great Basin bristlecone pine	
Pinus monophylla	singleleaf pinyon	
Pinus ponderosa	ponderosa pine	
Piptochaetium	speargrass	
Platanus racemosa	California sycamore	
Platanus wrightii	Arizona sycamore	
Pleuraphis jamesii	James' galleta	
Pleuraphis rigida	big galleta	
Pluchea sericea	arrowweed	
Роа	bluegrass	
Poa arctica	arctic bluegrass	
Poa cusickii	Cusick's bluegrass	
Poa fendleriana	muttongrass	
Poa fendleriana ssp. longiligula	muttongrass	
Poa lettermanii	Letterman's bluegrass	
Poa pratensis	Kentucky bluegrass	
Poa secunda	Sandberg bluegrass	
Polemonium viscosum	sticky polemonium	
Poliomintha incana	frosted mint	
Polygonum bistortoides	American bistort	
Populus angustifolia	narrowleaf cottonwood	
Populus balsamifera ssp. trichocarpa	black cottonwood	
Populus deltoides	eastern cottonwood	
Populus deltoides ssp. wislizeni	Rio Grande cottonwood	
Populus fremontii	Fremont cottonwood	
Populus tremuloides	quaking aspen	
Potentilla	cinquefoil	
Potentilla diversifolia	varileaf cinquefoil	
Prosopis	mesquite	
Prosopis glandulosa	honey mesquite	
Prosopis velutina	velvet mesquite	
Prunus	plum	
Prunus fasciculata	desert almond	
Prunus virginiana	chokecherry	
Pseudoroegneria spicata	bluebunch wheatgrass	

Scientific Name	PLANTS Common Name	PLANTS Scientific Name
Pseudotsuga menziesii	Douglas-fir	
Psoralidium lanceolatum	lemon scurfpea	
Psorothamnus arborescens	Mojave indigobush	
Psorothamnus emoryi	dyebush	
Psorothamnus fremontii	Fremont's dalea	
Psorothamnus polydenius	Nevada dalea	
Psorothamnus spinosus	smoketree	
Pteridium aquilinum	western brackenfern	
Puccinellia lemmonii	Lemmon's alkaligrass	
Puccinellia nuttalliana	Nuttall's alkaligrass	
Purshia stansburiana	Stansbury cliffrose	
Purshia tridentata	antelope bitterbrush	
Quercus berberidifolia	scrub oak	
Quercus chrysolepis	canyon live oak	
Quercus cornelius-mulleri	, Muller oak	
Quercus gambelii	Gambel oak	
Quercus john-tuckeri	Tucker oak	
Quercus toumeyi	Toumey oak	
Quercus turbinella	Sonoran scrub oak	
Redfieldia flexuosa	blowout grass	
Rhus microphylla	littleleaf sumac	
Rhus ovata	sugar sumac	
Rhus trilobata	skunkbush sumac	
Ribes	currant	
Ribes cereum	wax currant	
Ribes montigenum	gooseberry currant	
Robinia neomexicana	New Mexico locust	
Rosa woodsii	Woods' rose	
Rubus parviflorus	thimbleberry	
Rudbeckia occidentalis	western coneflower	
Salazaria mexicana	Mexican bladdersage	
Salicornia	pickleweed	
Salix amygdaloides	peachleaf willow	
Salix bebbiana	Bebb willow	
Salix boothii	Booth's willow	
Salix brachycarpa	shortfruit willow	
Salix drummondiana	Drummond's willow	
Salix eriocephala	Missouri River willow	
Salix exigua	narrowleaf willow	
Salix geyeriana	Geyer willow	
Salix gooddingii	Goodding's willow	
Salix irrorata	dewystem willow	
Salix laevigata	red willow	
Salix lasiolepis	arroyo willow	
Salix lemmonii	Lemmon's willow	

Scientific Name	PLANTS Common Name	PLANTS Scientific Name
Salix lucida	shining willow	
Salix lutea	yellow willow	
Salix monticola	park willow	
Salix planifolia	diamondleaf willow	
Salix scouleriana	Scouler's willow	
Salix wolfii	Wolf's willow	
Salsola tragus	prickly Russian thistle	
Sapindus saponaria	wingleaf soapberry	
Sarcobatus vermiculatus	greasewood	
Saxifraga	saxifrage	
Schismus	Mediterranean grass	
Scirpus	bulrush	
, Selaginella densa	lesser spikemoss	
Selaginella watsonii	Watson's spikemoss	
Senecio	ragwort	
Senna armata	desertsenna	
Shepherdia argentea	silver buffaloberry	
Shepherdia canadensis	russet buffaloberry	
Sibbaldia procumbens	creeping sibbaldia	
Silene acaulis	moss campion	
Simmondsia chinensis	jojoba	
Solidago	goldenrod	
Sphaeralcea coccinea	scarlet globemallow	
Spiraea betulifolia	white spirea	
Sporobolus	dropseed	
, Sporobolus airoides	alkali sacaton	
, Sporobolus cryptandrus	sand dropseed	
Sporobolus flexuosus	mesa dropseed	
Suaeda	seepweed	
Symphoricarpos	snowberry	
Symphoricarpos albus	common snowberry	
Symphoricarpos oreophilus	mountain snowberry	
Symphyotrichum ascendens	western aster	
Tamarix	tamarisk	
Taraxacum officinale	common dandelion	
Tetradymia	horsebrush	
Tetradymia canescens	spineless horsebrush	
Tetradymia tetrameres	fourpart horsebrush	
Thalictrum fendleri	Fendler's meadow-rue	
Tiquilia	crinklemat	
Tiquilia hispidissima	hairy crinklemat	
Tiquilia palmeri	Palmer's crinklemat	
Tiquilia plicata	fanleaf crinklemat	
Trifolium dasyphyllum	alpine clover	
Trifolium gymnocarpon	hollyleaf clover	

Scientific Name	PLANTS Common Name	PLANTS Scientific Name
Trifolium nanum	dwarf clover	
Trifolium parryi	Parry's clover	
Trisetum spicatum	spike trisetum	
Typha	cattail	
Vaccinium	blueberry	
Valeriana occidentalis	western valerian	
Viguiera parishii	Parish's goldeneye	
Vulpia octoflora	sixweeks fescue	
Wyethia amplexicaulis	mule-ears	
Yucca	уисса	
Yucca baccata	banana yucca	
Yucca brevifolia	Joshua tree	
Yucca elata	soaptree yucca	
Yucca schidigera	Mojave yucca	
Zigadenus elegans	mountain deathcamas	

E-3 Management Questions

The table provided here is a record of all the Management Questions proposed for this REA (discussed, revised, archived and answered) during the assessment. These MQs were managed for both CBR and MBR in a MS Excel workbook, and were combined into one list for both REAs after the Work Plans were completed. There are very few MQs that were answered for one but not the other REA. This table includes all the MQs that were not answered due to being out of scope, or unanswerable due to lack of data or other issues (MQ status = Inactive for dropped MQs). Only a sub-set of the columns in the workbook are presented here, however the entire workbook has been delivered to BLM separately with all of the additional information tracked by the Contractor for each MQ. Some final changes to MQs took place during Task 6, and are tracked in the "Final MQ" column with strikethrough or red font. For each MQ, the original MQ, the final MQ and a rationale for archiving or dropping an MQ was tracked. Some MQs were duplicative with others and information is provided as to which MQ duplicates which or if 2 MQs were combined.

Other fields in the workbook included (but are not provided here) discussions of feasability, issues requiring AMT guidance, data proposed to answer the MQ, issues relating to lack of data or scientific justification for the MQ, and necessary clarifications. Most of these were provided in the Phase I Task Memoranda, and were presented at the AMT Workshops. Many of these were discussed during workshops or webinars.

The table is sorted by the final "active" MQs grouped by general subject; then the inactive or archived/dropped mQs are listed, in the same grouping by general subject.

Table E - 5. List of management questions addressed in this REA, with prelimnary versions provided by BLM or the AMT, the final question; organized by general subjects. Also provided is a record of dropped management questions and reasons for dropping.

FINAL MQ	Which	MQ			Task 6	Fate of Preliminary		Preliminary MQ		
Num	Ecoreg	Status	MQ Group	Sort	Assessment Type	MQ	Final Management Question	Proposed by BLM	Rationale for Fate	Clarifications
							ACTIVE, ANSWERED MANAGEM	IENT QUESTIONS		
1	CBR, MBR	Active	Species	A	1. Where Are CEs and CAs?	Rephrased	What is the current distribution of potential habitat for each species CE?	What is the current distribution of occupied habitat for each CE, including seasonal habitat, and movement corridors?		Few landscape species and species assemblage CEs have data containing current locations of occupied habitat, and therefore this question may not be possible to answer for every landscape species and species assemblage. Current location data are primarily available for local species CEs. Seasonal habitat and movement corridors addressed through habitat modeling in MQ 3; data generally not available for current known locations of seasonal habitat and corridors.
2	CBR, MBR	Active	Species	A	3. Where Do CAs Intersect CEs?	Rephrased	Where are current locations of species CEs that are potentially affected by existing change agents (and thus potentially at risk)?	Where are species populations at risk?		This question addresses current known locations of CEs and existing distribution of CAs. Can mainly be answered for local species CEs due to data availability on known locations.
3	CBR, MBR	Active	Species	A	1. Where Are CEs and CAs?	Refined	What is the current distribution of suitable habitat, including seasonal habitat and movement corridors, for each landscape species and species assemblage CE?	What is the current distribution of suitable habitat for each CE?		
4	CBR, MBR	Active	Species	А	3. Where Do CAs Intersect CEs?	Accepted as originally proposed by BLM	Where are existing change agents potentially affecting this current habitat and/or movement corridors, for landscape species and species	Where are change agents potentially affecting this habitat and/or movement corridors?		This question addresses current suitable habitats for CEs and existing distribution of CAs. Can mainly be answered for local species CEs due to data availability on known locations.

FINAL MQ Num	Which Ecoreg	MQ Status	MQ Group	Sort	Task 6 Assessment Type	Fate of Preliminary MQ	Final Management Question	Preliminary MQ Proposed by BLM	Rationale for Fate	Clarifications
							assemblage CEs?			
5	CBR, MBR	Active	Species	A	3. Where Do CAs Intersect CEs?	Reframed	Where are species CEs whose current locations or suitable habitats overlap with the potential future distribution of CAs (other than climate change)?	What/where is the potential for future change to this species?		This question addresses current suitable habitats and potential future distributions of CAs.
6	CBR, MBR	Active	Species	A	1. Where Are CEs and CAs?	Accepted as originally proposed by BLM	What is the relative survey intensity to date within the ecoregion for species CEs ?	What areas have been surveyed and what areas have not been surveyed (i.e., data gap locations)?		These will be ecoregion-level assessments of survey intensity for each CE, rather than detailed listing of specific areas that have and have not been surveyed.
7	CBR, MBR	Active	Species	А	5. Special Assessment	Reframed	Given current and anticipated future locations of change agents, which habitat areas remain as opportunities for habitat enhancement/ restoration? MSR: 4/2012: will be addressed for a small subset of CEs as prototyping of possible ways to answer (GSG, DT, bighorn, one coarse-filter)	Where are potential habitat restoration areas?		For species CE habitats, ecological integrity scores will be calculated at the watershed level. The mid-level integrity ranking will be "Transitioning." Any areas for any CE identified as "Transitioning" will be considered a habitat restoration or enhancement opportunity, particularly in light of potential losses of high integrity examples due to CA expansion.
8	CBR, MBR	Active	Species	А	5. Special Assessment	Reframed; limitied to Desert Tortoise and Sage Grouse	Where are potential areas to restore connectivity for landscape species and species assemblage CEs, based on current locations of change agents? MSR 4/2012- being answered for GSG and DT, rephramed to "Where are potential areas to restorse connecitivity or intact habitat for [greater sage grouse or desert tortoise] based on current locations of change agents?"	Where are potential areas to restore connectivity?		CircuitScape will identify "pinch points" in species habitat connectivity based on current CAs; these are potential areas for restoring connectivity. Forecasts for Change Agents vary in spatial resolution sufficiently to preclude use of CircuitScape in 2025 or 2060 forecast scenarios.
9	CBR, MBR	Active	Species	A	4. Relative Effects of CAs on CEs	Added	Where will landscape species and species assemblage CEs experience climate outside their current climate envelope? MSR 4/2012: climate envelope			addressed by Climate envelope models for species; assemblages would need intersect with climate space trends data

FINAL						Fate of			
MQ	Which	MQ			Task 6	Preliminary		Preliminary MQ	
Num	Ecoreg	Status	MQ Group	Sort	Assessment Type	MQ	Final Management Question	Proposed by BLM	Rationale for Fate
							models for species to answer this		
10	CBR, MBR	Active	Native Plant Communities	В	2. What is the Current Condition of CEs	Accepted as originally proposed by BLM	Where are intact CE vegetative communities located?	Where are intact CE vegetative communities located?	
11	CBR, MBR	Active	Native Plant Communities	В	2. What is the Current Condition of CEs	Reframed	Where are the likeliest current locations for high-integrity examples of each major terrestrial ecological system?		
12	CBR, MBR	Active	Native Plant Communities	В	3. Where Do CAs Intersect CEs?	Reframed	Where are existing and potential future CAs (aside from climate change) likeliest to affect current communities?	What/where is the potential for future change to the community?	
13	CBR, MBR	Active	Native Plant Communities	В	4. Relative Effects of CAs on CEs	Added	Where will current locations of these communities experience significant deviations from normal climate variation?		
14	CBR, MBR	Active	Terrestrial Sites of High Biodiversity	с	1. Where Are CEs and CAs?	Accepted as originally proposed by BLM	Where are sites identified (but not necessarily designated) for High Biodiversity?	Where are High Biodiversity sites?	
15	CBR, MBR	Active	Terrestrial Sites of High Biodiversity	с	3. Where Do CAs Intersect CEs?	Reframed	Where will CAs (aside from climate change) potentially affect sites of high biodiversity?	"Potential for future change" should be framed from the CA list	
16	CBR, MBR	Active	Terrestrial Sites of High Biodiversity	с	4. Relative Effects of CAs on CEs	Added	Where will locations of these High Biodiversity sites experience significant deviations from normal climate variation?		

r Fate	Clarifications
	Climate change is excluded because it is addressed in a separate MQ.
	addressed by climate envelope models
	Sites of (terrestrial) high biodiversity are defined as priority sites identified through previous planning efforts, including SWAPs, TNC ecoregional portfolio sites, and other selected efforts. They may or may not have formal management or protection designations.
	Climate change is excluded because it is addressed in a subsequent MQ for terrestrial high biodiversity sites. NOTE: we are treating these sites as potential reporting units for this type of analysis. Current deliverables will focus on watershed reporting units.
	Climate space trends analyses will be reported by 4th level watershed; which may be subsequently combined with these sites as needed.

FINAL MQ Num	Which Ecoreg	MQ Status	MQ Group	Sort	Task 6 Assessment Type	Fate of Preliminary MQ	Final Management Question	Preliminary MQ Proposed by BLM	Rationale for Fat
18	CBR, MBR	Active	Aquatic Sites of High Biodiversity	D	1. Where Are CEs and CAs?	Accepted as originally proposed by BLM	Where are Aquatic High Biodiversity sites?	Where are Aquatic High Biodiversity sites?	
19	CBR, MBR	Active	Aquatic Sites of High Biodiversity	D	3. Where Do CAs Intersect CEs?	Reframed	Where will these Aquatic High Biodiversity sites be potentially affected by Change Agents (aside from climate change)?	What/where is the potential for future change to these high- biodiversity sites?	
20	CBR, MBR	Active	Aquatic Sites of High Biodiversity	D	4. Relative Effects of CAs on CEs	Added	Where will current locations of these Aquatic High Biodiversity sites experience significant deviations from normal climate variation?		
21	CBR, MBR	Active	Specially Designated Areas of Ecological Value	E	1. Where Are CEs and CAs?	Accepted as originally proposed by BLM	Where are specially designated areas of ecological or cultural value?	Where are specially designated areas of ecological value?	
28	CBR, MBR	Active	Soils	F	1. Where Are CEs and CAs?	Reframed	Where are sensitive soil types within the ecoregion?	Where are these areas within the ecoregion?	
29	CBR, MBR	Active	Soils	F	3. Where Do CAs Intersect CEs?	Reframed	Where will target soil types overlap with CAs (aside from climate change) under each time scenario?	What/where is the potential for future change in conditions, such as due to climate change?	
36	CBR, MBR	Active	Aquatic Ecological Function and Structure	G	2. What is the Current Condition of CEs	Rephrased	What is the condition (ecological integrity) of aquatic conservation elements?	What is the condition of target aquatic systems? OR What is the condition of target aquatic systems in terms of PFC?	
39	CBR, MBR	Active	Aquatic Ecological Function and Structure	G	2. What is the Current Condition of CEs	Rephrased	Where are the aquatic CE occurrences with the most degraded condition (ecological integrity)?	Where are the degraded aquatic systems (e.g., water quality)?	
23	CBR, MBR	Active	Grazing, Wild Horses and Burros	н	5. Special Assessment	Accepted as originally proposed by BLM	Where are the current Herd Management Areas (HMAs)?	Where are the current Herd Management Areas (HMAs)?	

or Fate	Clarifications
	Taken from existing priority-setting efforts, same as for terrestrial.
	Climate change is excluded because it is addressed in a subsequent MQ for aquatic high biodiversity sites.
	Sensitive soils are those soils that are extremely susceptible to impacts or that may be more difficult to restore or reclaim after disturbance: soils having high erosion potential, high salinity, high gypsum content, low water holding capacity, or hydric qualities
	Climate change is excluded because it is addressed in a separate MQ for sensitive soils.
	Rephrased to align with MBR MQ 39 [dpb 4/15/11]

FINAL MQ	Which	MQ			Task 6	Fate of Preliminary		Preliminary MQ	
Num	Ecoreg	Status	MQ Group	Sort	Assessment Type	MQ	Final Management Question	Proposed by BLM	Rationale for Fat
26	CBR, MBR	Active	Grazing, Wild Horses and Burros	н	5. Special Assessment	Added/ reframed	Where will CAs (excluding climate change) overlap HAs, HMAs, and GAs under each time scenario?		
27	CBR, MBR	Active	Grazing, Wild Horses and Burros	н	5. Special Assessment	Added	Which HA's, HMA's and GA's will experience climate outside their current climate envelope?		
40	CBR, MBR	Active	Fire History	I	1. Where Are CEs and CAs?	Reframed	Where have fires greater than 1000 acres occurred?	Where are the areas that have been changed from wildfire?	
42	CBR, MBR	Active	Fire Potential	J	1. Where Are CEs and CAs?	Reframed	What areas now have unprecedented fuels composition (invasive plants), and are therefore at high potential for fire?	Where are the areas of potential future change from predicted wildfire? (BLM amendment)	
43	CBR, MBR	Active	Fire Potential	L	4. Relative Effects of CAs on CEs	Deferred	Where are areas that in the future will have high potential for fire?	Where are the areas of potential future change from predicted wildfire? (<i>BLM amendment</i>)	
44	CBR, MBR	Active	Invasive Species	к	1. Where Are CEs and CAs?	Reframed	What is the current distribution of invasive species included as CAs?	Where are areas dominated by these invasive species?	
45	CBR, MBR	Active	Invasive Species	к	2. What is the Current Condition of CEs	Reframed	What areas are significantly ecologically affected by invasive species?	Where are areas dominated by these invasive species?	
47	CBR, MBR	Active	Invasive Species	к	1. Where Are CEs and CAs?	Reframed	Given current patterns of occurrence and expansion of the invasive species included as CAs, what is the potential future distribution of these invasive species?	Where are the areas of potential future encroachment from this invasive species?	
48	CBR, MBR	Active	Development	L	1. Where Are CEs and CAs?	Reframed	Where are current locations of development CAs?	Where are current locations of relevant development types?	
49	CBR, MBR	Active	Development	L	1. Where Are CEs and CAs?	Reframed	Where are areas of planned or potential development CAs?	Where are areas of planned or potential development (outside of current urban areas) (e.g., under lease, plans of operation, governmental planning), including transmission corridors?	

te	Clarifications
	Climate change is excluded because it is addressed in a separate MQ for HAs, etc.
	Climate space trends analyses will be reported by 4th level watershed; which may be subsequently combined with these sites as needed.
	bradley models for invasive plants will be clipped and used for this MQ

FINAL MQ Num	Which Ecoreg	MQ Status	MQ Group	Sort	Task 6 Assessment Type	Fate of Preliminary MQ	Final Management Question	Preliminary MQ Proposed by BLM	Rationale for Fat
50	CBR, MBR	Active	Development	L	4. Relative Effects of CAs on CEs	Reframed	Where do development CAs cause significant loss of ecological integrity?	Where are the areas of significant ecological change from these anthropogenic activities?	
51	CBR, MBR	Active	Development	L	3. Where Do CAs Intersect CEs?	Added/ reframed	Where do current locations of CEs overlap with development CAs?		
52	CBR, MBR	Active	Development	L	3. Where Do CAs Intersect CEs?	Added; then rephramed (dropped "ecological areas" & "significant")	Where is recreational use? Where are ecological areas with significant recreational use?		
83	CBR, MBR	Active	Oil, Gas, and Mining Development	м	1. Where Are CEs and CAs?	Reframed	Where are the current locations of oil, gas, and mineral extraction?	Where are the current locations of Oil, Gas, and Mining (including gypsum) development?	
81	CBR, MBR	Active	Renewable Energy Development	N			Where will locations of renewable energy [development] potentially exist by 2025?		
87	CBR, MBR	Active	Renewable Energy Development	N	1. Where Are CEs and CAs?	Added	Where are the current locations of renewable energy development (solar, wind, geothermal, transmission)?		
88	CBR, MBR	Active	Renewable Energy Development	N	1. Where Are CEs and CAs?	Accepted as originally proposed by BLM	Where are the areas identified by NREL as potential locations for renewable energy development?	Where are the areas identified by NERL as potential and physically possible locations for renewable energy development?	
89	CBR, MBR	Active	Renewable Energy Development	N	1. Where Are CEs and CAs?	Added	Where are the areas of low renewable and non-renewable energy development that could potentially mitigate impacts to CEs from potential energy development?		answered

te	Clarifications
	In CBR, phrased as "Where are the areas of CEs that fall below their EI threshold due to development CAs?"
	This development CA-specific MQ will be coordinated with previous MQs that address the intersection of multiple types of CAs with CEs (e.g., MQs 2, 4, 5, and 12).
	3 proposed CEs from AMT5 workshop summary (desert tortoise, GSG, erodable soils); 3 days time to do
	BLM to give direction on how to address this question.

FINAL MQ	Which	MQ	MOCrows	Sort	Task 6	Fate of Preliminary		Preliminary MQ	Potionala for Fat
Num 90	CBR, MBR	Status Active	MQ Group Renewable Energy Development	Sort N	Assessment Type 3. Where Do CAs Intersect CEs?	MQ Added	Final Management Question Where do current locations of CEs overlap with areas of potential future locations of renewable energy development (MQ 65)?	Proposed by BLM	Rationale for Fate
30	CBR, MBR	Active	Surface and Subsurface Water Availability	0	1. Where Are CEs and CAs?	Reframed	Where are current natural and man-made surface water resources?	Where are these aquatic areas?	
31	CBR, MBR	Active	Surface and Subsurface Water Availability	ο	1. Where Are CEs and CAs?	Reframed	Of the current surface water resources (both natural and man-made), which are perennial, ephemeral, etc?	What is the persistence of the flow (e.g., perennial, ephemeral) of these systems?	
34	CBR, MBR	Active	Surface and Subsurface Water Availability	0	1. Where Are CEs and CAs?	Reframed	Where are the likely recharge areas within a HUC?	Where are the aquifers and their recharge areas?	
35	CBR, MBR	Active	Surface and Subsurface Water Availability	0	3. Where Do CAs Intersect CEs?	Reframed	Where will the likely recharge areas (relating to aquatic CEs) identified in MQ 37 potentially be affected by Change Agents? (rephrased 1/24/12)	What/where is the potential for future change in extent and flows from change agents?	
54	CBR, MBR	Active	Groundwater Extraction and Transportation	Р	4. Relative Effects of CAs on CEs	Reframed	Where will change agents potentially impact groundwater- dependent aquatic CEs? [springs and seeps only]	Where are the areas of potential future change from groundwater extraction?	
56	CBR, MBR	Active	Groundwater Extraction and Transportation	Р	1. Where Are CEs and CAs?	Reframed	What is the present distribution of municipal and agricultural water use of groundwater resources in relation to the distribution of aquatic CEs?		
57	CBR, MBR	Active	Groundwater Extraction and Transportation	Р	1. Where Are CEs and CAs?	Reframed	Where are the aquatic CEs showing degraded ecological integrity from existing groundwater extraction? [only partially spatial otherwsie narrative review]	Where are the areas showing effects from existing groundwater extraction?	
58	CBR, MBR	Active	Surface Water Consumption and Diversion	Q	1. Where Are CEs and CAs?	Accepted as originally proposed by BLM	Where are artificial water bodies including evaporation ponds, etc.? [duplicative with MQ31]	Where are artificial water bodies including evaporation ponds, etc.?	
60	CBR, MBR	Active	Surface Water Consumption and Diversion	Q	1. Where Are CEs and CAs?	Added	Where are the areas of potential future change in surface water consumption and diversion?		

te	Clarifications
	Although this MQ will address both aquifers and recharge areas as identified in previous MQs, this MQ does not attempt to identify the linkages between aquifers and recharge areas because that is frequently unknown.
	We cannot go beyond the information generated for MQ# 33.
	This is a subset of the information that will be generated to answer MQ 31. (Duplicative MQ 77 was removed.)
	This is a parallel question to MQ 69, the former focused on groundwater and this one (MQ 74) focused on surface water

FINAL						Fate of			
MQ	Which	MQ			Task 6	Preliminary		Preliminary MQ	
Num	Ecoreg	Status	MQ Group	Sort	Assessment Type	MQ	Final Management Question	Proposed by BLM	Rationale for Fate
62	CBR, MBR	Active	Surface Water Consumption and Diversion	Q	2. What is the Current Condition of CEs	Added	Where are the CEs showing degraded ecological integrity from existing surface water diversion?		
80	CBR, MBR	Active	Atmospheric Deposition	R	1. Where Are CEs and CAs?	Added	Where are areas affected by atmospheric deposition of pollutants, as represented specifically by nitrogen deposition, acid deposition, and mercury deposition?		
65	CBR, MBR	Active	Climate Change: Terrestrial Resource Issues	s	4. Relative Effects of CAs on CEs	Reframed	Where will changes in climate be greatest relative to normal climate variability?	Where are the areas of potential future change from climate change?	
66	CBR, MBR	Active	Climate Change: Terrestrial Resource Issues	S	5. Special Assessment	Reframed	Given anticipated climate shifts and the direction shifts in climate envelopes for CEs, where are potential areas of significant change in extent?	Where are the areas of potential for fragmentation?	
67	CBR, MBR	Active	Climate Change: Terrestrial Resource Issues	s	4. Relative Effects of CAs on CEs	Reframed	Which native plant communities will experience climate completely outside their normal range?	How will the distributions of native plant communities change with climate change?	
68	CBR, MBR	Active	Climate Change: Terrestrial Resource Issues	S	4. Relative Effects of CAs on CEs	Reframed	Where will current wildlife habitats experience climate completely outside its normal range?	Where are the areas of potential of change of wildlife habitat?	
69	CBR, MBR	Active	Climate Change: Terrestrial Resource Issues	s	4. Relative Effects of CAs on CEs	Added	Where are wildlife species ranges (on the list of species CEs) that will experience significant deviations from normal climate variation?		

te	Clarifications
	Climate envelopes for selected terrestrial coarse filter CEs and landscape species CEs will be addressed. Climate envelope shift models may show increased patchiness of a CE if its extent is reduced in an area due to climate change. But given the relative spatial resolution of forecasts, results should be interpreted as approximate change in extent, rather than as indications of habitat fragmentation.

FINAL MQ	Which	MQ			Task 6	Fate of Preliminary		Preliminary MQ	
<u>Num</u> 71	CBR, MBR	Status Active	MQ Group Climate Change: Aquatic Resource Issues	Sort	Assessment Type 4. Relative Effects of CAs on CEs	MQ Reframed	Final Management Question Where will aquatic CEs experience significant deviations from historic climate variation that potentially could affect the hydrologic and temperature regimes of these aquatic CEs?	Proposed by BLM Where are the areas of potential future change from climate change?	Rationale for Fate
76	MBR	Active	Military Constrained Areas	U	1. Where Are CEs and CAs?	Reframed	Where are areas of planned expansion of military use?	Where might these areas change in the future?	msr 4/12: added back they want the 29 Paln expansion boundaries We delivered 3 optior
						INACTIV	E, DROPPED, MERGED MAN	IAGEMENT QUESTIONS	
78	CBR	Inactive	Species	A	1. Where Are CEs and CAs?	Integrated with other MQ	Where are active Bald Eagle nests?	Where are they?	Bald eagles will be addressed as part of Landscape Species CE MQs
79	CBR	Inactive	Species	A	1. Where Are CEs and CAs?	Integrated with other MQ	Where are active Golden Eagle nests?	Where are they?	Golden eagles will be addressed as part of Landscape Species CE MQs
xx	CBR, MBR	Inactive	Species	А		Research that is out of scope		Where are habitats that may be limiting species sustainability? Clarify "sustainability", but this concept is difficult and is a research question beyond the scope of the REA. Clarify the meaning of "habitats that limit"	
17	CBR	Inactive	Aquatic Sites of High Biodiversity	D	1. Where Are CEs and CAs?	Merged	What has been the general level of survey effort (ecoregion-wide, not site-specific) for spring snails and other species of concern?	What areas have been (and have not been) surveyed for spring snails and other species of concern?	
29.5	CBR, MBR	Inactive	Soils	F	4. Relative Effects of CAs on CEs	Added	Where will current sensitive soil types experience significant deviations from normal climate variation?		dropped, 4/12

ite	Clarifications
	This question was reframed to address climate-related drivers of hydrology, rather than changes in climate generically. Incorporates concerns of deleted MQs 86, 87, and 88 (CBR #s 72, 73, 74), to extent they can be addressed at REA scale.
ck, Ilms es. ons	lack of data
f CE	
e f CE	
	merged with #6; we are not able to provide site-specific review of survey effort.
	Climate space trends analyses will be reported by 4th level watershed; which may be subsequently combined with these sites as needed.

FINAL MQ Num	Which Ecoreg	MQ Status	MQ Group	Sort	Task 6 Assessment Type	Fate of Preliminary MQ	Final Management Question	Preliminary MQ Proposed by BLM	Rationale for Fate
N/A	MBR	Inactive	Soils	F	Abbessment type	Deleted	Where are areas of nitrogen deposition beyond "normal" levels?	Where are areas of nitrogen deposition?	Duplicate
21	CBR, MBR	Inactive	Grazing, Wild Horses and Burros	н		Deferred	Where are the current herds of wild horses?	Where are the current Herds of Wild Horses?	Data availability
22	CBR, MBR	Inactive	Grazing, Wild Horses and Burros	н		Deferred	Where are the current herds of burros?	Where are the current Herds of Burros?	Data availability
24	CBR, MBR	Inactive	Grazing, Wild Horses and Burros	н		Deferred	Which HMAs are exceeding AML?	Which HMAs are exceeding AML?	No data
хх	CBR, MBR	Inactive	Grazing, Wild Horses and Burros	н		Deferred	Which current HMA will overlap with the distribution of Change Agents?		Duplicate of MQ 26
хх	CBR, MBR	Inactive	Grazing, Wild Horses and Burros	н		Research that is out of scope		Are there sufficient forage, unrestricted space, and available surface water to sustain wild horse and burro herds for the long term in existing Herd Management Areas and Herd Areas?	
xx	CBR, MBR	Inactive	Grazing, Wild Horses and Burros	н		Research that is out of scope		Can the habitat sustain these populations across the landscape, while providing for both rangeland and herd health?	
41	CBR, MBR	Inactive	Fire History	I	3. Where Do CAs Intersect CEs?	Deferred	In places that have experienced fire, which sites have shifted to a vegetative state dominated by invasive plants and, without active restoration, will be unlikely to return to the previously occurring vegetative state?	What is the current status of these habitats?	Outside of scope
46	CBR, MBR	Inactive	Invasive Species	к	2. What is the Current Condition of CEs	Reframed	Focusing on the distributions of terrestrial and aquatic CEs that are significantly affected by invasives, which areas have restoration potential?	Where are areas with restoration potential?	answered as part of MQ#7, using invasive along with climate & development

te	Clarifications
	Can be addressed with MQ 92. [dpb 4/15/11]
	Duplicative with #26
es R	See notes in Data Sources

FINAL						Fate of				
MQ	Which	MQ			Task 6	Preliminary		Preliminary MQ		
Num	Ecoreg	Status	MQ Group	Sort	Assessment Type	MQ	Final Management Question	Proposed by BLM	Rationale for Fate	Clarifications
50	CBR	Inactive	Development	L	2. Where Do CAs Intersect CEs?	Deleted	Where are the areas of CEs that fall below their EI threshold due to development CAs?	Where will these developments have the potential to affect water resources?	Duplicate with MBR 54	Incorporated into MBR 54. Original BLM MQs appeared to have a terrestrial / aquatic split
84	CBR, MBR	Inactive	Oil, Gas, and Mining Development	м	1. Where Are CEs and CAs?	Reframed and consolidated	Where will locations of oil, gas, and mineral extraction potentially exist by 2025?	Where are areas under plans of operation?	MSR 4/12: no future data avaialble to answer this	only available data is in the Copeland dataset; email exchanges with Karl in revealed no other future oil& gas data are available; Copeland shows very vewryminor areas in CBR and none in MBR
85	CBR, MBR	Inactive	Oil, Gas, and Mining Development	М	1. Where Are CEs and CAs?	Accepted as originally proposed by BLM	Where are the areas of potential future locations of Oil, Gas, and Mining (including gypsum) development (locatable, salable, and fluid and solid leasable minerals)?	Where are the areas of potential future locations of Oil, Gas, and Mining (including gypsum) development (locatable, salable, and fluid and solid leasable minerals?	MSR 4/12: no future data avaialble to answer this	lack of data for future extractive energy & mineral deposits.
86	CBR, MBR	Inactive	Oil, Gas, and Mining Development	м	3. Where Do CAs Intersect CEs?	Added	Where do locations of current CEs overlap with areas of potential future locations of non- renewable energy development?		MSR 4/12: no future data avaialble to answer this	lack of data for the future energy development cannot intersect with CEs.
N/A	MBR	Inactive	Oil, Gas, and Mining Development	м	1. Where Are CEs and CAs?	Deleted	Where are areas under lease?	Where are areas under lease?	Integrated with MQ 58	
N/A	MBR	Inactive	Oil, Gas, and Mining Development	м	1. Where Are CEs and CAs?	Deleted	Where are areas with mineral deposits, free use permits, or community pits?	N/A	Integrated with MQ 57	
N/A	MBR	Inactive	Oil, Gas, and Mining Development	м	5. Special assessment	Deleted	Where are the areas of low non- renewable energy development that could potentially mitigate impacts to CEs from potential energy development?		Integrated with MQ 66	This is duplicated in MQ #66; MQ 66 was broadened to include both non-renewable and renewable energy.
N/A	MBR	Inactive	Oil, Gas, and Mining Development	М		Added, then Deleted	ADD: Prioritizing ecoregional sustainability. How many additional oil, gas, and mineral leases are feasible in the ecoregion?		No data	
N/A	MBR	Inactive	Renewable Energy Development	N		Deleted	BLM ADD: Prioritizing ecoregional sustainability. How many acres of renewable energy development are feasible in the ecoregion?		Duplicate	Redundant with MQ 65
N/A	MBR	Inactive	Renewable Energy Development	N		Out of scope	Where are areas suitable for development outside of study areas?			

FINAL						Fate of				
MQ	Which	MQ			Task 6	Preliminary		Preliminary MQ		
Num	Ecoreg	Status	MQ Group	Sort	Assessment Type	MQ	Final Management Question	Proposed by BLM	Rationale for Fate	Clarifications
32	CBR, MBR	Inactive	Surface and Subsurface Water Availability	0	1. Where Are CEs and CAs?	Deferred	Of the current perennial surface water resources (both natural and man-made) contributing to aquatic CEs, which are likely supported by groundwater discharges and what aquifers most likely provide this groundwater support?	Of these water resources, what is their surface water/groundwater connectivity?		
33	CBR, MBR	Inactive	Surface and Subsurface Water Availability	0	1. Where Are CEs and CAs?	Deleted	What is the natural range of variation in high and low water levels or flows (e.g., frequency, timing, duration of high and low water levels or flows)?	What are the frequencies & magnitudes of flows?	Replaced with MQ 36	Deleted this in favor of MQ 36 [dpb 4/15/11]
82	CBR, MBR	Inactive	Surface and Subsurface Water Availability	0	1. Where Are CEs and CAs?	Reframed	What is the natural variation of monthly discharge and monthly base flow for streams and rivers? [made inactive 1/24/12]			Reframed from MBR MQ 35, CBR MQ 33
53	CBR, MBR	Inactive	Groundwater Extraction and Transportation	Ρ		Deleted	Where are aquifers and their recharge zones?	Where are aquifers and their recharge zones?	Duplicate of MBR 37	
55	CBR, MBR	Inactive	Groundwater Extraction and Transportation	Ρ		Deleted	Where are groundwater resources capable of meeting sustained water demand for renewable energy projects without degrading aquatic ecosystems that also depend on these groundwater resources?	Where are the areas of high and low groundwater potential in relation to supporting solar power, sustaining species, etc.?	Not feasible with REA- scale data	We cannot go beyond the information generated for MQ# 33. [MQ 33 is "Of the current water resources (both natural and man-made), what is their surface water/groundwater connectivity?"] There are two versions of this question: One for groundwater (MQ 70) and one for surface water (MQ 75)
59	CBR, MBR	Inactive	Groundwater Extraction and Transportation	Р		Deleted	Where are the areas with groundwater basins in an overdraft condition?		Duplicate of MQ 71/57	Technically this is not the same as MQ 71, but MQ 71 is the one we need to answer. "Overdraft" means that withdrawals exceed recharge over the long-term. Such overdrafting is irrelevant for our REAs unless it affects or could affect a CE, which is why MQ 71 is the only question we need to answer w/r/t current conditions. Our CA assessment will address the "future" version of same. [dpb 4/15/11]

FINAL						Fate of				
MQ	Which	MQ			Task 6	Preliminary		Preliminary MQ		
Num	Ecoreg	Status	MQ Group	Sort	Assessment Type	MQ	Final Management Question	Proposed by BLM	Rationale for Fate	Clarifications
58	CBR, MBR	Inactive	Surface Water Consumption and Diversion	Q	1. Where Are CEs and CAs?	Deleted	Where are artificial water bodies including evaporation ponds, etc.?		Duplicate	Same as MQ 72. [Question had been listed once under Surface Water Consumption and Diversion and once for Groundwater Extraction and Transportation.] MQ 72 really is just a subset of MQ 31, as noted above for MQ 72 [dpb 4/15/11]
61	CBR, MBR	Inactive	Surface Water Consumption and Diversion	Q		Deleted	Where are the areas with surface water resources available to sustain solar power, and other forms of development without degrading aquatic ecosystems that also depend on these surface water resources? DPB 4-15-11 If retained, this should be reframed as, "Where are the areas with surface water resources available to sustain solar power, and other forms of development without degrading aquatic ecosystems that also depend on these surface water resources?" However, best to delete it.		Out of scope or no data	There are two versions of this question: One for groundwater (MQ 70) and one for surface water (MQ 75)
64	CBR, MBR	Inactive	Surface Water Consumption and Diversion	Q		Deleted	Where are the areas with existing surface water extraction that has caused natural aquatic communities to become entirely dry, either seasonally or perennially?		Duplicate	See MQ 76. This is essentially the same question as the one about "areas showing effects from existing surface water exploitation." [MQ 71 is parallel question for groundwater resources.] Deleted because this is merely a rephrasing of MQ #76, except that it asks about where we have lost surface flow entirely, and that is not aswerable with regional data at present. [dpb 4/15/11]
70	CBR, MBR	Inactive	Climate Change: Terrestrial Resource Issues	S		Deferred	Based on recent distributions and expansion patterns of insect pests and disease, what are expected distributions in the future?	How might climate change impact disease agents and vectors [strategy, future data/research need]?	Beyond scope	

FINAL MQ	Which	MQ			Task 6	Fate of Preliminary		Preliminary MQ		
Num	Ecoreg	Status	MQ Group	Sort	Assessment Type	MQ	Final Management Question	Proposed by BLM	Rationale for Fate	Clarifications
72	CBR, MBR	Inactive	Climate Change: Aquatic Resource Issues	т		Deleted	Where are aquatic resources that will experience significant deviations from normal flow regime or mean water levels?	Where are the areas of potential of flow change?	Out of scope or no data	This is not a matter of "merging" with MQ 85. The old MQ 86 contained the irrelevant term "abrupt," refered to "aquatic resources" instead of to "aquatic CEs," and asked to assess changes in stream hydrology rather than the climate drivers of that hydrology. We need to reframe MQ 85 so that it specifically addresses changes in climate drivers of hydrology rather than changes in climate generically.
73	CBR, MBR	Inactive	Climate Change: Aquatic Resource Issues	т		Deleted	Where will aquatic resources experience significant deviations from normal temperature regime?	Where are the areas of potential of temperature change?	Out of scope or no data	See MQ 85 And see comments for MQ 86 as well [dpb 4/15/11]
74	CBR, MBR	Inactive	Climate Change: Aquatic Resource Issues	Т		Deleted	Where are aquatic resources that will experience additional effects on physical habitat such as channel morphology due to significant deviations in climate and hydrologic regimes?	Where are the areas of potential of change of aquatic habitat?	Out of scope or no data	Deleted because question is impossible to answer with REA-scale data and assessments. The proposed rephrasing of MQ 85 takes care of that. [dpb 4/15/11]
N/A	MBR	Inactive	Climate Change: Aquatic Resource Issues	Т		Deleted; redundant with MQ others in this section	How will water availability change with climate change?			
75	CBR, MBR	Inactive	Military Constrained Areas	U	1. Where Are CEs and CAs?	Deferred	Where are military constrained areas?	Where are military constrained areas?		Data for this are inaccessible.

U.S. Department of the Interior Bureau of Land Management

Data Request Method

Rapid Ecoregional Assessments (REAs)-National Operations Center, CO

Individual REA data layers and some other products are still available but are no longer being published.

If you would like to obtain more information, including data and model zip files* (containing Esri ModelBuilder files for ArcGIS 10.x and relevant Python scripts), please email <u>BLM_OC_REA_Data_Portal_Feedback_Team@blm.gov</u>. *Note that a few models require software that BLM does not provide such as R, Maxent, and TauDEM.

Models associated with individual REAs may require data links to be updated to function properly. REA reports, technical appendices, and model overviews (for some REAs) contain detailed information to determine what products are available and what datasets are necessary to run a certain model.

Please include the report name and any specific data information that you can provide with your request.

Other BLM data can be found on the Geospatial Business Platform Hub (https://gbp-blm-egis.hub.arcgis.com).