

US Department of the Interior Bureau of Land Management

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessment

SNAKE/SALMON/BEAVERHEAD

MARCH 2015

TABLE OF	CONTENTS
-----------------	----------

I

Section	on		Page
١.	INTR	ODUCTION AND ASSESSMENT OBJECTIVES	1-1
	1.1	Executive Overview	
	1.2	Background	
		1.2.1 Issues, Assumptions, and Considerations Common to All Assessments	sl-e
	1.3	Statement of Objectives	1-7
	1.4	Collaboration and Meetings	1-7
		I.4.I Meetings	1-8
2.	DAT	A MANAGEMENT AND STEP-DOWN PROCESS	2-1
	2.1	Examination of FIAT Step 1 Findings	2-1
	2.2	Incorporation of Local Data	2-2
		2.2.1 Data Description	2-2
		2.2.2 National Data Layers	2-2
		2.2.3 Other Data Layers Used	2-3
	2.3	Data Limitations and Step 2 Process Considerations	2-4
		2.3.1 Focal Habitats	2-4
		2.3.2 Mapping Habitat Conditions	2-5
		2.3.3 Project Prioritization based on Resistance and Resilience Concepts	2-5
3.	Asse	SSMENT AREA CHARACTERIZATION	3-1
	3.1	Snake/Salmon/Beaverhead Assessment Area	3-1
	3.2	Biological Summary	3-1
		3.2.1 Vegetation	3-I
		3.2.2 Invasive Annual Grasses	3-2
		3.2.3 Conifer Encroachment	3-3
		3.2.4 Fire Regime and History	3-3
		3.2.5 Soil/Moisture Regime (Resistance and Resilience)	3-4
		3.2.6 Greater Sage-Grouse	3-4
		3.2.7 Existing Treatments	3-5
		3.2.8 Other Management Factors	3-5
4.	Foc	AL HABITAT AND PROJECT PLANNING AREAS	4-1
	4.I	Focal Habitat and Project Planning Areas	4-1
		4.1.1 Focal Habitat Areas Overview	4-1
		4.1.2 Project Planning Areas Overview	4-2
	4.2	Snake/Salmon/Beaverhead Management Strategies Common to All PPAs	4-4
		4.2.1 Fuels Management	4-4
		4.2.2 Habitat Recovery/Restoration	4-4
		4.2.3 Fire Operations	4-5
		4.2.4 Post-Fire Rehabilitation	4-5
	4.3	Snake/Salmon/Beaverhead PPAs	4-5
		4.3.1 Antelope Hat/Big Lost	
		4.3.2 Bennett Hills	
		4.3.3 Big Desert	1 - 4
		4.3.4 Big LOST	4-20
		4.3.3 Birch Creek	4-24

Ι			4.3.1	Hat Creek	4-29
2			4.3.2	Lemhi-Birch	4-34
3			4.3.3	Little Lost	4-39
4			4.3.4	Little Wood River	4-44
5			4.3.5	Magic	4-47
6			4.3.6	Medicine Lodge	4-53
7			4.3.7	Pahsimeroi	4-58
8			4.3.8	Sand Creek	4-62
9			4.3.9	Table Butte	4-67
10			4.3.10	Twin Butte	4-72
П	5.	Looi		EAD: IMPLEMENTATION, NEPA, AND MONITORING	5-1
12		5.1	Implem	nentation Strategy	5-1
13			5.1.1	Habitat Restoration and Recovery	5-2
14			5.1.2	Use of Native Species for Habitat Restoration and Post-Fire	
15				Rehabilitation	5-3
16			5.1.3	Invasive Species other than Invasive Annual Grasses	5-3
17		5.2	Prioriti	zation of Treatments	5-3
18		5.3	Summa	ition of Treatments	5-4
19			5.3.I	Fuels Management	5-4
20			5.3.2	Habitat Restoration and Recovery	5-6
21			5.3.3	Fire Operations	5-10
22			5.3.4	Post-fire Rehabilitation	5-12
23		5.4	Monito	oring and Adaptive Management	5-13
24	6.	LIST	OF PREP	ARERS	6-1
25	7.	Refe	RENCES		
26					
27					

28 **APPENDICES**

29 30 A Maps

31 B Data Viewer Link and Explanation

	-	-				
าา	\sim			D a million a	^	Tabla
57	· (.	Soll Lemperature	and Moisture	Regime /	ATTRIDUTE	I able
	-	een remperatare	and i folocal c		teer ib a ce	1 4010

33 D Meeting Locations and Participants

TAE	BLES	Page
1-1	Focal Habitat Acreage within PPAs in the Snake/Salmon/Beaverhead Landscape	1-3
1-2	List of Meetings	
3-I	Snake/Salmon/Beaverhead Landscape Covered by GRSG Habitat Matrix Type ¹	
4-1	Landownership within PPAs in the Snake/Salmon/Beaverhead Landscape	
4-2	Snake/Salmon/Beaverhead PPAs	
4-3	Antelope Flat/Big Lost GRSG Habitat Matrix Categories	
4-4	Antelope Flat/Big Lost Summary of Burn Probability	
4-5	Antelope Flat/Big Lost Habitat Restoration Potential Treatments	
4-6	Antelope Flat/Big Lost Potential Fire Operations Management Strategies	4-8
4-7	Antelope Flat/Big Lost Potential Post-Fire Rehabilitation Management Strategies	4-8
4-8	Antelope Flat/Big Lost PPA Treatment Summary Table	4-9
4-9	Bennett Hills GRSG Habitat Matrix Categories	4-10
4-10	Bennett Hills Summary of Burn Probability	4-11
4-11	Bennett Hills Potential Fuels Management Treatments	4-11
4-12	Bennett Hills Potential Habitat Restoration Potential Treatments	4-12
4-13	Bennett Hills Potential Fire Operations Management Strategies	4-12
4-14	Bennett Hills Potential Post-Fire Rehabilitation Management Strategies	4-13
4-15	Bennett Hills PPA Treatment Summary Table	4-14
4-16	Big Desert GRSG Habitat Matrix Categories	4-15
4-17	Big Desert Summary of Burn Probability	4-16
4-18	Big Desert Potential Fuels Management Treatments	4-17
4-19	Big Desert Potential Habitat Restoration Treatments	4-17
4-20	Big Desert Potential Fire Operations Management Strategies	4-18
4-21	Big Desert Potential Post-Fire Rehabilitation Management Strategies	4-19
4-22	Big Desert PPA Treatment Summary Table	4-19
4-23	Big Lost GRSG Habitat Matrix Categories	4-21
4-24	Big Lost Summary of Burn Probability	4-21
4-25	Big Lost Potential Fire Operations Management Strategies	4-23
4-26	Big Lost Potential Post-Fire Rehabilitation Management Strategies	4-24
4-27	Big Lost PPA Treatment Summary Table	4-24
4-28	Birch Creek GRSG Habitat Matrix Categories	4-25
4-29	Birch Creek Summary of Burn Probability	4-25
4-30	Birch Creek Potential Habitat Restoration Treatments	4-26
4-31	Birch Creek Potential Fire Operations Management Strategies	4-27
4-32	Birch Creek Potential Post-Fire Rehabilitation Management Strategies	4-28
4-33	Birch Creek PPA Treatment Summary Table	4-28
4-34	Hat Creek GRSG Habitat Matrix Categories	
4-35	Hat Creek Summary of Burn Probability	4-30
4-36	Hat Creek Potential Fuels Management Treatments	
4-37	Hat Creek Potential Habitat Restoration Treatments	4-32
4-38	Hat Creek Potential Fire Operations Management Strategies	4_33
4-39	Hat Creek Potential Post-Fire Rehabilitation Management Strategies	4_33
4-40	Hat Creek PPA Treatment Summary Table	4_34
4_41	Lembi Birch GRSG Habitat Matrix Categories	4_35
4_47	Lembi Birch Summary of Burn Probability	4_36
4_43	Lembi Birch Potential Habitat Restoration Treatments	
4_44	Lemhi-Birch Potential Fire Operations Management Strategies	4_38

Ι	4-46	PPA Treatment Summary Table	4-39
2	4-47	Little Lost GRSG Habitat Matrix Categories	4-40
3	4-48	Little Lost Summary of Burn Probability	4-40
4	4-49	Little Lost Potential Habitat Restoration Treatments	4-41
5	4-50	Little Lost Potential Fire Operations Management Strategies	4-42
6	4-5 I	Little Lost Potential Post-Fire Rehabilitation Management Strategies	4-43
7	4-52	PPA Treatment Summary Table (Little Lost PPA)	4-43
8	4-53	Little Wood GRSG Habitat Matrix Categories	4-44
9	4-54	Little Wood Summary of Burn Probability	4-45
10	4-55	Little Wood Potential Fuels Management Treatments	4-45
11	4-56	Little Wood Potential Fire Operations Management Strategies	4-46
12	4-57	Little Wood Potential Post-Fire Rehabilitation Management Strategies	4-46
13	4-58	Little Wood River PPA Treatment Summary Table	4-47
14	4-59	Magic GRSG Habitat Matrix Categories	4-47
15	4-60	Magic Summary of Burn Probability	
16	4-61	Magic Potential Fuels Management Treatments	
17	4-62	Magic Potential Habitat Restoration Treatments	4-50
18	4-63	Magic Potential Fire Operations Management Strategies	4-50
19	4-64	Magic Potential Post-Fire Rehabilitation Management Strategies	4-51
20	4-65	PPA Treatment Summary Table	4-51
20	4-66	Medicine Lodge GRSG Habitat Matrix Categories	4_53
21	4_67	Medicine Lodge Summary of Burn Probability	4_54
22	4-68	Medicine Lodge Potential Habitat Restoration Treatments	4-55
23 74	4_69	Medicine Lodge Potential Fire Operations Strategies	4_56
24 25	4 70	Medicine Lodge Potential Pire Operations Strategies	4 57
25 26	471	PPA Troatmont Summary Table (Medicine Lodge PPA)	4 57
20 27	4 72	Pabeimaroi CPSC Habitat Matrix Catagories	۲-57 ۸ ۵۵
27 20	4 72	Pahsimeroi Summary of Burn Probability	
20 29	т-75 А 7А	Palisimerol Summary of Burn Probability	4 40
20	-/- 1 75	Palisimeroi Potential Fire Operations Management Strategies	
20	4-75 176	Palisimeroi Potential Pire Operations Management Strategies	
ו כ רכ	4 77	PDA Treatment Summary Table	10-ד
ג גר	4-// 170	Sand Creak CPSC Habitat Matrix Catagonian	20- 1 -02
ככ סג	4-70	Sand Creek GRSG Habitat Matrix Categories	
34 25	4-/9	Sand Creek Summary of Burn Probability	
35	4-80	Sand Creek Potential Habitat Restoration Treatments	
36 57	4-81	Sand Creek Potential Fire Operations Management Strategies	
3/	4-82	Sand Creek Potential Post-Fire Renabilitation Management Strategies	
38	4-83	PPA Treatment Summary Table (Sand Creek PPA)	
39	4-84	Table Butte GRSG Habitat Matrix Categories	
40	4-85	Table Butte Summary of Burn Probability	
41	4-86	Table Butte Potential Habitat Restoration Treatments	
42	4-8/	Table Butte Potential Fire Operations Management Strategies	
43	4-88	Table Butte Potential Post-Fire Rehabilitation Management Strategies	
44	4-89	PPA Treatment Summary Table (Table Butte PPA)	
45	4-90	Twin Butte GRSG Habitat Matrix Categories	4-72
46	4-91	Twin Butte Summary of Burn Probability	4-73
47	4-92	Twin Butte Potential Fuels Management Treatments	4-74
48	4-93	Twin Butte Potential Habitat Restoration Treatments	4-74
49	4-94	Twin Butte Potential Fire Operations Management Strategies	4-76
50	4-95	Twin Butte Potential Post-Fire Rehabilitation Management Strategies	4-76

I	4-96	PPA Treatment Summary Table (Twin Buttes PPA)	4-77
2	5-I	Assessment Area Treatment Summary	5-4
3	5-2	Fuels Management Potential Treatment Areas Within PPAs in the	
4		Snake/Salmon/Beaverhead Landscape	5-5
5	5-3	Habitat Restoration/Recovery Potential Treatment Areas in the	
6		Snake/Salmon/Beaverhead Landscape	5-7
7	5-4	Fire Operations Potential Treatment Areas Within PPAs in the	
8		Snake/Salmon/Beaverhead Landscape	5-11
9	5-5	Post-Fire Rehabilitation Potential Treatment Areas Within PPAs in the	
0		Snake/Salmon/Beaverhead Landscape	5-12
I			

3	Fig	URES	Page
4 5	1-1	FIAT Assessment Areas in Relation to WAFWA Management Zones	1-5
6	3-I	Sage-Grouse Habitat Matrix Distribution in the Snake/Salmon/Beaverhead	
7		Assessment Area	3-6
3	3-2	Resistance-Resilience Reportable Priorities in the Snake/Salmon/Beaverhead	
9		Assessment Area	3-7
0	3-3	Resistance-Resilience Priorities for Application of Management Strategies in the	
I		Snake/Salmon/Beaverhead Assessment Area	3-8
2	3-4	Soil Moisture Temperature Regime in the Snake/Salmon/Beaverhead Assessment Area	3-9
3	4-I	Snake/Salmon/Beaverhead Focal Habitat Areas and Project Planning Areas	4-3
1	5-I	FIAT Process	5-2
5			

ACRONYMS AND ABBREVIATIONS Full Phras			
BLM BBD	United States Department of the Interior, Bureau of Land Management breeding bird density		
СОТ	Conservation Objectives Team		
FIS	environmental impact statement		
ESR	emergency stabilization and rehabilitation		
FIAT	Fire and Invasives Assessment Team		
Forest Service	United States Department of Agriculture, US Forest Service		
GRSG	Greater Sage-Grouse		
NEPA	National Environmental Policy Act of 1969		
NFPORS	National Fire Plan Operations and Reporting System		
NRCS	Natural Resources Conservation Service		
PAC	priority area for conservation		
PPA	project planning area		
RMPA	resource management plan amendment		
SMTR	soil moisture temperature regime		
	United States Department of Agriculture		
USFWS	United States Fish and Wildlife Service		
WA	wilderness area		
WSA	wilderness study area		

SECTION I INTRODUCTION AND ASSESSMENT OBJECTIVES

1.1 3 **EXECUTIVE OVERVIEW** 4 The Bureau of Land Management (BLM) issued an Instruction Memorandum in 5 August 2014 to guide interagency partners in completing Step 2 of the wildfire 6 and invasive species assessments. These assessments focus on five priority 7 landscapes in Greater Sage-Grouse (GRSG) habitats, as follows: I. Southern Great Basin 8 9 2. Western Great Basin 3. Northern Great Basin 10 11 4. Central Oregon 12 5. Snake/Salmon/Beaverhead 13 Three threats have been analyzed—wildfire, invasive annual grasses, and conifer 14 expansion-for implementing the following management strategies or 15 conservation activities: 16 Habitat restoration 17 Fuels management 18 Fire operations 19 Post-fire rehabilitation 20 These assessments are to help quantify the BLM's planned actions to inform the 21 US Fish and Wildlife Service's (USFWS's) decision in 2015 to put GRSG on its 22 Endangered Species List. The Fire and Invasives Assessment Team (FIAT) 23 reports are in themselves decision documents but involve at least two steps. 24 Step I was completed and documented in the June 2014 Greater Sage-Grouse 25 Wildfire, Invasive Annual Grasses & Conifer Expansion Assessment. This

assessment was based in part on soil surveys conducted by the US Department of Agriculture (USDA), Natural Resources Conservation Service and on information on soil temperature regimes for ecosystem resistance and resilience properties. The assessment was based on recent scientific research on resistance and resilience of Great Basin ecosystems (Chambers et al. 2014).

6 The FIAT Step I assessment identified focal habitats within the five landscapes, 7 also known as the five priority areas for conservation (PACs). Relative to 8 wildfire and invasive annual grasses, focal habitats are areas in priority PACs 9 with 75 percent Breeding Bird Density (BBD) in areas that recently or currently 10 support sagebrush, including the 1-25, 26-65, and greater than 65 percent 11 sagebrush landscape cover classes. Emphasis areas are portions of the focal 12 habitats in warm-dry soil temperature-moisture regimes with sagebrush 13 landscape cover greater than 25 percent. Relative to conifer expansion, focal 14 habitats for addressing conifer expansion are the areas within and near conifer 15 expansion in sagebrush landscape cover classes of 26-65 percent and greater 16 than 65 percent. Emphasis areas for conifer expansion occur where sagebrush 17 landscape cover is greater than 25 percent in 75 percent BBD areas.

- 18 This Snake/Salmon/Beaverhead Assessment is one of five FIAT Step 2 19 assessments of the Great Basin. Collectively, they will inform the next phase of 20 assessments, as the BLM continues to expand into other GRSG habitat in 2015, 21 including the Rocky Mountain states.
- 22 The scale and scope of the Snake/Salmon/Beaverhead landscape is expansive. It 23 encompasses approximately seven million acres in Idaho. Potential treatment 24 areas in project planning areas (PPAs) represent an initial starting point that will 25 need further analysis and refinement within the National Environmental Policy 26 Act of 1969 (NEPA) planning process.
 - During the development the PPAs, no constraints due to funding or consideration of landownership were taken into account. Additionally, wildfire is important and dynamic environmental factor an on the Snake/Salmon/Beaverhead landscapes. It is not uncommon for wildfire to spread more than five miles and impact thousands of acres in one day.
- 32 BLM fire management has addressed key questions, including the following:
 - 1) What are the areas that have the highest likelihood of large fires which fragment GRSG habitat?
 - 2) Which GRSG habitats are at the highest risk from fire?
 - The 2014 Fire Program Analysis Large Fire Simulator (FSim) for the Fire Program Analysis system has ranked the wildfire hazard potential in the Snake/Salmon/Beaverhead assessment landscape as high to very high. For this reason it is important to recognize that the potential for focal habitats to be

L

2

3

4

5

27

28

29

30

31

33

34

35

36

37

38

1	drastically modified in the near future may be underrepresented in this
2	assessment. Cheatgrass (Bromus tectorum) is also widely present across these
3	landscapes. Due to the parameters of this report, the ability to identify this
4	threat within a congruent scale and to identify potential treatment areas to
5	manage it also may be underrepresented.
6	The outcomes of this assessment are to identify the following (see Table I-I):
7	• 4,877,000 acres of focal habitat
8	• 6,774,500 acres of total PPA
9	508,100 acres of potential conifer habitat restoration treatments
10	• 2,463,500 acres of first priority potential fire operations
11	• 990,300 acres of first priority potential post-fire rehabilitation
12	393 miles of potential fuels management treatments
13	 95,600 acres of potential fuels management treatments
14	• 223,400 acres of potential invasive annual grass habitat restoration
15	treatments
16	• 771,000 acres of potential other types of habitat restoration
17	treatments

Table I-I
ocal Habitat Acreage within PPAs in the Snake/Salmon/Beaverhead Landscape

PPA	Acres of Focal Habitat within	Percentage of Eocal Habitat	Total Acres in	Total Acres in
	PPA	within PPA		Null
Antelope Flat/Big Lost	357,400	64	554,188	98,272
Bennett Hills	305,600	48	636,55 I	37,157
Big Desert	476,000	84	564,874	10,050
Big Lost	174,800	95	184,666	7,240
Birch Creek	47,600	43	110,001	7,805
Hat Creek	125,900	81	155,344	20,839
Lemhi-Birch	329,600	80	413,167	108,799
Little Lost	143,200	99	143,712	14,204
Little Wood River	232,600	79	295,104	6,129
Magic	1,193,900	67	1,789,410	88,645
Medicine Lodge	224,500	89	251,652	190,455
Pahsimeroi	293,600	78	377,611	87,233
Sand Creek	401,900	87	461,074	112,333
Table Butte	65,000	81	80,595	1,630
Twin Butte	505,400	67	756,691	30,998
Total for all SSB PPAs	4,877,000	72	6,774,540	821,796

I.2 BACKGROUND

Т

2

3

4

5

6

7

8

9

10

П

27

28

29

The purpose of this assessment is to identify potential project areas and management strategies in highly valued GRSG habitats which, if implemented, would reduce the threats to the species. The Conservation Objectives Team (COT) report (USFWS 2013) and other scientific publications identify two primary threats to the sustainability of GRSG in the western portion of the species range: wildfire and conversion of sagebrush habitat to invasive annual grass-dominated vegetative communities. For the purposes of this assessment, invasive species are limited to, and are hereafter referred to, as invasive annual grasses. Conifer expansion (also called encroachment) is also addressed in this assessment.

- 12To address these concerns, the BLM and United States Forest Service (Forest13Service) have committed to completing GRSG wildfire, invasive annual grasses,14and conifer expansion assessments (see Greater Sage-Grouse Land Use Plan15Amendments, BLM Instruction Memorandum WO-2014-134).
- 16The objective of FIAT assessments is to identify priority habitat areas and17management strategies to reduce the threats to GRSG from invasive annual18grasses, wildfires, and conifer expansion. In addition, these assessments are19designed to provide the United States Fish and Wildlife Service (USFWS) with20regulatory certainty on the extent, location, and rationale for management21opportunities to address significant threats to GRSG.
- 22In early 2013, an interagency team of wildlife, vegetation, fire, and fuels23managers was assembled to develop the FIAT assessment protocols. The FIAT24process designed by this team involves the following two steps:
- 25Step IEstablish the regional context for priority GRSG habitats and26threat factors
 - <u>Step 2</u>—Incorporate local data with Step I findings to identify potential project areas, treatment opportunities, and management strategies to lessen threats to GRSG
- 30Step I began in February 2013 and concluded in August 2014. Step 2 began in31September 2014 and concludes at the end of March 2015.
- 32This assessment represents the final product and signals completion of FIAT33Step 2 (See Figure I-I).

Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

March 2015 Snake, Salmon, and Beaverhead Warm Springs Valley NV/Western Great Basin Date Saved: 3/24/2015 Data Sources: Bureau of Land Management, ESRI Basedata

I.2.1 Issues, Assumptions, and Considerations Common to All Assessments

The following list denotes elements common to all five FIAT assessments.

• Assessments must be revisited as landscape conditions change. Because landscape conditions are highly dynamic, it should be recognized that management needs will change over time. The management opportunities and priorities identified in this assessment are relevant for today's landscape conditions. As disturbances such as wildfire occur in the assessment area, it is imperative that the priorities and management themes be revisited and redefined. This form of adaptive management is integrated into the Greater Sage-Grouse Monitoring Strategy described in Section 5.

 Additional analysis will be required. Most potential treatments identified in this assessment will require further National Environmental Policy Act (NEPA) analysis. During NEPA analysis, the exact location and extent of treatment may be adjusted, based upon more refined local information. Summary tables presented in Section 4 denote if NEPA analysis is completed, initiated, or needed for potential treatments. Consequently, many potential treatments detailed in Section 4 are subject to change as a result of refinement during NEPA analysis.

- Proper management is required. It is assumed that for treatments to be effective once implemented, proper management of ongoing land uses will occur. Land uses such as grazing, wild horse and burros, and off-highway vehicles are potential impediments to successful implementation of FIAT-identified treatments. In order for FIAT-identified treatments to be successful, proper management of land uses must occur:
- 30- At the time of treatment, which may require rest or
exclusion from use; and
 - Following treatment, such as the proper intensity and location of uses.
 - Identifying potential treatments was highly collaborative. FIAT teams used the data and science from the FIAT Report and General Technical Report RMRS-GTR-326 (Chambers et al. 2014) to identify potential treatment opportunities. In addition, guidance in the FIAT report directed teams to "use the best available local information" and engage in collaboration with agency partners. These partners included the Natural Resources Conservation Service, USFWS, and State Game and Fish agencies. As a result, potential treatment areas identified in this assessment were strongly influenced by local data

L

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

32

33

34

35

36

37

38

39

40

41

l 2		not present in the FIAT report, including lek locations, seasonal habitats, and projects identified in other collaborative settings.
3 4 5 7 8 9 10 11 12 13		 Fire operations priorities. The 1st, 2nd, and 3rd order priorities identified for fire operations integrate guidance from the FIAT report, General Technical Report RMRS-GTR-326, wildfire potential, and local data. Fire operations priorities are consistent with guidance established in BLM's Fire Operations Action Plan Instruction Memorandum (IM No. FA IM-2015-016) and Secretarial Order No. 3336. In addition to these data sources, FIAT fire operations priorities were established using local information such as fire spread patterns/barriers, ignition frequency, and fire history. Fire operations priorities identified in this assessment are specific to BLM.
4 5 6 7 8	1.3	STATEMENT OF OBJECTIVES This FIAT assessment is consistent with and supports the ongoing environmental impact statement (EIS) and resource management plan amendment (RMPA). These processes are underway to address GRSG conservation throughout the Great Basin.
19		The objectives originally stated in the FIAT report are as follows:
20 21 22 23		 Identify important GRSG-occupied habitats and baseline data layers important in defining and prioritizing GRSG habitats Assess the GRSG habitats' resistance to invasive annual grasses and resilience after disturbance and prioritize focal habitats for
23 24		conservation and restoration
25		Identify management strategies to conserve GRSG habitats
26 27 28	1.4	COLLABORATION AND MEETINGS The BLM Snake/Salmon/Beaverhead FIAT 2 assessment team was made up of the following partners:
29		USFWS
30		USDA Forest Service
31		USDA Natural Resources Conservation Service
32		 Idaho Department of Fish and Game (IDFG)
33		Idaho Department of Lands
34 35 36		Team Leader Joe Adamski (Idaho BLM State Forester and Natural Resource Supervisor) led the Step 2 process via phone calls, e-mails, and direct conversations. From this outreach, approximately 70 interagency participants
37 38		contributed to the Snake/Salmon/Beaverhead FIAT assessment. During workshops, participants shared local data, such as lek information, seasonal

I 2 3 4		habitat maps, and potential treatments planned through partnerships outside of FIAT. Collectively, multiple sources of data were combined to provide the basis for an integrated program of work in the Snake/Salmon/Beaverhead FIAT assessment area.		
5		A complete list of names/affiliations of meeting participants and contributors is		
6		in Appendix D .		
7	1.4.1	Meetings		
8		Between October and December 2014, and between February and March 2015,		
9		13 remote webinar/conference call workshops were held to gather information		
10		to support this assessment. Participants were the BLM District Office and other		
11		partners in the Snake/Salmon/Beaverhead assessment area (see Table I-2).		
12		In these meetings, participants collaborated on the following:		
13		Reviewed FIAT Step 1 data for accuracy		
14		• Incorporated into Step I findings refined local information, such as		
15		lek location, breeding bird density, telemetry, vegetation, and fire		
16		occurrence		
17		• Identified the extent of the PPAs, potential treatments, and		
18		appropriate management strategies in the four program areas		
19		• Documented the rationale and local factors influencing the		
20		identification of management strategies		

Date	BLM District
October 31, 2014	Boise
November 5, 2014	Boise
November 6, 2014	Twin Falls
November 7, 2014	Twin Falls
November 13, 2014	Idaho Falls
November 14, 2014	Idaho Falls
November 20, 2014	Idaho Falls
December 5, 2014	Boise
December 8, 2014	Boise
December 18, 2014	Idaho Falls
February 19, 2015	Idaho Falls
February 23, 2015	Boise
February 27, 2015	Twin Falls

Table 1-2 List of Meetings

SECTION 2 DATA MANAGEMENT AND STEP-DOWN PROCESS

3 4		This section describes the data management method and process used to go from Step I to Step 2.
5	2.1	EXAMINATION OF FIAT STEP 1 FINDINGS
6		There are several key differences in the manner that focal habitats were
7		delineated between FIAT Steps 1 and 2. First, FIAT Step 2 evaluated 75 percent
8		BBD using PAC rather than state boundaries, which resulted in a data set that
9		included only those leks with a maximum male count of 22 or more. This
10		approach was used to provide a more spatially unbiased 75 percent BBD
11		threshold based on population rather than political boundaries. Alternatively,
12		the state-level analysis of BBD used in FIAT Step I could skew the 75 percent
13		BBD threshold if lek size was strongly biased among separate PACs within the
14		same state.
15		Second, FIAT Step 2 used the most recent lek data available (2010–2014) to
16		determine the 75 percent BBD threshold and focal habitat. This process
17		addressed the concern that FIAT Step I failed to capture recent changes in
18		habitat condition because the most current information was not used.
19		Third, FIAT Step 2 used a more conservative definition of occupied leks than
20		was used by FIAT Step 1. FIAT Step 2 defined occupied leks as having at least 2
21		males in at least 1 of the past 5 years (Idaho Fish and Game definition), versus 1
22		male in 10 years, which was used in FIAT Step 1 (see Doherty et al. 2010). As a
23		result, only leks with recent occupancy were included in the data set, which
24		more accurately reflects current habitat condition.
25		Finally, site-specific telemetry and seasonal habitat information were
26		incorporated in FIAT Step 2 (see Section 2.2) but not in FIAT Step 1. These
27		additional data were provided in part by state agencies and BLM Field Office
28		biologists. As a result, FIAT Step 2 provides a finer-scale representation of
29		seasonal use areas such as GRSG brood-rearing and winter habitat.

March 2015

T	2.2	INCORPORAT	TION OF LOCAL DATA
2			The Snake/Salmon/Beaverhead assessment team identified individual PPAs using
3			the focal habitat boundaries developed as part of the FIAT Step I analysis.
4 5			Breeding bird density, confer expansion, wildfire threat, sagebrush landscape
6			PPA boundaries and inform each PPA assessment.
-			
7 8			The local layers used included Geographic Information Systems (GIS) data from the following local, state, and federal partners:
9			• BLM district offices
10			Idaho Department of Fish and Game
П			Idaho Department of Lands
12			USDA Forest Service
13			USDA Natural Resources Conservation Service
14			Appendix B identifies national, regional, and local data layers used as a starting
15			point for the Snake/Salmon/Beaverhead assessment.
16		2.2.1	Data Description
17			The types of local data used in this report are as follows:
18			ID Management zone analysis data 2010
19 20			 Idaho and Southwestern Montana Greater Sage-Grouse Draft Land Use Plan Amendment and EIS priority habitat data
21			Greater Sage-Grouse Landscape importance class data
22			Breeding and winter habitat data
23			Telemetry data
24			Fire history and occurrence data
25			Fire behavior modeling data
26			Fire suppression and fire threat modeling data
27			Fuel modeling data
28			Land fire data
29			Vegetation and cheatgrass occurrence data
30			Other GRSG biologically significant unit data
31		2.2.2	National Data Layers
32			Data layers are referenced in Appendix B.

L **Breeding Bird Density** 2 Sources: Individual state GRSG Breeding Density Area from the BLM National 3 Operations Center and data from the GRSG BBD Mapping Project. The model 4 is run on the spatial extent of the data, so the results of dissolving this state data 5 together are not equivalent to the Range-Wide Sage-Grouse Breeding Density 6 Area Conifer Expansion. 7 **Conifer Expansion Layers Used** 8 The model was run using BLM National Operations Center conifer expansion 9 data provided. Piñon-juniper and conifer encroachment (derived) depicts the 10 combined piñon-juniper and conifer interface in the GRSG study area that is Ш within 120 meters of sagebrush land cover. 12 Wildfire Threats 13 Sources: 14 5 Class Burn Probability derived from FSim modeling • 15 Fire Occurrence Areas (Regionally Leveled Fire Occurrence Areas) from Westwide Risk Assessment 16 17 Fire Threat Index (Regionally Leveled Fire Threat Index) from 18 Westwide Risk Assessment 19 Suppression Difficulty Rating (Regionally Leveled Suppression ٠ 20 Difficulty Rating) from Westwide Risk Assessment 21 Westwide Risk Assessment Regionally Leveled Expected Flame • 22 Length 23 Westwide Risk Assessment Regionally Leveled Expected Rate of 24 Spread 25 Soil Moisture/Temperature Regime 26 Sources: Soil Moisture Temperature Regimes Data from the BLM National 27 Operations Center and Soil Moisture and Temperature Regime Data from the 28 Landscape Conservation Management and Analysis Portal. 29 Sagebrush Landscape Cover 30 Sources: Sagebrush Distribution from LANDFIRE and Sagebrush Distribution 31 and Percent Landscape Cover from the Landscape Conservation Management 32 and Analysis Other Data Layers. 33 2.2.3 Other Data Layers Used 34 35 **GRSG** Data 36 The 2013 COT GRSG population shape file was produced by the 2013 GRSG 37 Conservation Objectives Team. The GRSG PACs polygon data set represents 38 the GRSG PACs identified in the 2013 GRSG COT Report.

Т			Other Geographies
2			• The Western Association of Fish and Wildlife Agencies (WAFWA)
3			Management Zones contain the original WAFWA Management
4			Zones shape file. This data set depicts a preliminary version of the
5			management zone boundaries for GRSG and Gunnison Sage-Grouse
6			in the western United States and Canada.
7			National Table 2 Sagebrush Soil Regime Overlay Calculation.
8			• FIAT Region Boundaries (November 18, 2014 cleaned version)
9			includes all five official region boundaries. These data are approved
10			to use in the Step 2 assessment. The boundaries have been modified
11			from the COT-base PAC boundaries and include USFWS
12			recommended PACs.
13	2.3		ATIONS AND STEP 2 PROCESS CONSIDERATIONS
14			This report is based on the best information available at the time of publication.
15			The BLM recognizes that there are areas where additional information would
16			enhance the value of this report and would further support implementation of
17			FIAT objectives and overall GRSG conservation efforts. The following are data
18			gaps identified during the Snake/Salmon/Beaverhead Step 2 process.
19		2.3.1	Focal Habitats
20			Primary concerns with the focal habitat model are as follows:
21			I) The locations of important seasonal habitats are not well
22			understood for some populations (particularly those GRSG that are
23			more migratory).
24			2) It limits restoration opportunities outside of the focal areas.
25			As a result, it may be that focal habitats identified in FIAT Step 2 fail to include
26			areas that provide some of the best investment for GRSG restoration. For
27			example, it may be that the best strategy to prevent fire from reaching high-
28			quality habitat in some cases is to perform fire prevention management outside
29			of the focal habitats. Indeed, the focus of GRSG fuel reduction and habitat
30			restoration planning in some field offices has been outside of focal habitats. It
27			has also been argued that restoration treatments should focus on historically
32 33			over the long term
22			
34			The BLM recognizes that the focal habitat analysis in FIAT Step 2 does not
35			necessarily address the full suite of actions needed to maintain the current
36 27			distribution and connectivity of GRSG habitats. To be sure, future efforts
3/ 20			designed to maintain and connect nabitats across the range will be needed as
20 20			current local nabitats are addressed and additional resources become available.
37 4∩			conducted to ensure that management actions and management actions
TU			conducted to ensure that management actions encompass all seasonal nabitat

requirements. However, it should be noted that the intent of FIAT Step 2 is to provide a first-tier stratification (e.g., focal habitats) for prioritizing areas where conservation actions could be especially important for GRSG populations. It should also be noted that FIAT Step 2 does not preclude habitat management activities outside of focal areas.

2.3.2 Mapping Habitat Conditions

Correctly identifying habitat conditions was identified as a potential issue with mapping GRSG habitat, particularly as a result of post-fire recovery. Invariably, there is a lag between the time habitat becomes suitable and the time when BLM staff recognizes the change. Therefore, there is an inherent skew towards fewer habitat areas being mapped as suitable for GRSG compared to the amount actually available on the landscape. Also, broad habitat categories lead to an underestimation of the importance of habitat which may be slightly reduced in shrub cover but which is rapidly approaching suitable conditions for GRSG. A review of time-since-disturbance information coupled with land treatment information (which includes effectiveness monitoring) could improve the process in making decisions on focal areas.

2.3.3 Project Prioritization based on Resistance and Resilience Concepts

The prioritization of actions and tools associated with restoration projects should be framed within watershed-level restoration plans. Such plans incorporate the spatial and temporal relationship of all pertinent resource layers that are needed to achieve resource objectives. The expertise of local field office staff is critical to achieving project success. Their knowledge should be continually expanded by integrating a wide-range of applied science information.

- 25Additional spatial layers that would support more informed restoration26treatments could include the following:
 - Site disturbance history layers, including agricultural development
 - Information on seedings that would be more responsive to interseeding/inter-planting treatments (e.g., old seedings where native plants are recovering)
 - Provisional and empirical seed zones (for example, see http://www.fs.fed.us/wwetac/threat_map/SeedZones_Intro.html)
 - BLM Seeds of Success collection locations to determine seed lots that could be used for restoration
 - Chemical treatments where residual herbicides may positively or negatively affect seeding success
 - Noxious weed bio-control sites
- Cheatgrass die-off locations

L

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

27

28

29

30

31

32

33

34

35

36

Native seed island locations for targeted source-identified seed collections
Meteorological tower locations
Spatial extent of existing levels of landscape fragmentation (e.g., roads, power lines, and fuelbreaks)

SECTION 3

2 **ASSESSMENT AREA CHARACTERIZATION**

3 3.1 SNAKE/SALMON/BEAVERHEAD ASSESSMENT AREA

4 From both a regional and a range-wide perspective, the South Side Snake and 5 Southwest Idaho population areas are especially important to long-term 6 conservation of GRSG in Management Zone IV. This is because they comprise a 7 substantial portion of the Great Basin core population (Connelly et al. 2004). 8 Shared with Nevada, Utah, and Oregon, this is one of the two remaining major 9 population strongholds in the range of the species. The North Side Snake and 10 Mountain Valleys populations provide additional and substantial contributions in П Idaho. The Mountain Valley population also provides known connectivity with 12 the Southwest Montana population.

13 3.2 BIOLOGICAL SUMMARY

14 15

16

17

18

19

20

21

22

3.2.1 Vegetation

The composition and distribution of plant communities in the Snake/Salmon/Beaverhead assessment area are influenced by such factors as climate, elevation, topography, soils, drought, insects, fire, cultivation, invasive plants, and livestock grazing. As a result, a wide variety of plant communities occur. Plant communities vary greatly in their relative ecological health, as a result of stressors that influence the distribution and abundance of the plant components in the general community.

23Some portions of the planning area contain relatively intact sagebrush steppe24communities. Plant communities such as these are in good to excellent25ecological condition and maintain adequate forb and perennial grass in the26understory to supply habitat requirements for GRSG.

27Data available for analysis are limited to general overstory vegetation classes of28tall shrub, such as basin big sagebrush (Artemisia tridentata ssp. tridentata),29Wyoming big sagebrush (A. t. ssp. wyomingensis), and mountain big sagebrush (A.30tridentata ssp. vaseyana), and low shrub, such as black sagebrush (A. nova) and

March 2015

l 2 3 4	low sagebrush (A. <i>arbuscula</i>). This information can be further stratified based on landscape characteristics to approximate the relative proportion of the various types of sagebrush plant communities. Data are not widely available concerning the relative ecological health of the plant communities in the assessment area.
5 6 7 8 9	At the time of document preparation, spatial data that accurately portrayed the distribution of nonnative, invasive, and/or noxious plant species across the range of GRSG were not available. Therefore, nonnative, invasive, and/or noxious plant species need to be more fully inventoried and monitored in the focal habitats to prioritize treatments of these species. Management actions needed in
10	focal habitats include the following:
11	Locating infestations
12	 Decreasing propagule pressure (especially along roadside areas)
13	Treating satellite infestations
14	Preventing future infestations
15	Plant species are the foundation of habitat and ecosystem function; when we say
17	native plant diversity and distribution is central to the problem. This issue
18	cannot be resolved without restoring native plant communities and their
19	distribution. Therefore, using locally adapted native seeds and native plant
20	materials of sagebrush-steppe ecosystem appropriate to the location,
21	conditions, and management objectives for vegetation management and
22	restoration activities (Secretarial Order 3336, January 5, 2015) will be a priority.
23	Strategic pre-project planning will be required to acquire this genetically
24	appropriate seed and other plant material for habitat restoration.
25	3.2.2 Invasive Annual Grasses
26	Noxious weeds and invasive species include plants listed as noxious by state
27	laws. Also included are those plants known to be altering the dynamics of native
28	plant communities by replacing native plants through competition or altering
29	some ecological process to the detriment of the native plant community. The
30	latter is an example of annual bromes increasing fire frequency.
31	Specific noxious weeds causing localized impacts in the planning area are rush
32	skeletonweed, leafy spurge, diffuse knapweed, and spotted knapweed. Although
33	not yet well established in the planning area, yellow starthistle is known to have
34	a similar range as cheatgrass; many of the areas currently supporting annual
35	grass communities could support this noxious weed. Other weeds listed as
36 27	noxious occur in the planning area but are not as widespread or as detrimental
38 39	Invasion by exotic annual grass species has resulted in dramatic increases in number and frequency of fires, with widespread, detrimental effects on habitat

conditions (Young and Evans 1978; West and Young 2000; West and Yorks 2002; Connelly et al. 2004). Increased fire frequency typically removes the sagebrush canopy in affected areas, which is replaced by annual species that provide little to no habitat value (Knapp 1996; Epanchin-Niell et al. 2009; Rowland et al. 2010; Baker 2011; Condon et al. 2011). Invasive annuals are numerous species of bromes, most notably cheatgrass and medusahead rye (*Taeniatherum caput-medusae*). An annual species that may be a threat in higher-elevation GRSG habitat is ventenata (*Ventenata dubia*). Wyoming sagebrush communities are particularly susceptible to conversion to annual grasslands after fire when the understory contains higher densities of annual grass.

Once converted to exotic annual grasses, these plant communities have crossed a threshold that precludes their returning to traditional plant community composition through normal plant succession. These areas are essentially lost in their ability to provide GRSG habitat, unless significant investment in restoration is undertaken. Even then, these projects may fail if conditions do not exist for desired species to become successfully established.

3.2.3 Conifer Encroachment

The conversion of sagebrush steppe communities into conifer woodlands is a factor contributing to GRSG habitat decline in portions of the planning area. This conversion is mostly an issue in mountain big sagebrush, where reduced fire frequency has allowed the invasion of Utah, Rocky Mountain, or western juniper; in some areas Douglas fir and pine may be expanding into shrub habitats.

3.2.4 Fire Regime and History

Fire is an active and dynamic environmental factor on the landscape. Rate of spread can exceed 5 miles per burn period (see maps: Historic Fire Locations 1970–2007, Large Fire Simulator module 2013, and Large Fire Perimeter 2000-2012).

- 29Surface water availability is limited for numerous reasons, including lack of30access to water sources and limited surface water. Water is generally provided31by water tenders and aerial support.
- 32The greatest loss of GRSG habitat in the Snake/Salmon/Beaverhead assessment33area has been from cheatgrass proliferation and wildfire within the lower-34elevation sagebrush communities (primarily Wyoming big sagebrush).
- Historically, wildfire was not a common occurrence in Wyoming big sagebrush
 sites. Current literature estimates the fire interval at approximately 100 years.
 When these sites have burned, the discontinuous fuels of the scattered native
 bunch grasses likely resulted in small discontinuous fires.
- 39Conversely, cheatgrass is highly flammable due to its uniform fine fuels, which40dry out early in the growing season. Each recurring fire set the stage for further

L

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

cheatgrass expansion, resulting in an ever-increasing cheatgrass/fire cycle and loss of GRSG habitat. On many of these sites, fire return intervals have been shortened to between two and four years (Whisenant 1990).

> Lower-elevation shrub steppe communities within the assessment area that experience successive disturbances and have lost residual native community components, including biological soil crusts, will cross to ecological thresholds that favor annual-dominated communities that are also at risk to noxious weed invasions. Rehabilitation of these areas will require multiple, well-timed interventions within the first two years following a fire to achieve functional rehabilitation.

3.2.5 Soil/Moisture Regime (Resistance and Resilience)

The average annual precipitation and temperature and associated soil/moisture regime vary greatly by elevation and aspect in the assessment area. See **Table 3-1**, **Figure 3-1**, **Figure 3-2**, **Figure 3-3**, and **Figure 3-4**.

		71
GRSG Habitat Matrix Type	Acres	Percentage of SSB Landscape
IA	479,562	7
IB	778,275	11
IC	1,497,055	22
2A	177,274	3
2B	652,728	10
2C	1,311,132	19
3A	328,518	5
3B	503,371	7
3C	224,828	3
Blank	821.796	12

Table 3-1 Snake/Salmon/Beaverhead Landscape Covered by GRSG Habitat Matrix Type¹

¹GRSG Habitat Matrix Type is from the GRSG habitat matrix based on resilience and resistance concepts from Chambers et al. 2014 (1=high resilience and resistance; 2=moderate resilience and resistance; 3=low resilience and resistance; A=1-25 percent sagebrush land cover; B=26-65 percent sagebrush land cover, and C= >65 percent sagebrush land cover)

3.2.6 Greater Sage-Grouse

Within the Idaho/Southwest Montana EIS/RMPA area, GRSG occupy all or portions of ten populations and eight subpopulations (Connelly et al. 2004). Two large populations—Great Basin Core and Wyoming Basin—encompass portions of Oregon, Nevada, Utah, and Wyoming and extend beyond the subregional boundary.

Migratory movements of GRSG also have been documented between eastern Idaho and southwestern Montana from the Bannack and Red Rock populations.

3-4

L

2

3

4

5

6

7

8

9

10

Ш

12

13

14

15

16

17

18

19

20

21

L

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Telemetry data from 1999 to 2012 show that seasonal movements, including both distance and duration, vary significantly between groups of GRSG.

3.2.7 Existing Treatments

A variety of treatments have been performed on the landscape within at least the last 60 years. While anecdotal information (oral history) shares that projects were performed in the 1950s and 1960s, some records are not readily available. A search of all past projects is beyond the scope of this assessment. Since the National Fire Plan of 2000, a number of hazard fuels reduction projects have been implemented and entered into the NFPORS. A number of post-fire rehabilitation projects (ESR) have also been implemented on burned acres.

Within the lower-resiliency areas, native plant communities are prioritized over established seedings. Depending on fire severity and the amount of residual early successional native species, recently burned native communities will cross ecological thresholds where site disturbances have been frequent enough to limit the recovery of these early succession native species, including Sandberg bluegrass and squirreltail, as well as biological soil crusts. ESR treatments will be important in sites where ecological thresholds within native plant communities have been crossed. In seedings the herbaceous component typically recovers, but sagebrush mortality will occur. Additionally, when seedings do burn, the more discontinuous fuels associated with established perennial bunch grasses often result in a mosaic burn pattern that maintains some of the sagebrush, resulting in an existing seed source for natural reestablishment.

3.2.8 Other Management Factors

During the FIAT Step 2 process, the Snake/Salmon/Beaverhead assessment team recognized, in a general sense, the influence of other landscape-level factors that contribute to GRSG habitat and population persistence in the assessment area. These other management factors are lands and realty (e.g., transmission lines), wild horses and burros, mining, and livestock grazing. Where a particular management factor is found to influence the nature and type of potential treatments, those factors are noted. However, any detailed analysis of these factors is outside the scope of this assessment; accordingly, this assessment does not consider or assess the potential threats of these other management actions on GRSG habitat.

34The BLM is continuing to develop EISs and RMPAs, which consider the impacts35of proposed management of these resource uses on GRSG and its habitat.

Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Resistance-Resilience Reportable Priorities

Bureau of Land Management U.S. Department of the Interior

Bureau of Land Management U.S. Department of the Interior

Resistance-Resilience Priorities for Application of Management Strategies

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

March 2015 Date Saved: 3/16/2015 Data Sources: BLM, NRCS, ESRI Basedata 1:2,750,000

Snake, Salmon and Beaverhead Assessment Area

This page intentionally left blank.

I

SECTION 4

2 FOCAL HABITAT AND PROJECT PLANNING

3 **AREAS**

4
5

6

7

8

9

10

П

12

13

14

15

16 17

4.1 FOCAL HABITAT AND PROJECT PLANNING AREAS

4.1.1 Focal Habitat Areas Overview

Chambers et al. (2014) illustrates a step-down approach for identifying and assessing priority GRSG habitats across large landscapes and provides guidelines to identify effective management strategies/actions and habitat restoration needs across four primary federal agency program areas: fuels management, fire operations, habitat restoration/recovery, and post-fire rehabilitation. The approach is based on widely available data, described in Section 2.3, to provide consistency across millions of acres and includes: (1) PACs, (2) breeding bird densities, (3) habitat suitability as indicated by the landscape cover of sagebrush (not foliar cover), (4) resilience and resistance and dominant ecological types as indicated by soil temperature and moisture regimes, and (5) habitat threats as indicated by cover of cheatgrass, cover of piñon and juniper, and by fire history.

Using this approach, development and review teams were identified and tasked 18 19 with initiating the FIAT process in an effort to reduce threats to GRSG resulting 20 from impacts from invasive annual grasses, wildfires, and conifer expansion. Step 21 I FIAT team members included individuals from federal agencies that administer 22 the four federal program areas that are the focus of the assessment. They used 23 this approach to identify priority habitat areas, further referred to as "focal 24 habitats." Focal habitats are the portions of a PAC with important habitat 25 characteristics and bird populations that are most impacted by the previously 26 identified threats. See Greater Sage-Grouse Wildlife, Invasive Annual Grasses & 27 Conifer Expansion Assessment (2014) for further Step 1 details. The results of 28 Step I of the FIAT process, including geospatial data, were made available as the 29 starting point for the assessment teams identified for Step 2 of the FIAT 30 process.

March 2015

4.1.2 Project Planning Areas Overview

As part of the FIAT Step 2 process, the Snake/Salmon/Beaverhead assessment team assessed and identified broad PPAs and associated proactive and reactive management strategies and associated vegetation treatments focused on the four program areas (fuels management, habitat restoration and recovery, fire operations, and post-fire rehabilitation management). The team used focal habitats as the spatial starting point and through the Step 2 process, identified I5 unique PPAs.

9Each PPA contains at least one focal habitat, and in many cases, several. For10most PPAs, management strategies/actions and treatments were identified11outside of focal habitats based on local knowledge that these areas are crucial to12the long-term viability of GRSG populations within the PPA.

13 The team subsequently used a series of worksheet templates prepared for each 14 program area to identify treatment opportunities for the four program areas 15 within each PPA. For each District Office in the assessment area, team members 16 participated in one or more interactive webinars to discuss and complete the 17 assessment for each PPA. In order to consider the broadest spectrum of 18 possible treatment opportunities, the team did not consider landownership 19 when conducting these assessments. Additionally, the team restricted potential 20 fuelbreaks to existing roads in order to minimize further disturbance, 21 fragmentation, and reduce the likelihood of increasing invasive annual grass 22 abundance.

23All of the Snake/Salmon/Beaverhead assessment area is in Idaho. This area24covers approximately seven million acres generally within the Idaho Falls and25Twin Falls BLM District Offices. Landownership in the PPAs is composed of a26combination of public (78 percent) and private (22 percent) landownership27(Table 4-1). A list of PPAs by BLM District Office is contained in Table 4-2.28See Figure 4-1.

Table 4-1Landownership within PPAs in theSnake/Salmon/Beaverhead Landscape

Ownership	Acres	Percentage of SSB Landscape
BLM	3,468,021	55
Forest Service	556,026	9
State	339,757	5
Private	1,496,563	24
Other federal lands ¹	398,932	6

¹Includes lands administered by the Department of Defense, Bureau of Indian Affairs, National Park Service, and/or Bureau of Reclamation

L

2

3

4

5

6

7

Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

		PPA N	ame	BLM District Office	
		Antelop	e Flat/ Big Lost	Idaho Falls	
		Bennett	Hills	Twin Falls	
		Big Dese	ert	Idaho Falls	
		Big Lost		Idaho Falls	
		Birch Ci	reek	Idaho Falls	
		Hat Cre	ek	Idaho Falls	
		Lemhi-B	irch	Idaho Falls	
		Little Lo	st	Idaho Falls	
		Little W	'ood River	Twin Falls	
		Magic		Twin Falls	
		Medicin	e Lodge	Idaho Falls	
		Pahsime	roi	Idaho Falls	
		Sand Cr	eek	Idaho Falls	
		Table B	Jtte	Idaho Falls	
		Twin Bu	itte	Idaho Falls	
I	_				
2	4.2	SNAKE/SALM	ON/BEAVERHEAD MANAGEN	IENT STRATEGIES COMMON TO	
3			In identifying acreages for	potential treatment opportunities/	management
4			strategies, some acreage cont	ained no Geographic Information	System data.
5			This acreage is identified herein	and tabulated as "Null" acreage.	
6		4.2.1	Fuels Management		
7			The FIAT Step 2 process identi	fied several existing travel routes as	priority fuels
8			treatments. Proposed fuelbreak	s are identified in the GIS data accor	npanying this
9			report. The routes identified a	re those that can be treated within	the next five
10			vors using a variaty of treat	nont techniques, including moving	mastication
10			shaining hardinide analiantiana	nent techniques, including mowing,	
11			chaining, nerbicide applications	s, seedings, and targeted grazing. A	li treatments
12			would be coordinated with	other land management agencies	and private
13			landowners, as appropriate,	and monitored post-treatment	to ensure
14			effectiveness. Fuelbreak treatm	nent areas were identified using e	xisting roads
15			within the PPA that could b	e accessed and used by BLM per	rsonnel. The
16			identified areas represent the h	ighest priority within the PPA for fu	rther review
17			and analysis as part of a su	ubsequent implementation strategy	v. Additional
18			information will be obtained v	via field work and other appropria	te means to
19			determine how to fully use t	he delineated roads to optimize G	RSG habitat
20			conservation within the PPA.		
21		(2 2			
21		4.2.2	Habitat Recovery/Restorati	on	
22			In general, treatments of a	innual invasive grasses would in	clude active
23			management approaches, inclue	ding spraying, seeding, and monitori	ng of treated
24			sites for proper vegetation com	nmunities. The GIS data accompanyin	g this report
25			also identifies the ideal location	ns of potential habitat recovery and	restoration
26			projects. In general, habitat res	storation treatments would be prior	itized in low
27			resistance and resilience areas	with degraded habitat (e.g., historic	burn areas)
					/

Table 4-2 Snake/Salmon/Beaverhead PPAs
and other warm-dry soil areas. All treatments would be coordinated with other land management agencies and private landowners, as appropriate, and monitored post-treatment to ensure effectiveness.

4.2.3 Fire Operations

Т

2

3

4

5

6

7

8

9

10

11

20

The Step 2 FIAT process identified areas with the lowest resistance and resilience and moderate to high cover (3B and 3C areas) as the highest priority areas for initial fire attack and stationing of resources. The GIS data accompanying this report identifies these areas. The decision to prioritize these areas is supported by the overwhelming evidence throughout the Great Basin that demonstrates these areas have the greatest risk for conversion to invasive annual grasses after a fire (see, for example, Chambers et al. 2014).

- 12Response to wildfires on National Forest Systems (NFS) lands in and around13identified priority GRSG habitat will be consistent with Forest Plan direction.14Identified GRSG habitat is considered a high priority for protection on NFS15lands.
- 16Response to wildfire on other federal public lands, state lands, and other17landownerships, including private ownerships and ownerships protected by18(forest) fire protection associations shall be consistent with their respective fire19management plans.

4.2.4 Post-Fire Rehabilitation

21 The Step 2 FIAT process identified those areas with moderate to high cover, 22 warm-dry soil conditions, and no prior post-fire rehabilitation treatments as 23 being the highest priority for post-fire rehabilitation. Areas that have received 24 revegetation treatment are more resistant and resilient than native 3B and 3C 25 habitat areas. Higher-elevation, north-facing slope areas with cooler and moister 26 soil characteristics would be lower priority areas for rehabilitation due to the 27 ability of those sites to naturally recover following fire. In all cases of previously 28 seeded or natural recovery areas, shrub seeding or planting may be necessary if 29 desirable shrubs are not present.

30In the absence of ESR treatments, recently burned native communities may31likely be irrevocably converted to invasive annual-dominated communities,32whereas in existing seedings, the herbaceous component typically recovers33naturally even though the sagebrush would be killed. Additionally, when seedings34do burn, the more discontinuous fuels associated with established perennial35bunch grasses often result in a mosaic burn pattern that maintains some of the36sagebrush, resulting in an existing seed source for natural reestablishment.

37 4.3 SNAKE/SALMON/BEAVERHEAD PPAs

38Below, in order of priority ranking, are descriptions of each of the PPAs within39the Snake/Salmon/Beaverhead Assessment Area. Each PPA description includes40I) a characterization of the PPA landscape, 2) examination of the proposed41management strategies within the PPA, and 3) spatial depiction of the proposed

		treatments. Additional supporting information, such as PPA worksheets,
2		meeting notes, and links to electronic geospatial data, is included in
3		Appendices A-E.
4	4.3.1	Antelope Flat/Big Lost
5		
6		Project Planning Area Description
7		
8		Geographic Overview
9		The Antelope Flats/Big Lost PPA is in the BLM Idaho Falls District Office along
10		Highway 93 between Mackay and Challis, Idaho. Land status includes
11		approximately 60 percent BLM-administered land, 25 percent Forest Service
12		land, and 15 percent state and private land.
13		There are approximately 554,200 acres within the PPA. Topography varies from
14		open and flat along Highway 93 to rolling hills and rugged mountainous regions.
15		Elevation ranges from approximately 5,800 feet (1,770 meters) to 11,000 feet
16		(3,425 meters).
17		This PPA is composed of moderate to high cover and cool moist and/or cool
18		dry habitat matrix categories. Approximately 18 percent of the PPA has no
19		habitat matrix data. See Table 4-3

Table 4-3Antelope Flat/Big Lost GRSG Habitat Matrix Categories

	Matrix Category	No Data	IA	IB	IC	2 A	2 B	2C	3 A	3B	3C
	Acres	98,272		59,386	175,359		42,611	178,558			
	% of PPA	18%		11	32		8	32			
20											
21			Big Lost R	iver run	s along th	e high	way, wit	h tributario	es to Big L	.ost occi	urring
22		throughout much of the PPA.									
23			Agricultura	al develo	pment is	likely 1	to occur	on the sc	outhern end	d of the	PPA;
24			however, p	orivate la	nd is limite	ed in th	nis PPA.				
25			A highway	runs alo	ng the eas	stern b	oundary	and near t	he norther	n bounda	ary of
26			the PPA, a	and appr	oximately	half o	f the PP.	A is withir	n five miles	s of high	ways.
27			Approxima	ately 40 p	percent of	the PP	A is with	in five mile	es from trar	smission	lines
28			or towers	and 50 p	ercent is f	ive to	13 miles f	from trans	mission line	s or tow	vers.
29			Access to	more rug	gged BLM	and Fo	orest Serv	vice lands a	are likely to	be limit	ed by
30			topography	y. Highw	ay 93 facil	itates	access, r	unning the	length of t	the PPA	along
31			the eastern	n side.				-	-		-

1	GRSG Characteristics
י ר	Most of the area is overlapping winter and breeding behitet. Telemetry data
2	Those of the area is overlapping whiter and breeding habitat. Telemetry data
3	show concentrated use in Sand Springs Valley and Cedar Creek Bar. Additional
4	seasonal habitat and bird use in the areas outside the focal habitat are why the
5	PPA is extended southwest of the focal habitats. The northwest and southeast
6	boundaries will follow the local working group polygon.
7	Vegetation
8	Conifer expansion occurs in the central parts of the PPA.
9	No large monocultures are present within PPA; cheatgrass is mostly in drainages
10	towards the northern end of the PPA, based on USGS data.
11	Fire
12	Most of the PPA is in the high and very high burn probability categories; a
13	portion of the southeastern end is in the moderate category.
14	Some reservoirs appear along the Big Lost, but it is unknown whether they are
15	available for fire suppression use. See Table 4-4 .

 Table 4-4

 Antelope Flat/Big Lost Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres)403,512High and Very High Burn Probability in PPA (percent)73
16	
17	Existing Treatments
18	Several small physical treatments and small prescribed fires have been
19	completed in this PPA.
20	Other Management Factors
21	BLM lands are grazed by cattle. Current mining is limited; however, historic
22	mining occurred throughout PPA.
23	Fuels Management
24	No fuels management is proposed.
25	Habitat Recovery/Restoration
26	Priority areas for habitat recovery/restoration include*:
27	62,000 acres of potential conifer encroachment treatments
28	 0 acres of potential invasive annual grass
29	 5,500 acres of potential habitat restoration
30 3 I	 104,500 acres of other total habitat recovery/restoration potential treatment

1 2 *See associated GIS data layers for position and extent within the PPA and Table 4-5.

	Tat	ole 4-5		
Antelope Flat/B	ig Lost Habitat	Restoration Potent	tial Treatments	
Priority I	Priority 2	Priority 3	Null	

	Priority	Priority I	Priority 2	Priority 3	Null	Total				
	Acres	36,900	30,700		36,900	104,500				
	% of PPA	7	6		7	19				
3										
4		Fire Oper	rations							
5		Priority areas for fire operations include the following*:								
,			Antologo Elet/	Pig Lost fine and price	nim / 126 100 a anaa					
6		,	 Anteiope Flat/ 	Big Lost fire 2nd prio	rity: 126,100 acres					
7			 Antelope Flat/ 	Big Lost fire 3rd prior	rity: 182,000 acres					
8		*See ass	ociated GIS data	layers for position	and extent within t	the PPA and				
9		Table 4	- 6 .							

Table 4-6Antelope Flat/Big Lost Potential Fire Operations Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Null	Total					
	Acres		126,100	182,000	35,300	343,300					
	% of PPA		23	33	6	62					
10											
11		Post-Fire	Rehabilitation								
12		The Ste	o 2 FIAT process i	dentified areas within	the focal habitats w	ith warm-dry					
13		soil con	soil conditions as the highest priority for post-fire rehabilitation. The Idaho Falls								
14		District	District Office will continue working with other stakeholders to coordinate and								
15		prioritiz	e post-fire rehabili	tation activities.							
-		F									
16		Potentia	l treatment areas	for post-fire rehabi	litation managemen	t include the					
17		followin	g*:		Ū						
			5								
18			• Antelope Flat/	Big Lost ESR 2nd pric	ority: 113,800 acres						
10				Dielast FCD Dud auto							
19			 Anteiope Flat/ 	Big Lost ESR 3rd prio	rity: 182,000 acres						
20		*500.00	sociated GIS data	lavers for position	and extent within	the PPA and					
20			I T	layers for position	and extent within						
21		i able 4	-7.								

Table 4-7	
Antelope Flat/Big Lost Potential Post-Fire Rehabilitation Management	Strategies

Priority	Priority I	Priority 2	Priority 3	Null	Total
Acres		3,800	182,000	35,300	331,000
% of PPA		21	33	6	60

4-8

I	Proposed Management
2	Proposed management in the Antelope Flat/Big Lost PPA is intended to improve
3	overall habitat resistance and resilience by reducing conifer encroachment and
4	protecting existing habitat during fire operations. See Table 4-8 for projects
5	that have been identified within the NEPA planning process. See Figures 4-8
6	through 4-14 for a graphic depiction of the proposed treatments and strategies
7	in the PPA.

Treatment Description		Priority		Threats Addressed			NEPA		Treatments								
						s (I)	(R)					Tiı Fra	ne me	Certa Effecti	inty of veness ¹	ıme	me
Name/Type	Acres	lst	2nd	3rd	Conifer (C)	Conifer (C) Invasive annual grasses		Riparian Degradation Wildfire (W)		Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fra (years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Antelope Flat/Big Lost– Weed Treatments	20					Х	Х	Х		Х			Х	Х		I	5+
Antelope Flat/Big Lost– Conifer Encroachment Treatments	8,740				×	Х	Х	Х	×			X		X		5- 10	5+
Antelope Flat/Big Lost– GRSG Vegetation Treatment	60,327					Х	Х	Х	X			X		X		5- 10	5+

Table 4-8 Antelope Flat/Big Lost PPA Treatment Summary Table

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

²Describe frequency of maintenance necessary to continue effectiveness (years)

³Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

10 11

12 13

4.3.2 Bennett Hills

Project Planning Area Description

- Geographic Overview
- 14The Bennett Hills PPA is in the BLM Twin Falls District. The PPA is north of15Interstate 84 up to Highway 20 from Fairfield, Idaho west to Bennett Mountain.16Land status includes approximately 50 percent BLM-administered land, 1517percent Forest Service land, and 35 percent state and private land.

⁸ 9

l 2	There are approximately 636,600 acres within the PPA. Topography varies from rolling hills to rugged and mountainous. Elevation ranges from approximately
3	3,609 feet (1,100 meters) to 5,906 feet (1,800 meters).
4	The PPA has low, moderate, and high landscape cover categories and all ranges
5	of cool-moist, cool-dry, and warm-dry soil temperature and moisture classes.
6	See Table 4-9 .

	Matrix Category	No Data	IA	ΙB	IC	2 A	2B	2C	3 A	3B	3C				
	Acres	37,157	35,238	129,789	198,709	1,733	16,271	76,106	19,716	86,300	35,526				
_	% of PPA	6	5	20	31	0	2	12	3	14	6				
7							-								
8			More wa	ter featur	es exist o	n the Fo	orest Ser	vice por	tion of the	e PPA, bu	it water				
9			sources o	occur thro	oughout.										
10			Agricultu	griculture and residential development is likely to be common due to the											
П			significant	gnificant amount of private land in this PPA.											
12			Over 90 percent of the habitat in the PPA is less than 12 miles from electrical												
13			transmiss	sion towe	rs. Approx	ximately	40 perc	ent of th	ne PPA is	within fiv	/e miles				
14			of primar	ry roads a	nd approx	imately	20 perce	nt is bet	ween five	and nine	miles of				
15			primary I	roads. Tra	ansmission	lines a	re adjace	nt to the	e northwe	est and sc	outheast				
16			corners of	of the PP/	A, with ap	proxima	tely 10 r	percent o	of habitat	within fou	ur miles				
17			and 20 pe	ercent wit	hin four to	o nine m	niles of tr	ransmissi	on lines.						
18			Topogra	ohy and la	ndowners	hip patt	ern may	limit acce	ess to rem	iote areas					
19			GRSG Cho	aracteristic	s										
20			GRSG te	lemetry d	ata are co	ncentra	ted in th	e northw	vestern co	orner of t	he PPA.				
21			Most of	the area	is breedi	ing habi	tat, and	winter	habitat oo	curs acr	oss the				
22			southern	half. The	southern	bounda	ry has b	een exte	nded sout	th of Goo	oding to				
23			include ir	nportant	wintering	habitat.									
24			Vegetatior	า											
25			There is	scattered	d conifer	expansi	on in th	is PPA,	but it is	not a sig	znificant				
26			managem	ent conce	ern at this	time.									
27			Medusah	ead and o	cheatgrass	unders	tories o	ccur in t	he south	ern areas	of the				
28			focal hab	itats. The	re is a high	potent	ial for in	vasive an	nual expan	nsion with	nin focal				
29			habitats.												

Table 4-9Bennett Hills GRSG Habitat Matrix Categories

Approximately 84 percent of the PPA is in the high and very high burn probability categories. Anderson Ranch Reservoir is on the northwest side of this PPA. Other water availability is unknown. See **Table 4-10**.

Table 4-10Bennett Hills Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres)535,600535,600535,600
-	High and Very High Burn Probability in PPA (percent) 84
5	Existing Treatments
7	Many treatments have occurred, and they appear to be associated with post-fire
8	activities. ESR treatments and fuel treatments have occurred to control
9	medusahead and cheatgrass.
10	Other Management Factors
11	Other management factors did not influence the selection of treatments for this
12	PPA.
13	Fuels Management
14	The potential treatment area includes approximately 79 miles of potential linear
15	fuelbreaks and 14,500 acres of potential fuels treatments. These linear
16	fuelbreaks follow a network of existing travel routes throughout the PPA and
17	are depicted in the GIS data accompanying this report. Proposed linear
18	treatments primarily include road blading and roadside spraying along the
19	identified roadways. While the primary treatment is reduction of hazardous
20	fuels to reduce fire behavior, associated related targets such as reduction of
21	invasive annual grass, conifer, and invasive weeds will also be accomplished.
22	Potential for roadside treatments exists, especially from chemical methods.
23	Potential treatments for fuels management include the following*:
24	Bennett Hills fuelbreaks 1st priority: 51 miles
25	Blade and Spray: 7 miles
26	Intermittent Spray: 44 miles
27	*See associated GIS data layers for position and extent within the PPA and
28	Table 4-11.

Table 4-11
Bennett Hills Potential Fuels Management Treatments

Priority	Priority I	Priority 2	Priority 3	Total
Miles	28	4	47	79
Acres	14,500			14,500

29

I

2 3

4

4-11

I	Habitat Recovery/Restoration									
2	Conifer encroachment is not a major issue in this FIAT PPA; therefore, no									
3	applicable treatment strategy for conifer encroachment is needed at this time.									
4	Active restoration would be limited, with higher priority areas being on the									
5	edge of the focal habitat.									
6	Priority areas for habitat recovery/restoration include the following*:									
7	• Approximately 82,200 acres of potential invasive annual grass									
8	treatments									
9	• Approximately 20,400 acres of potential habitat restoration (other)									
10	treatments									
11	*See associated GIS data layers for position and extent within the PPA and									
12	Table 4-12.									

Table 4-12Bennett Hills Potential Habitat Restoration Potential Treatments

	Priority	Priority I	Priority 2	Priority 3	Total
	Acres	42,400	60,200		102,600
	% of PPA	7	9		16
13					
14		Fire Operations			
15		Priority areas for	potential fire operatio	ns include the following *:	
16		• Benne	ett Hill fire 1st priority	v: 227,400 acres	
17		• Benne	ett Hill fire 3rd priorit	y: 186,900 acres	
18		• Total	for potential fire oper	rations: 416,500 acres	
19		*See associated	GIS data layers for p	osition and extent within t	he PPA and
20		Table 4-13.			

Table 4-13	
Bennett Hills Potential Fire Operations Management Strategie	es

	Priority	Priority I	Priority 2	Priority 3	Null	Total						
	Acres	227,400		186,900	2,200	416,500						
	% of PPA	36		29	0	65						
21												
22		Post-Fire	Rehabilitation									
23		The Ste	o 2 FIAT process i	dentified areas within	the focal habitats w	vith warm-dry						
24		soil conditions as the highest priority for post-fire rehabilitation. The Twin Falls										
25		District Office will continue working with other stakeholders to coordinate and										
26		prioritiz	e post-fire rehabili	tation activities.								

l 2 3 4 5	The Hill City Blues Fire and other fires have occurred within the focal habitat in this area. There has only been natural recovery in the northern zone of this PPA. The 1st priority areas for potential treatments would be in the southern areas in the moderate to high cover warm-dry soils. Annual grass presence potential and burn severity make this a high priority area.
6 7	Potential treatment areas for post-fire rehabilitation management include the following*:
8	 Bennett Hill ESR 1st priority: 30,300 acres
9	Bennett Hills ESR 2nd priority: 72,500 acres
10	Bennett Hill ESR 3rd priority: 172,000 acres
 2	*See associated GIS data layers for position and extent within the PPA and Table 4-14 .

 Table 4-14

 Bennett Hills Potential Post-Fire Rehabilitation Management Strategies

	Priority		Priority I	Priority 2	Priority 3	Total									
	Acres		30,300	72,500	172,000	274,800									
	% of PPA		5		27	43									
13															
14			Proposed Mana	igement											
15			Proposed treatments in the Bennett Hills PPA are intended to improve habita												
16			health through a	reduction in invasive a	annuals, while protecting	g habitat through									
17			a combination of	combination of fuelbreaks and designation of fire operations priority areas. See											
18			Table 4-15 for	able 4-15 for projects that have been identified within the NEPA planning											
19			process. See Figures 4-15 through 4-22 for a graphic depiction of the												
20			proposed treatments and strategies in the PPA.												
				Ū											
21		4.3.3	Big Desert												
22			-												
23			Project Planning	g Area Description											
24															
25			Geographic Overvi	iew											
26			The Big Desert I	PPA is in the BLM Idah	no Falls District Office ea	ast of Craters of									
27			the Moon Natio	nal Monument, north	of American Falls, Idah	io, and south of									
28			Highways 20 and	d 26. Landownership i	ncludes approximately 8	30 percent BLM-									
29			administered land	d. 15 percent Departm	ent of Energy. Idaho Nat	ional Laboratory									
30			land, and 5 perce	ent state and private lar	nd.	· · · · · · · · /									
				···· •••••• ••··- p···••• •••											
31			There are appro	ximately 564,900 acre	s within the PPA. Topo	graphy is mostly									
32			flat, with no pr	edominant aspect. El	evation ranges from 4,	500 feet (1,372									
33			meters) to 6,000	feet (1,829 meters).	.										

Treatment Description		Priority		Threats Addressed			NEPA		Treatments								
						es (I)	i (R)					Tiı Fra	me Ime	Certa Effectiv	inty of veness ¹	ame	ame
Name/Type	Acres	lst	2nd	3rd	Conifer (C)	Invasive annual grass	Riparian Degradation	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (years) ²	Completion Time Fr ² (0-2, 3-5, 5+ years) ³
TF District ESR	N/A									Х		Х		Х		N/A	0-2
Bennett Hills Native Restoration Plots	600					Х		Х	Х			Х		Х		N/A	3-5
Camas Weeds	7,500					Х		Х		Х		Х	Х	Х		2-5	5+
Bennett Hills Fuelbreaks	10,000					Х		Х	Х			Х				3	5+
Upper Rim Medusahead Restoration	20,000					Х		Х	Х			Х				5+	3-5
Blair Restoration	24,000					Х		Х		Х		Х	Х			5+	3-5
North Gooding Restoration	3,000					Х		Х	Х			Х				N/A	3-5
North Bliss Restoration	2,000					Х		Х	Х			Х				N/A	3-5
Bennett Brush Restoration	10,000					Х		Х		Х		Х	Х			N/A	5+

Table 4-15Bennett Hills PPA Treatment Summary Table

State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

²Describe frequency of maintenance necessary to continue effectiveness (years)

³Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

I
~
4

4 5

6

7

3

This PPA contains all (low, moderate and high) cover types and all soil moisture temperature regimes. See **Table 4-16**.

Due to the lack of water sources within the Big Desert PPA (many of the existing sources are wells), the addition of a well near the southeastern corner of the planning area would help to more evenly distribute water sources throughout the desert and aid in future fire suppression operations.

	Matrix Category	No Data	IA	ΙB	IC	2 A	2B	2C	3 A	3B	3C
	Acres % of PPA	10,049 2	96,271 17	59,628 	80,553 14	19,240 3	123,126	136,475 24	17,230 3	19,261 3	3,036 I
I	/• • • • • • • • •										<u> </u>
2			A single	230-kV	transmiss	ion line	runs in a	north-sou	th directi	on throu	gh the
3			eastern p	ortion c	of the Big	Desert I	PPA. Appr	oximately	70 perce	nt of the	PPA is
4			within 12	2 miles of	felectrica	al transm	ission tow	ers, and th	ne remain	ing habita	it is 12
5			to 21 mi	les from	towers.	Approxi	mately 20	percent o	of the Big	g Desert	PPA is
6			within 5	miles of	primary	roads, w	hich run a	long the n	orthern l	ooundary	of the
7			PPA. App	proximat	ely 40 pe	ercent of	the Big D	esert PPA	is within	n four mil	es and
8			35 perce	nt is four	to nine	miles fro	m transmi	ssion lines	or tower	·S.	
9			GRSG Cho	aracteristi	ics						
0			The PPA	has mos	tly breed	ling habit	at, with so	ome winte	r habitat.	Telemet	ry data
I			are conc	entrated	in the co	enter of	the PPA. I	Due to re	peated wi	ldfires ov	er the
2			last 15 y	years, ov	ver half	of the E	Big Desert	: PPA is	categorize	ed as pe	rennial
3			grassland	grasslands and lacking sagebrush cover.							
4			Vegetatio	า							
5			Due to r	repeated	wildfires	over the	e last 15 y	ears, over	half of th	ne Big De	esert is
6			categoriz	ed as pe	rennial gr	asslands	and lackin	g sagebrus	h cover.		
7			Pockets of	of conife	r expansi	on focal a	area occur	in the no	rthern ha	lf of the P	'PA.
8			Cheatgra	ss reduc	es habita	t connec	tivity in sc	outhern an	d eastern	portions	of the
9			PPA.								
0			Fire								
L			Historica	lly fire	is a pers	sistent a	nd signific	ant envir	onmental	factor c	on this
2			landscape	e. Appro	ximately	90 perce	nt of this	PPA is ide	ntified to	have a hi	gh and
3			very high	ı burn pı	robability	. The co	ver/soil m	oisture te	mperatur	e regime	model
4			drastically	y under	represen	ts the	influence	of fire a	and over	represen	ts the
5			vegetativ	e resist	ance/resi	lience at	tributes	in this P	PA, part	icularly i	in the
6			southern	half of	the PPA	. Perhap	s resistanc	ce/resilien	ce is over	rrepreser	ited in
7			part due	to local	topograp	phic influe	ences. Stro	ong local v	vinds influ	uence fire	starts
8			within th	is PPA aı	nd also ca	arry fire	through th	ne lava roc	k soils ald	ong the w	estern
9			and sout	hern po	ortions o	t the PP	A. Wind	carries fi	re from	the Magi	c PPA
0			through 1	the Big D	Jesert PF	'A. In add	dition to a	high to v	ery high b	ourn prob	ability,
ן ר			fire rates	s-ot-spre	ad are e	exhibited	to excee	a 25 mile	s per bu	irn perío	d. See
2			i able 4-	-17.							

Table 4-16 Big Desert GRSG Habitat Matrix Categories

	High and Very High Burn Probability in PPA (acres)	504,400
	High and Very High Burn Probability in PPA (percent)	89
2	Existing Treatments	
3	A minimal number of treatments have been performed of	on the landscape within
4 r	the last 60 years. While anecdotal information (oral	nistory) indicates that
5	projects were performed in the 1950s and 1960s, recor	ds of these treatments
0 7	are not readily available. A search of all past projects is b	do the DPA houndary
/ 8	Assessment, and an past work has occurred just outsi Known past treatments include the following:	de the FFA boundary.
0	Known past d'éaunents include the following.	
9	 2,510-acre Cox's Well crested seeding (1997) 	7). Successfully reduced
10	cheatgrass dominance of the site that was	the result of repeated
11	disturbance.	
12	 106.313-acre Mule Butte aerial sagebrush see 	ding (2000). Treatment
13	was initially thought to be a failure, but s	trips started becoming
14	visible in 2008 throughout seeding area. How	ever, most of the initial
15	seeding area reburned in 2006.	
16	 11.155-acre sagebrush seedling planting 	(2006 and 2007).
17	Successfully replanted sagebrush throughout	seven project areas to
18	increase sagebrush densities. Success rates r	ranged between 20 and
19	80 percent.	0
20	 2.715-acre Cox's Well native grass seed 	ing (2012). Marginally
21	successful seeding that added to the dens	sity of perennial grass
22	species.	, , , , , , , , , , , , , , , , , , ,
23	• 8.550-acre Big Desert fuelbreaks (2012). Con	npartmentalized the Big
24	Desert through the construction of 300-fc	ot fuelbreaks. thereby
25	reducing the vertical and horizontal continuit	y of the vegetative fuels
26	adjacent to the main access roads.	, 6
27	Other Management Factors	
28	Existing road and electrical transmission infrastructure	was considered in the
29	selection of treatments for this PPA.	
30	Fuels Management	
31	The potential treatment area includes approximately	8,500 acres in which
32	existing road systems would be used for fuelbreaks.	These breaks follow a
33	network of existing travel routes throughout the PPA a	and are depicted in the
34	GIS data accompanying this report. Proposed treatm	ents primarily include
35	mowing and chemical application along the identified ro	badways to reduce the
36	vertical and horizontal continuity of the vegetative	fuels, resulting in the
37	compartmentalization of the PPA into 21 suppression zo	ones. These treatments

Table 4-17Big Desert Summary of Burn Probability

I 2 3 4	are 1st order priority and can be accomplished within the next five years. While the primary treatment is reduction of hazardous fuels to reduce fire behavior, associated related targets such as reduction of invasive annual grass, conifer, and invasive weeds will also be accomplished.
5	Potential treatments for fuels management include the following*:
6	• Big Desert Fuelbreaks: 8,500 acres
7	*See associated GIS data layers for position and extent within the PPA and
8	Table 4-18.

Table 4-18Big Desert Potential Fuels Management Treatments

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Miles	0	0	0	0	0
	Acres	8,500			0	8,500
9						
10		Habitat F	Recovery/Restoration	า		
11		Sagebrus	h and perennial g	rass would be establis	hed after subseque	nt fire years.
12		Location	s in the eastern p	ortions need restorat	ion efforts to reduc	ce density of
13		cheatgra	ss to improve co	nnectivity between lel	ks with counts betw	ween 60 and
14		70 birds	. The main goals	in the southern porti	ons of the PPA are	to improve
15		GRSG h	abitat and provid	le restoration from r	ecent fires, includir	ng important
16		habitat t	hat has been chan	ged due to fire behavio	or.	•
17		Priority a	areas for habitat r	ecovery/restoration in	clude the following [*]	k.
18			• 5,100 acres of	potential conifer expa	nsion treatments	
19		•	• 250,900 acres	of potential habitat re	storation (other) tre	eatments
20		•	• 259,100 acres	of total habitat recove	ery/restoration	
21		*See ass	ociated GIS data	layers for position a	nd extent within t	he PPA and
22		Table 4	-19.			

Table 4-19Big Desert Potential Habitat Restoration Treatments

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres	209,900	42,800	3,400	3,000	259,100
	% of PPA	37	8	I	I	46
3						
24		Fire Oper	rations			
25		Respons	e to wildfires in	and around critical	GRSG habitat is	accomplished
26		primarily	y with engines, do	zers, and water tende	ers, with support f	rom a variety
27		of aviati	on assets. BLM st	ations provide for ra	pid initial attack re	esponse from

March 2015

multiple locations to the majority of focal areas, and response plans have been updated with increased response to such areas.

Idaho Falls District Engine Stations are located in Malad, Soda Springs, Pocatello, American Falls, Fort Hall, Blackfoot, Atomic City, Idaho Falls, Dubois, and Salmon. The Salmon/Challis National Forest provides initial attack to several focal areas, with engines and helicopters from Mackey, Challis, Leadore, and Salmon. The Caribou/Targhee National Forest provides additional resources for several of the focal areas, with engines from Malad, Pocatello, and Ashton being the closest to the focal areas.

- 10 The response time to the majority of the focal areas is thirty minutes to one 11 hour to have multiple resources on scene. Additional resources could be staged 12 in Arco to provide more coverage for the Big Lost and Big Desert focal areas. 13 Resources could also be staged in Aberdeen, Arco, Clyde, Rexburg, and 14 Holbrook to provide for quicker response to the more remote focal areas, 15 including Curlew, Big Desert, Big Lost, Pasemeroi, Medicine Lodge, and Sand 16 Creek. The Idaho Falls BLM has mutual aid agreements with over 50 rural or 17 municipal fire departments that can be used to further supplement initial attack, 18 as many of the departments are the closest resource to many focal areas and 19 would likely be the first to respond. GRSG suppression guidelines will be 20 discussed with cooperators during AOP meetings and training will be provided 21 to increase their capacity where possible. Contract resources, including dozers, 22 engines, and water tenders, can be hired and staged during high fire danger 23 periods such as high wind events and predicted dry lightning at any of the above 24 locations. To supplement the air tanker base in Pocatello, portable SEAT bases 25 can be operated in Malad, Arco, and Challis to reduce flight times to many of 26 the focal areas. Portable SEAT bases will be staged in Arco and Malad for the 27 fire season, with all agreements in place to activate them in a timely manner 28 during the fire season. Water sources have been mapped in remote locations 29 where water supply is limited, including contact information on existing wells. In 30 addition, more wells can be developed and existing wells can be improved with 31 more funding and completion of NEPA. 32 Priority areas for potential fire operations include the following*:
 - ritority areas for potential fire operations include the following.
 - Big Desert fire 1st order priority: 560,500 acres
 - *See associated GIS data layers for position and extent within the PPA and **Table 4-20**.

	8	•	6	6	
Priority	Priority I	Priority 2	Priority 3	Null	Total
Acres	560,500			4,600	565,100
% of PPA	99			I	100

Table 4-20Big Desert Potential Fire Operations Management Strategies

4-18

33

34

35

L

2

3

4

5

6

7

8

9

I	Post-Fire Rehabilitation
2	The Step 2 FIAT process identified areas within the focal habitats with warm-dry
3	soil conditions as the highest priority for post-fire rehabilitation. The Idaho Falls
4	District Office will continue working with other stakeholders to coordinate and
5	prioritize post-fire rehabilitation activities.
6	Potential treatment areas for post-fire rehabilitation management include the
7	following*:
8	Big Desert ESR 1st priority: 94,500 acres
9	Big Desert ESR 2nd priority: 225,400 acres
10	*See associated GIS data layers for position and extent within the PPA and
11	Table 4-21.

Table 4-21Big Desert Potential Post-Fire Rehabilitation Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres	94,500	225,400		3,400	323,300
	% of PPA	17	40		I	57
12						
וז		Probose	ed Management			

15	rioposed Management
14	The emphasis of proposed treatments for this PPA are on improving existing
15	habitat health through habitat recovery/restoration, while maintaining intact
16	habitat through by designating priority areas for fuels management and fire
17	operations. See Table 4-22 for projects that have been identified within the
18	NEPA planning process. See Figures 4-23 through 4-30 for a graphic depiction
19	of the proposed treatments and strategies in the PPA.

Table 4-22Big Desert PPA Treatment Summary Table

Treatm Descrip	ient tion	P	riorit	у		Thr Addr	eats essed			NEPA	•		Treatments			-	
						s (I)	(R)					Tir Fra	ne me	Certa Effecti	uinty of veness ¹	ame	me
Name/ Type	Acres/ Miles	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian Degradation	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fra (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Cedar Butte	5,210	Х			С			W		С		Р		LI		20	5+
Big Desert Restoration	292,959		Х			I		W	I			Р		LI		10	5+
Big Desert Fuelbreaks	8,551	Х						W		С			Ι	LI		4	5+

March 2015

Treatment Description	Priority	Threats Addressed	NEPA			
		s (I) (R)		Time Frame	Certainty of Effectiveness ¹	ame me
Name/ Type Acres/ Miles	l st 2 nd 3 rd	Conifer (C) Invasive annual grasse Riparian Degradation Wildfire (W)	Initiated (I) Completed (C) Needed (N)	Pending Funding (P) ¹ Implementing (I) ¹	Likely Unlikely	Maintenance Time Fr (Years) ² Completion Time Fra (0-2, 3-5, 5+ years) ³
Stage Road 27,113 Restoration	X	I W	I	Р	L4	10 5+
USFO 564,874 Shrub/Tree Planting EA	X	I W	С	I	LI	10 5+
USFO Weed 564,874 Treatment EA	X	1	С	I	LI	5 5+

Table 4-22 **Big Desert PPA Treatment Summary Table**

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

²Describe frequency of maintenance necessary to continue effectiveness (years)

³Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

-		
2	4.3.4	Big Lost
4 5		Project Planning Area Description
6		Geographic Overview
7		The Big Lost PPA is in the BLM Idaho Falls District Office north of High
8		and 26, east of Highway 93, and north and west of Sheep Mountain and
9		Mountain. Landownership includes approximately 40 percent BLM-admi
10		land, 20 percent Forest Service land, and 40 percent private land.
11		There are approximately 184,700 acres within the PPA. Elevation range
12		5,249 feet (1,600 meters) to 9,678 feet (2,950 meters).
13		This PPA includes low, moderate, and high landscape cover types in t
14		moist and cool-dry soil temperature moisture regimes. See Table 4-23 .
15		Lost River is in the northern third of the PPA; Antelope Creek bisects
16		and has many tributaries.
17		Agriculture and dispersed residential development is likely throughout
18		due to the large proportion of private land.

rict Office north of Highways 20 of Sheep Mountain and Reserve ely 40 percent BLM-administered cent private land.

eters). dscape cover types in the cool-

Antelope Creek bisects the PPA

ent is likely throughout the PPA

I

the PPA. Elevation ranges from

	Matrix Category	No Data	IA	ΙB	IC	2 A	2B	2C	3A	3B	3C	
	Acres	7,240	2.69	23,312	113,203		19,724	21,181				
	% of PPA	4	0	13	61		11	11				
Ι												
2			Highways	to the s	outh and	east fac	cilitate fi	re respons	e time; ho	owever, a	access	
3			may be re	estricted	due to p	rivate la	ands and	the wilde	erness stu	dy area i	in the	
4			northern portion of the PPA.									
5			All focal h	abitats in	the PPA	are les	s than 12	2 miles fro	m electrica	al transm	nission	
6			towers. A	🔪 highwa	y runs a	long t	he sout	hern bour	ndary of t	the PPA	, and	
7			approxima	tely 30 p	ercent of	the are	a is less	than five m	niles from t	the highv	vay. A	
8			transmissio	on corri	dor exists	s adjac	ent to	the easter	n portion	of the	PPA.	
9			Approxim	ately 10 p	percent of	habitat	is withi	n four mile	s of this co	orridor, a	nd 60	
10			percent is	within fo	ur to nine	miles.						
11			GRSG Chai	acteristics	;							
12			The PPA	is mostly	breeding	habita	t; howev	ver, teleme	etry data f	or this a	rea is	
13			lacking.									
14			Vegetation									
15			There is s	cattered	conifer o	n the h	igher-ele	vation nor	th slopes.	Howeve	r, due	
16			to the ru	igged top	oography	and lin	nited ac	cess, there	e are limi	ted trea	tment	
17			opportuni	ties. Inva	sive annua	al grass	es are p	resent thr	oughout t	he PPA	below	
18			6,500 feet.									
19			Fire									
20			Approxim	ately 51	percent	of the	PPA is	in the h	igh and v	ery high	burn	
21			probability	[,] categori	es, with tl	he rema	ainder in	the mode	rate catego	ory. See 7	Table	
22		4-24.										

Table 4-23Big Lost GRSG Habitat Matrix Categories

Table 4-24Big Lost Summary of Burn Probability

	Listen and Marshall Stell Develophility in DDA (consta)	04 (00
	High and Very High Burn Probability in PPA (acres) High and Very High Burn Probability in PPA (percent)	94,600 51
23		
24	Existing Treatments	
25	A variety of treatments have been performed on the l	andscape within the last
26	60 years. While anecdotal information (oral history) indi	cates that projects were
27	performed in the 1950s and 1960s, records of these tre	eatments are not readily
28	available. A search of all past projects is beyond the so	cope of this assessment.
29	Since the National Fire Plan of 2000, a number of	hazard fuels reduction
30	projects have been implemented and entered into	the National Fire Plan

L Operations and Reporting System (NFPORS). A number of post-fire 2 rehabilitation projects (ESR) have also been implemented on burned acres. 3 Within the lower resiliency areas, native plant communities are prioritized over 4 established seedings. In the absence of ESR treatments, recently burned native 5 communities may irrevocably be converted to invasive annual-dominated 6 communities, whereas in existing seedings, the herbaceous component typically 7 recovers naturally even though the sagebrush would be killed. Additionally, 8 when seedings do burn, the more discontinuous fuels associated with 9 established perennial bunch grasses often result in a mosaic burn pattern that 10 maintains some of the sagebrush, resulting in an existing seed source for natural 11 reestablishment. 12 **Other Management Factors** 13 The FIAT Step 2 team considered existing infrastructure, such as transmission 14 lines and roadways, when prioritizing treatments for this PPA. Other 15 management factors were not considered in detail. 16 Fuels Management 17 No fuels management is proposed due to the limited road system and linear 18 fuels treatments already in place. 19 Habitat Recovery/Restoration 20 No habitat recovery/restoration is proposed. 21 Fire Operations Response to wildfires in and around critical GRSG habitat is accomplished 22 23 primarily with engines, dozers, and water tenders, with support from a variety 24 of aviation assets. BLM stations provide for rapid initial attack response from 25 multiple locations to the majority of focal areas, and response plans have been 26 updated with increased response to such areas. 27 Idaho Falls District Engine Stations are located in Malad, Soda Springs, Pocatello, 28 American Falls, Fort Hall, Blackfoot, Atomic City, Idaho Falls, Dubois, and 29 Salmon. The Salmon/Challis National Forest provides initial attack to several 30 focal areas, with engines and helicopters from Mackey, Challis, Leadore, and 31 Salmon. The Caribou/Targhee National Forest provides additional resources for 32 several of the focal areas, with engines from Malad, Pocatello, and Ashton being 33 the closest to the focal areas. 34 The response time to the majority of the focal areas is thirty minutes to one 35 hour to have multiple resources on scene. Additional resources could be staged 36 in Arco to provide more coverage for the Big Lost and Big Desert focal areas. 37 Resources could also be staged in Aberdeen, Arco, Clyde, Rexburg, and 38 Holbrook to provide for quicker response to the more remote focal areas, 39 including Curlew, Big Desert, Big Lost, Pasemeroi, Medicine Lodge, and Sand 40 Creek. The Idaho Falls BLM has mutual aid agreements with over 50 rural or

I	municipal fire departments that can be used to further supplement initial attack,
2	as many of the departments are the closest resource to many focal areas and
3	would likely be the first to respond. GRSG suppression guidelines will be
4	discussed with cooperators during AOP meetings and training will be provided
5	to increase their capacity where possible. Contract resources, including dozers,
6	engines, and water tenders, can be hired and staged during high fire danger
7	periods such as high wind events and predicted dry lightning at any of the above
8	locations. To supplement the air tanker base in Pocatello, portable SEAT bases
9	can be operated in Malad, Arco, and Challis to reduce flight times to many of
10	the focal areas. Portable SEAT bases will be staged in Arco and Malad for the
11	fire season, with all agreements in place to activate them in a timely manner
12	during the fire season. Water sources have been mapped in remote locations
13	where water supply is limited, including contact information on existing wells. In
14	addition, more wells can be developed and existing wells can be improved with
15	more funding and completion of NEPA.
16	Priority areas for potential fire operations include the following*:
17	Big Lost fire 2nd priority: 47,700 acres
18	Big Lost fire 3rd priority: 120,500 acres
19	*See associated GIS data layers for position and extent within the PPA and
20	Table 4-25.

Table 4-25Big Lost Potential Fire Operations Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Null	Total					
	Acres		47,700	120,500	6,600	174,800					
	% of PPA		26	65	4	95					
21											
22		Post-Fire	Rehabilitation								
23		The Step	o 2 FIAT process i	dentified areas within	the focal habitats w	ith warm-dry					
24		soil con	soil conditions as the highest priority for post-fire rehabilitation. The Idaho Falls								
25		District	Office will continu	ue working with other	r stakeholders to co	ordinate and					
26		prioritiz	e post-fire rehabili	tation activities.							
27		Potentia	l treatment areas	for post-fire rehabil	itation management	t include the					
28		following	s*:								
29			• Big Lost ESR 2	and priority: 47,700 ac	res						
30			• Big Lost ESR 3	rd priority: 120,500 a	cres						
31		*See ass	ociated GIS data	layers for position a	and extent within	the PPA and					
32		Table 4	-26.	-							

	Priority	Priority I	Priority 2	Priority 3	Null	Total				
	Acres		47,700	120,500	6,600	174,800				
	% of PPA		26	65	4	95				
l										
2		Propos	ed Management							
3		Propose	Proposed management in the Big Lost PPA would be focused on fire operations							
4		and pos	t-fire rehabilitatior	n. The FIAT Step 2 pr	ocess did not iden	tify a need to				
5		specify	any fuels managen	nent or habitat recov	ery/restoration tre	eatments. See				
6		Table	4-27 for projects	that have been ident	tified within the N	IEPA planning				
7		process	. See Figures 4	-31 through 4-35 f	or a graphic depi	iction of the				
8		propose	ed treatments and s	strategies in the PPA.						

Table 4-26Big Lost Potential Post-Fire Rehabilitation Management Strategies

Table 4-27Big Lost PPA Treatment Summary Table

Treatm Descrip	nent otion	P	riorit	y		Thr Addr	eats essed		l	NEPA	1	Treatn		tments			
						(I) se	(R)					Tiı Fra	me me	Certa Effectiv	inty of veness ¹	ame	ıme
Name/Type	Acres	lst	2nd	3rd	Conifer (C)	Invasive annual grass	Riparian Degradation	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
USFO Shrub/Tree Planting EA	184,666	Х				I	R	W		С			I	LI		10	5+
USFO Weed Treatment EA	184,666	Х				I				С			I	LI		5	5+

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

²Describe frequency of maintenance necessary to continue effectiveness (years)

³Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

Project Planning Area Description

9 10

4.3.5 Birch Creek

11

17

12 13

Geographic Overview

- 14 15
- 15
- The Birch Creek PPA is in the BLM Idaho Falls District Office at the southern end of Birch Creek Valley. The PPA runs along Highway 28 to the Highway 22 intersection east of the Lemhi Range and southwest of Copper Mountain.

1	Landownership includes approximately 75 percent BLM-administered land, 20
2	percent Department of Energy, Idaho National Laboratory land, and 5 percent
3	private land.
4	There are approximately 110,000 acres within the PPA. The topography
5	includes gently sloping valley bottoms between mountain ranges. Elevation
6	ranges from 5,000 feet (1,524 meters) to 7,500 feet (2,286 meters).
7	This PPA has moderate to high shrub cover classes within cool-dry and moist-
8	dry soil moisture temperature regimes. See Table 4-28 .

	Matrix Category	No Data	IA	ΙB	IC	2 A	2 B	2C	3 A	3B	3C		
	Acres	7,805		11	18,266		143	83,773					
	% of PPA	7		0	17		0	76					
9		Dia	ah Cuaali a	به ما دینامی					(- 4 - 14			
10		Bir	сп Стеек а	na tribu	itaries pro	ovide a	natura	al source o	r surface w	ater.			
П		Hig	shway 28	runs al	ong the	easter	n edg	e of the	PPA, and	there ma	ay be		
12		dev	velopment	associat	ed with	ldaho	Natior	nal Laborat	ory at the	southerr	۱ end.		
13		Hig	ghway acce	ss is ava	ailable alc	ong the	e lengt	h of the P	PA, with ty	wo-track	roads		
14		pro	oviding acce	ess thro	ughout th	e area.							
15		All	focal habit	ats in th	ne PPA ai	e less	than	12 miles fro	om electric	al transm	ission		
16		tov	vers. Nearl	y all of t	this PPA i	A is affected by primary roads, with habitat less than							
17		five	e miles fror	n highw	ays. Appr	roxima	tely 40) percent o	of the Birch	n Creek F	PA is		
18		wit	hin five mil	es and 4	10 percen	t is wit	hin fiv	e to 13 mil	es of prima	ry roads.			
19		GR	SG Characte	eristics									
20		The	e entire PP	A is wir	nter habit	at, and	l much	of it is als	o breeding	habitat.	There		
21		are	are limited telemetry data for this area.										
22		Veg	getation										
23		The	ere is a li	mited o	listributio	n of o	cheatg	rass along	highways	and alon	g the		
24		we	stern edge	of the F	PPA, but i	is not	: a sign	ificant issue	2.		-		
25		Fire	•										
26		The	ere are no	high oi	r very hig	h burr	n prob	ability area	as in this P	PA. The	entire		
27		PP/	A is in the r	noderat	te burn pr	obabil	ity cat	egory. See	Table 4-2	9.			

Table 4-28Birch Creek GRSG Habitat Matrix Categories

Table 4-29
Birch Creek Summary of Burn Probability

High and Very High Burn Probability in PPA (acres)	0
High and Very High Burn Probability in PPA (percent)	0
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

28

I	Existing Treatments
2	A minimal number of treatments have been performed on the landscape within
3	the last 60 years. While anecdotal information (oral history) indicates that
4	projects were performed in the 1950s and 1960s, records of these treatments
5	are not readily available. A search of all past projects is beyond the scope of this
6	assessment.
7 8 9 10 11	The 700-acre Birch Creek treatment (2007) focused on reducing the decadent shrub canopy to promote the herbaceous understory growth. Irregular patterns were mowed into the sagebrush canopy, followed by drill seeding using a native seed mix. While the mowing did help to release the existing understory, the drill seeding never took and was later considered a failure.
2	Other Management Factors
3	Other management factors did not influence the selection of treatments for this
4	PPA.
15	Fuels Management
16	No fuels management is proposed.
17	Habitat Recovery/Restoration
18	Juniper expansion treatments would mostly be needed along the western
19	border of the PPA. Invasive annuals are not a significant issue in this PPA;
20	therefore, no treatment strategy for invasive annuals is needed at this time.
21	Priority areas for habitat recovery/restoration treatments include the following*:
22	• Birch Creek Mahogany Butte conifer 2nd priority: 22,900 acres
23 24	*See associated GIS data layers for position and extent within the PPA and Table 4-30.

Table 4-30Birch Creek Potential Habitat Restoration Treatments

Priority	Priority I	Priority 2	Priority 3	Null	Total
Acres	-	22,900	-	1,200	24,100
% of PPA		21	I	22	
	Fire Ope	rations			
	Respons	se to wildfires in	and around critical	GRSG habitat is a	accomplished
	primarily	y with engines, do	zers, and water tende	rs, with support fr	om a variety
	of aviati	on assets. BLM st	ations provide for rap	oid initial attack re	sponse from
	multiple	locations to the	majority of focal areas	, and response plai	ns have been
	updated	with increased re	sponse to such areas.	•••	
	Idaho Fa	alls District Engine	Stations are located ir	n Malad, Soda Sprin	gs, Pocatello,
	A			City Idaha Talla	-

Salmon. The Salmon/Challis National Forest provides initial attack to several focal areas, with engines and helicopters from Mackey, Challis, Leadore, and Salmon. The Caribou/Targhee National Forest provides additional resources for several of the focal areas, with engines from Malad, Pocatello, and Ashton being the closest to the focal areas.

6 The response time to the majority of the focal areas is thirty minutes to one 7 hour to have multiple resources on scene. Additional resources could be staged 8 in Arco to provide more coverage for the Big Lost and Big Desert focal areas. 9 Resources could also be staged in Aberdeen, Arco, Clyde, Rexburg, and 10 Holbrook to provide for quicker response to the more remote focal areas, 11 including Curlew, Big Desert, Big Lost, Pasemeroi, Medicine Lodge, and Sand 12 Creek. The Idaho Falls BLM has mutual aid agreements with over 50 rural or 13 municipal fire departments that can be used to further supplement initial attack, 14 as many of the departments are the closest resource to many focal areas and 15 would likely be the first to respond. GRSG suppression guidelines will be 16 discussed with cooperators during AOP meetings and training will be provided 17 to increase their capacity where possible. Contract resources, including dozers, 18 engines, and water tenders, can be hired and staged during high fire danger 19 periods such as high wind events and predicted dry lightning at any of the above 20 locations. To supplement the air tanker base in Pocatello, portable SEAT bases 21 can be operated in Malad, Arco, and Challis to reduce flight times to many of 22 the focal areas. Portable SEAT bases will be staged in Arco and Malad for the 23 fire season, with all agreements in place to activate them in a timely manner 24 during the fire season. Water sources have been mapped in remote locations 25 where water supply is limited, including contact information on existing wells. In 26 addition, more wells can be developed and existing wells can be improved with 27 more funding and completion of NEPA. 28 Priority areas for fire operations include the following*:

- Birch Creek fire 2nd priority: 41,500 acres
- *See associated GIS data layers for position and extent within the PPA and **Table 4-31**.

		i noncy 5	Null	l otal
5	41,500		6,200	47,700
PPA	38		6	43
0	of Fine Data shills straight			
Р	st-Fire Rehabilitation			
Р т	st-Fire Rehabilitation	identified areas within t	the focal habitats w	r

Table 4-31 Birch Creek Potential Fire Operations Management Strategies

L

2

3

4

5

29

30

31

32 33 34

soil conditions as the highest priority for post-fire rehabilitation. The Idaho Falls

l 2	District Office will continue working with other stakeholders to coordinate and prioritize post-fire rehabilitation activities.
3 4	Potential treatment areas for post-fire rehabilitation management include the following*:
5	Birch Creek ESR 2nd priority- 41,400 acres
6 7	Burn probability is moderate in this PPA (low relative to most other PPAs), and no recent fires have occurred.
8 9	*See associated GIS data layers for position and extent within the PPA and Table 4-32 .

Table 4-32 Birch Creek Potential Post-Fire Rehabilitation Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres		41,400		6,200	47,600
	% of PPA		38		6	43
10						
П		Propos	ed Management			
12		The pri	mary treatment p	riority in the Birch (Creek PPA is conife	er reduction.
13		Approx	imately 85 percent	t of the PPA is also a	high priority for fire	suppression
14		and po	st-fire rehabilitation	on. See Table 4-3 3	for projects that	t have been
15		identifie	d within the NEP	A planning process. S	ee Figures 4-36 t	hrough 4-41

and	post-fire	renabilitation.	see lab	ie 4-33	for projects	that have	been
iden	tified withi	in the NEPA p	planning pro	ocess. Se	e Figures 4	-36 through	4-4 I
for a	a graphic de	epiction of the	proposed	treatmen	ts and strateg	ies in the PP	A.

	Birch Creek PPA Treatment Summary Table																
Treatn Descrip	nent otion	P	riorit	y		Thr Addr	eats essed		I	NEPA	١	Treatments					
						s (I)	(R)					Tiı Fra	me Ime	Certa Effecti	inty of veness ¹	ame	me
Name/ Type	Acres	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian Degradation	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
USFO Shrub/Tree Planting EA	110,000	Х				I	R	W		С			I	LI		10	5+

Table 4-33

16

												-					
Treatn Descrij	nent otion	Ρ	riori	t y		Thr Addr	eats essed			NEPA	4	Treatments					
						s (I)	(R)					Tiı Fra	ne me	Certa Effecti	inty of veness ¹	ıme	me
Name/ Type	Acres	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian Degradation	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fra (Years) ²	Completion Time Frai (0-2, 3-5, 5+ years) ³
USFO Weed Treatment EA	110,000	X				Ι				С			I	LI		5	5+

Table 4-33 Birch Creek PPA Treatment Summary Table

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

²Describe frequency of maintenance necessary to continue effectiveness (years)

³Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

2	4.3.1 Hat Creek
3	
4	Project Planning Area Description
5	
6	Geographic Overview
7	The Hat Creek PPA is in the BLM Idaho Falls District Office north of Challis,
8	Idaho. The PPA is mostly northwest of Highway 93 from King Mountain
9	southwest to Red Butte. Landownership includes approximately 65 percent
10	BI M-administered land, 30 percent Forest Service land, and 5 percent state and
11	private land.
12	There are approximately 155,300 acres within the PPA. The topography is
13	mostly rugged, with gulches draining into the Pahsimeroi Valley. Mountain
14	ranges typically have a southeast aspect. Elevation ranges from 4,921 feet (1,500
15	meters) to 8,530 feet (2,600 meters).
16	This PPA is mostly represented by moderate to high cover in the cool-moist
17	and cool-dry soil temperature and moisture classes. See Table 4-34 .

Matrix Category	No Data	IA	IB	IC	2 A	2B	2C	3 A	3B	3C
Acres	20,839		14,102	26,940	354	11,691	81,315			
% of PPA	14		9	17	0	8	52			

Table 4-34Hat Creek GRSG Habitat Matrix Categories

- Highway 28 runs along the eastern edge of the PPA, and there may be development associated with INL at southern end. Highway access is available along the length of the PPA, with two-track roads providing access throughout the area.
- Highways run through the PPA, but most of the PPA is rugged and may limit accessibility for initial attack when needed.
- Approximately 60 percent of this PPA is within five miles of primary roads. The
 southern half of the Hat Creek PPA is five to 13 miles from transmission lines
 or towers.
- 10 GRSG Characteristics
- I ITelemetry data are concentrated along Dry Gulch to Table Mountain. Overall,I2GRSG characteristics are consistent with the conditions analyzed in theI3Idaho/Southwest Montana EIS/RMPA.
- 14 Vegetation

Т

2

3

4

5

6

- 15 Conifer expansion is occurring along the northwest border of the focal habitat.
- 16Some cheatgrass has been found up to 7,500 feet within the PPA. Some of the17largest monocultures in the Challis Field Office are between 6,500 feet and187,500 feet. Concentrated cheatgrass occurs in some areas of the PPA.

19Fire20About 5 percent of the PPA has burned, with one major fire on Table Mountain21recorded in the 1980-2013 fire perimeter data set, along with portions of other22fires. The entire PPA is in the high and very high burn probability category. See23Table 4-35.

Table 4-35 Hat Creek Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres)	153,000
	High and Very High Burn Probability in PPA (percent)	99
24		
25	Surface water availability is limited for numerous reas	ons, including lack of
26	access to water sources and limited surface water. Wate	r is generally provided
27	with water tenders and aerial support.	
28	Existing Treatments	
29	Roadside treatments and small (less than 3-acre) spot	herbicide treatments
30	followed by reseedings are occurring in the PPA. Encro	achment and thinning
31	work has occurred in the Morgan Creek area in att	empts to return the
32	landscape to proper fire regime and condition class. Vege	tation treatments data
33	show less than 5 percent of the area as having physical tre	atments.

I	Other Management Factors
2	Aside from existing roads and a transmission line in the southern portion of the
3	PPA, other management factors did not influence the selection of treatments for
4	this PPA.
5	Fuels Management
6	The potential treatment area includes approximately 300 acres that could be
7	used for fuelbreaks. These breaks follow a network of existing travel routes
8	throughout the PPA and are depicted in the GIS data accompanying this report.
9	Proposed treatments primarily include green stripping along the identified
10	roadways. These treatments are 1st order priority and can be accomplished
11	within the next five years. While the primary treatment is reduction of
12	hazardous fuels to reduce fire behavior, associated related targets such as
13	reduction of invasive annual grass, conifer, and invasive weeds will also be
14	accomplished.
15	Potential treatments for fuels management include the following*:
16	Hat Creek Morgan Creek fuels 3rd priority: 300 acres
17	*See associated GIS data layers for position and extent within the PPA and
18	Table 4-36.

Priority	Priority I	Priority 2	Priority 3	Null	Total						
Miles	0	0	0	0	0						
Acres			300		300						
	Habitat H	Recovery/Restoration	n								
	No curr	ent or future trea	atments other than c	onifer control are neo	cessary due						
	to the	good condition c	of understory grasses	s and sagebrush cove	er. Conifer						
	expansic	on is occurring a	long the northweste	rn border of the foo	cal habitats						
	within 3	within 3C and 1C habitats.									
	Priority	areas for potentia	al habitat recovery/re	storation treatments	include the						
	following	g*:									
		 Hat Creek co 	nifer 1st priority: 58,0	00 acres							
		• Hat Creek co	nifer 2nd priority: 2,3	00 acres							
		Hat Creel cor	vifer 3rd priority: 300	acres							
	*See ass	ociated GIS data	layers for position	and extent within th	e PPA and						
	Table 4	-37.	, ,								
	Priority Miles Acres	Priority Priority I Miles 0 Acres 1 Habitat I No curr to the sepansic expansic within 3 Priority following *See ass Table 4	Priority Priority I Priority 2 Miles 0 0 Acres Habitat Recovery/Restoratio No current or future treation No current or future treation to the good condition of expansion is occurring a within 3C and IC habitats Priority areas for potentiation following*: • Hat Creek co • Hat Cre	PriorityPriority IPriority 2Priority 3Miles000Acres300Habitat Recovery/Restoration No current or future treatments other than controned to the good condition of understory grasses expansion is occurring along the northwested within 3C and IC habitats.Priority areas for potential habitat recovery/refollowing*:•Hat Creek conifer 1st priority: 58,0•Hat Creek conifer 2nd priority: 2,30*See associated GIS data layers for position Table 4-37.	Priority Priority 1 Priority 2 Priority 3 Null Miles 0 0 0 0 0 Acres 300 300 300 0 0 Habitat Recovery/Restoration No current or future treatments other than conifer control are need to the good condition of understory grasses and sagebrush covery expansion is occurring along the northwestern border of the forwithin 3C and IC habitats. Priority areas for potential habitat recovery/restoration treatments following*: • Hat Creek conifer 1st priority: 58,000 acres • • Hat Creek conifer 2nd priority: 2,300 acres • Hat Creek conifer 3rd priority: 300 acres * *See associated GIS data layers for position and extent within th Table 4-37. * *						

Table 4-36Hat Creek Potential Fuels Management Treatments

	Priority	Priority I	Priority 2	Priority 3	Null	Total					
	Acres	58,000	2,300	300	8,000	68,600					
_	% of PPA	37		0	5	43					
l											
2		Fire Oper	rations								
3		Most of	the PPA is wi	thin high-cover cool-	dry soil moisture	temperature					
4		regime.	This polygon incl	udes seasonal habitat f	for GRSG. The area	just outside					
5		the focal	habitat in the so	uthwest section would	l also be included in	this polygon					
6		(Hat Creek Fire High).									
7		Respons	e to wildfires in	and around critical	GRSG habitat is a	ccomplished					
8		primarily	v with engines, do	ozers, and water tend	ers, with support fro	om a variety					
9		of aviation	on assets. BLM s	tations provide for ra	pid initial attack res	sponse from					
10		multiple	locations to the	majority of focal areas	s, and response plan	is have been					
		updated	with increased re	esponse to such areas.							
12		Idaho Fa	lls District Engine	e Stations are located i	n Malad, Soda Spring	gs, Pocatello,					
13		America	n Falls, Fort Ha	II, Blackfoot, Atomic	City, Idaho Falls,	Dubois, and					
14		Salmon.	The Salmon/Cha	Illis National Forest p	rovides initial attacl	k to several					
15		focal are	eas, with engines	and helicopters from	n Mackey, Challis, L	eadore, and					
16		Salmon.	The Caribou/Tar	ghee National Forest p	provides additional re	esources for					
17		several o	of the focal areas,	with engines from Ma	ılad, Pocatello, and A	Ashton being					
18		the close	est to the focal ar	eas.							
19		The resp	ponse time to th	e majority of the foca	l areas is thirty min	utes to one					
20		hour to	have multiple res	ources on scene. Addi	tional resources cou	ıld be staged					
21		in Arco	to provide more	coverage for the Big	Lost and Big Desert	focal areas.					
22		Resource	es could also b	e staged in Aberdee	en, Arco, Clyde, R	exburg, and					
23		Holbroo	k to provide for	⁻ quicker response to	the more remote	focal areas,					
24		including	g Curlew, Big De	esert, Big Lost, Pasem	eroi, Medicine Lodg	e, and Sand					
25		Creek. 7	The Idaho Falls B	LM has mutual aid ag	reements with over	50 rural or					
26		municipa	al fire department	s that can be used to	further supplement	initial attack,					
27		as many	of the departme	ents are the closest re	source to many foc	al areas and					
28		would li	ikely be the firs	t to respond. GRSG	suppression guidel	ines will be					
29		discusse	d with cooperato	ors during AOP meetir	ngs and training will	be provided					
30		to increa	ase their capacity	where possible. Cont	ract resources, inclu	ding dozers,					
31		engines,	and water tende	ers, can be hired and	staged during high	fire danger					
32		periods	such as high wind	events and predicted	dry lightning at any	of the above					
33		locations	s. To supplement	the air tanker base in	Pocatello, portable	SEAT bases					
34		can be c	operated in Malac	l, Arco, and Challis to	reduce flight times	to many of					
35		the foca	l areas. Portable	SEAT bases will be st	aged in Arco and M	lalad for the					
36		fire seas	on, with all agre	ements in place to ac	tivate them in a tin	nely manner					
37		during t	he fire season. V	Vater sources have be	en mapped in remo	ote locations					
38		where w	vater supply is lim	ited, including contact	information on exis	ting wells. In					

Table 4-37Hat Creek Potential Habitat Restoration Treatments

l 2	addition, more wells can be developed and existing wells can be improved with more funding and completion of NEPA.
3	Priority areas for fire operations include the following*:
4	Hat Creek fire 2nd priority: 85,800 acres
5	Hat Creek fire 3rd priority: 30,600 acres
6	*See associated GIS data layers for position and extent within the PPA and
7	Table 4-38.

Table 4-38
Hat Creek Potential Fire Operations Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Null	Total					
	Acres		85,800	30,600		116,400					
	% of PPA		55	20		75					
8											
9		Post-Fire	Rehabilitation								
10		The Step 2 FIAT process identified areas within the focal habitats with cool-dry									
11		soil conditions as second priority for post-fire rehabilitation. The Idaho Falls									
12		District Office will continue working with other stakeholders to coordinate and									
13		prioritize post-fire rehabilitation activities.									
14		Potential	treatment areas	s for post-fire rehabili	tation management	include the					
15		following	5 [*] :								
16		•	 Hat Creek ES 	R 2nd priority: 85,800	acres						
17		•	 Hat Creek ES 	R 3rd priority: 30,600	acres						
10			Tatal: 72 200								
18		•	• 10tal: 73,300	acres							
19		*See ass	ociated GIS data	lavers for position a	nd extent within th	ne PPA and					
20		Table 4									
20			-37.								

Table 4-39
Hat Creek Potential Post-Fire Rehabilitation Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Null	Total			
	Acres		85,800	30,600		116,400			
	% of PPA		55	20		75			
21									
22		Propos	ed Management						
23		The Ha	at Creek PPA is	a third priority fo	or potential fuels	management			
24		treatme	nts and a first p	priority for potential	conifer expansion	treatments.			
25		Roughly half the PPA is identified as second priority for fire suppression and							
26		post-fire	e rehabilitation. Se	e Table 4-40 for pr	ojects that have be	en identified			
27									

Treatment Description		P	riori	ty	Threats Addressed			NEPA		Treatments							
						(I) si	(R)					Tir Fra	ne me	Certai Effectiv	inty of veness ¹	ame	me
Name/Type	Acres	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian Degradation	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Hat Creek Focal Area – Weed Treatments	20					Х	х	Х		х			х	Х		I	5+
Hat Creek Focal Area – Morgan Creek Encroachment Treatment	604				X	X	Х	X		X			X	X		NA	0-2
Hat Creek Focal Area – Conifer Encroachment Treatment	719				Х	Х	Х	Х	X			Х		Х		5-10	5+
Hat Creek Focal Area– GRSG Vegetation Treatment	50	compl	eted is	slikely	or unli	X	X	X	X	ration	nale usi	X	e code	X		5-10	5+

Table 4-40 Hat Creek PPA Treatment Summary Table

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

²Describe frequency of maintenance necessary to continue effectiveness (years)

³Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

9

10

11

12

Т

presently within the NEPA planning process. See Figures 4-42 through 4-48 for a graphic depiction of the proposed treatments and strategies in the PPA.

4.3.2 Lemhi-Birch

Project Planning Area Description

Geographic Overview

The Lemhi-Birch PPA is within Lemhi Valley and Birch Creek Valley south of Lemhi, Idaho. The PPA is in the BLM Idaho Falls District Office. Landownership includes about 50 percent BLM-administered land, 25 percent Forest Service land, and 25 percent state and private land.

l 2 3	There are approximately 413,200 acres within the PPA. Valley bottoms tend to be flat and sided by southwestern and northeastern facing hills that typically range in elevation from 4,000 feet (1,219 meters) to 7,000 feet (2,134 meters).
4	The PPA is mostly represented by moderate to high shrub cover in the cool-
5	moist and cool-dry soil temperature and moisture class. See Table 4-41 .

	Matrix Category	No Data	IA	ΙB	IC	2 A	2B	2C	3A	3B	3C
	Acres % of PPA	108,799 26	3,943 I	77,185 19	111,656 27		47,407 	64,174 16			
6											
7			Main surfa	ice water	sources a	re the	Lemhi Riv	er and Birc	h Creek.		
8			Some dis	persed d	levelopmer	nt is a	ssociated	with priva	te land/a	griculture	e; old
9			mines exis	st around	l Leadore,	ldaho.					
10			A highway	runs th	rough the	middle	of the L	emhi-Birch	PPA, and	approxin	nately
П			80 percer	nt of the	habitat is v	within	five miles	of the high	iway. App	oroximate	y 50 ان
12			percent o	of the Lei	nhi-Birch I	PPA is	five to I	3 miles fro	m transm	nission lin	es or
13			towers, a	nd less tl	han 10 per	cent o	of the PPA	at the no	rthern ec	lge is less	; than
14			five miles	from trai	nsmission l	ines or	towers.				
15			Highways	run thr	ough the	PPA,	but more	e rugged a	reas may	/ have li	mited
16			accessibili	ty for init	ial attack.						
17			GRSG Cha	racteristic	s						
18			There is	a high co	oncentratio	on of le	eks withii	n the Lemh	ii-Birch P	PA. Teler	metry
19			data seen	ns to be	e lacking f	or this	area. T	he PPA co	ntains m	ostly bre	eding
20			habitat, w	ith small	patches of	winter	habitat.				
21			Vegetation								
22			Douglas f	ir is exp	anding into	o mou	ntain sage	e in the PP	A. Expan	sion area	is are
23			focused o	n the mo	derate cov	ver, coo	ol-moist s	ites. Encroa	chment a	ireas cons	sist of
24			primarily	young Do	ouglas fir, v	vith the	e sagebrus	sh understo	ry mostly	intact.	
25			Cheatgras	s is conc	entrated al	ong ro	adsides, v	vith some k	napweed	present.	
26			Fire								
27			There is I	imited fir	e history v	vithin t	he Lemhi	-Birch PPA	since 198	30. Most o	of the
28			PPA is in	the mode	erate burn	probat	oility cates	gory, with le	ow proba	bility alor	ng the
29			southwest	tern edge	and high p	orobab	ility at the	northern e	end. See ⁻	Table 4-4	42 .

Table 4-41 Lemhi Birch GRSG Habitat Matrix Categories

	High and Very High Burn Probability in PPA (acres)65,700
	High and Very High Burn Probability in PPA (percent) 16
I	
2	Existing Treatments
3	Within the Lemhi-Birch PPA, treatments are ongoing. Roadside applications ar
4	the primary treatment, and no fuelbreaks are planned. Current and ongoin
5	treatments are focused on trying to break apart shrub canopy to stimulat
6	understory growth with some seedings.
7	Other Management Factors
8	The FIAT Step 2 team considered existing infrastructure such as transmissio
9	lines and roadways when prioritizing treatments for the PPA. Othe
10	management factors were not considered in detail.
П	Fuels Management
12	No fuels management is proposed.
13	Habitat Recovery/Restoration
14	In the Lemhi-Birch PPA, there are approximately 106,900 acres of propose
15	sagebrush restoration areas. All potential treatments would be coordinated wit
16	other land management agencies and private landowners, as appropriate, an
17	monitored post-treatment to ensure effectiveness.
18	Conifer encroachment treatments would focus on areas with less than 3
19	percent slope. In areas with over 30 percent slope, trees would be removed b
20	hand falling. Late brood-rearing restoration may include manipulation of th
21	shrub canopy and interseeding to promote understory cover and diversity of
22	perennial shrubs and grasses in areas with depleted understory.
23	Potential treatments for habitat recovery/restoration include the following*:
24	Lemhi-Birch conifer 1st priority: 52,900 acres
25	Lemhi-Birch conifer 2nd priority: 700 acres
26	Lemhi-Birch habitat restoration (other) 2nd priority: 5,500 acres
27	• Lemhi-Birch habitat restoration (other) 3rd priority: 6,200 acres
28	*See associated GIS data layers for position and extent within the PPA an
29	Table 4-43.

Table 4-42Lemhi Birch Summary of Burn Probability

	Priority	Priority I	Priority 2	Priority 3	Null	Total				
	Acres	52,900	6,200	6,200	41,600	106,900				
	% of PPA	9			7	19				
1		F i O .								
2		Fire Opei	rations							
3		Respons	e to wildfires in	and around critical	GRSG habitat is a	iccomplished				
4		primarily	with engines, do	zers, and water tend	lers, with support fr	om a variety				
5		of aviation	on assets. BLM s	tations provide for r	apid initial attack re	sponse from				
6		multiple	locations to the	majority of focal area	is, and response plar	is have been				
/		updated with increased response to such areas.								
8		Idaho Fa	lls District Engine	Stations are located	in Malad, Soda Spring	gs, Pocatello,				
9		America	n Falls, Fort Hal	ll, Blackfoot, Atomic	City, Idaho Falls,	Dubois, and				
10		Salmon.	The Salmon/Cha	llis National Forest	provides initial attac	k to several				
11		focal are	eas, with engines	and helicopters from	n Mackey, Challis, L	eadore, and				
12		Salmon.	The Caribou/Targ	shee National Forest	provides additional r	esources for				
13		several o	of the focal areas,	with engines from M	alad, Pocatello, and A	Ashton being				
14		the close	est to the focal are	eas.						
15		The resp	oonse time to the	e majority of the foc	al areas is thirty mir	nutes to one				
16		hour to	have multiple reso	ources on scene. Add	itional resources cou	Id be staged				
1/		in Arco	to provide more	coverage for the Big	Lost and Big Desert	t focal areas.				
18		Resourc	es could also be	e staged in Aberde	en, Arco, Clyde, R	exburg, and				
19		Holbroc	k to provide for	quicker response to	the more remote	focal areas,				
20		including	g Curlew, Big De	sert, Big Lost, Pasem	ieroi, Medicine Lodg	se, and Sand				
21		Creek.	The Idaho Falls B	LM has mutual aid ag	reements with over	50 rural or				
22		municipa	al fire department	s that can be used to	further supplement	initial attack,				
23		as many	of the departme	nts are the closest r	esource to many for	ai areas and				
2 4 25			kely be the first	t to respond. GRSG	suppression guide	ines will be				
25 74			u with cooperato	where possible. Con	tract resources inclu	ding dozors				
20			ase their capacity	where possible. Com	d staged during high	fire denger				
27 20		engines,	and water tende	ers, call be filled and	dry lightning at any	of the above				
20		location	such as high wind	the air tanker base in	n Pocatollo, portable					
30		can be c	s. TO supplement	Arco and Challis t	o roduco flight timos	s to many of				
30		the foca	l areas Portable	SFAT has as will be s	taged in Arco and M	Alad for the				
37		fire seas	on with all agree	ements in place to a	ctivate them in a tir	mely manner				
32		during t	he fire sesson W	later sources have b	een manned in remu	ote locations				
32		where w	vater supply is lim	ited including contact	t information on exis	ting wells In				
35		addition	more wells can l	he developed and evi	sting wells can be im	noved with				
36		more fu	nding and complet	tion of NIFPA						
50		niore lui								
37		The top	priority for sup	pression would inclu	de areas identified	by the local				
38		GRSG v	vorking group. 7	The local working g	roup polygon is ca	tegorized as				

Table 4-43	
Lemhi Birch Potential Habitat Restoration Treatments	5

l 2	second priority. Third priorities are areas within the moderate to high shrub cover and cool-dry soil moisture temperature regimes.
3 4	Since most areas are intact sagebrush, the local GRSG working group layer was identified as the higher priority for fire suppression.
5 6	*See associated GIS data layers for position and extent within the PPA and Table 4-44 .

Table 4-44
Lemhi-Birch Potential Fire Operations Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres		96,600	163,000		259,600
	% of PPA		17	29		46
7						
8		Post-Fire	Rehabilitation			
9		The Ste	o 2 FIAT process i	dentified areas within	the focal habitats wit	th moderate
10		to high :	shrub cover and co	ool-dry soil conditions	s as second priority	for post-fire
		rehabilit	ation. Second prie	ority areas also inclue	de areas identified l	by the local
12		GRSG w	vorking group as h	igher priority areas. Th	he Idaho Falls Distric	t Office will
13		continue	e working with oth	ner stakeholders to co	ordinate and priorit	ize post-fire
14		rehabilit	ation activities.			
15		Potentia	l treatment areas	for post-fire rehabili	tation management	include the
16		followin	g*:			
17			• Lemhi-Birch E	SR 2nd priority: 95,500	0 acres	
18			• Lemhi-Birch E	ST 3rd priority: 163,00)0 acres	
19		*See ass	sociated GIS data	layers for position a	und extent within th	he PPA and
20		Table 4	I-45.	-		

Table 4-45Lemhi-Birch Potential Post-Fire Rehabilitation Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Null Total
	Acres		95,500	163,000	259,500
	% of PPA		17	29	46
21					
22		Propos	ed Management		
23		Potentia	al treatments in	the Lemhi-Birch	PPA focus on reducing conifer
24		encroac	hment and oth	er habitat restora	ation work. No potential fuel
25		managei	ment treatments v	were identified. See	Table 4-46 for projects that have
26		been id	entified presently	within the NEPA pl	anning process. See Figures 4-49
27		through	4-55 for a graphi	ic depiction of the p	proposed treatments and strategies
28		in the P	PA.		

4-38

	Treatment Description		Priority Threats Addressed			NEPA			Treatments									
							(I) sa	(R)					Time Frame		Certainty of Effectiveness ¹		ame	me
	Name/Type	Acres	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian Degradation	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
	CWMA Weed Treatments	300	X	Х	Х		Х				Х			Х	4		annually	5+
	CBT Veg (Non-forest)	1,015		Х		Х	Х		Х		Х		Х	Х	4		25	0-2
	Challis/ Salmon Sagebrush Habitat Improvement (joint EA)	1,250		х		X			Х		Х		X		4		15-25	3-5
l 2	I = site 2 = site 3 = cor 4 = Bas ² Describe frequer ³ Identify potential	e conditior e conditior ntinued cu sed upon p ncy of main treatmen	ns (soil: rrent n profess ntenand t comp 8.3	s, resil nanage ional c ce nec oletion	ience, ience, ement opinion essary time	specie specie (grazir n, treat to con frame, . OS t	es comp es comp ng, recr tment i ntinue consid	oosition oosition reation s likely effectiv ering N	n, distu n, distu , or ot to be veness NEPA a	urbance urbance her lan effectiv (years) adequad	es) mak es) mak d uses) ve cy, rela	tive pr	tment (tment (likelih(iority,	effectiv ood of and loo	eness like eness unli effectiven cal ranking	ly ikely iess low g factors		
3 4 5				Pro	ject	Plan	ning	Area	a De	scrip	tion							
6 7 8 9 10				Geographic Overview The Little Lost PPA is within Little Lost River Valley east of the Lost River Range. The PPA is in the BLM Idaho Falls District Office. Landownership includes about 80 percent BLM-administered land, 10 percent Forest Service land, and 10 percent state and private land.														
 2 3 4				There are approximately 143,700 acres within the PPA. The PPA runs northwest to southeast between two mountain ranges, with flat areas near valley bottoms transitioning to rugged, mountainous areas along PPA boundaries. Elevation ranges from approximately 5,340 feet (1,630 meters) to 8,530 feet (2,600 meters).														
15 16	The PPA is represented by moderate to high shrub cover in the cool-moist and cool-dry soil temperature and moisture classes. See Table 4-47 .								and									

Table 4-46**PPA Treatment Summary Table**

Matrix Category	No Data	IA	IB	IC	2 A	2 B	2C	3 A	3B	30
Acres	14,204		5,315	51,430		2,037	70,723			
% of PPA	10		4	36		I	49			
	Tł	ne main :	surface w	ater so	urces	come f	rom the	Little Lost	River a	nd its
	tri	butaries.								
	AI	l focal ha	bitats wit	hin this	PPA a	re more	e than five	miles fron	n any hig	zhway
	A	oproximat	ely 15 pe	rcent of	the L	ittle Lo	st PPA is	within five	to I3 m	iles of
	tra	ansmissio	n lines or	towers a	long th	ne south	nwestern p	ortion.		
	т	nis PPA is	fairly rom	oto with	some	areas v	within drai	nages outsid	lo anv hi	σhway
	20		nanny ren nts Hawk		ntain \	Vildorn	oss Study	Area is c	n the c	ontral
	W	estern sid	e of the P	PA and is	s fully e	enclosed	d by the PP	PA boundari	es.	
							-			
	GI	KSG Chara	cteristics		, ,		• 1		.1	
	Ie	elemetry	data are		for th	IS PPA,	with use	occurring	mostly	in the
	nc th	orthern po	ortions of	the PPA.	. Over:	all, GRS (Sauthur	G characte	eristics are (consisten	it with
	th	e conditic	ons analyze	ed in the	Idano/	Southw	est Montal	na EIS/RIMP/	۹.	
	Ve	getation								
	C	onifer enc	roachmer	t and an	nual gr	asses ar	re not signi	ficant issue	s in this F	PPA.
	Fir	e								
	Tł	nere is lin	nited fire	nistory v	vithin 1	the Littl	e Lost PPA	A since 198	0. Most	of the
	PF	A is in the	he moder	, ate burn	proba	ability ca	ategory, w	ith low pro	bability	in the
					-		• •		,	

Table 4-47Little Lost GRSG Habitat Matrix Categories

Table 4-48Little Lost Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres) 0
	High and Very High Burn Probability in PPA (percent) 0
20	
21	Existing Treatments
22	The 1,400-acre Mud Flats treatment (2009) focused on reducing the decadent
23	shrub canopy to promote the herbaceous understory growth. Irregular patterns
24	were mowed into the sagebrush canopy, followed by drill seeding with native
25	seed mix. While the mowing did help to release the existing understory, the
26	drill seeding never took and was later considered a failure.
27	The 560-acre Williams Creek seeding treatment (1980) focused on improving
28	the herbaceous understory by drill seeding a mix of crested wheatgrass and
29	Russian wild rye. The seeding was considered a success.
I	Other Management Factors
----	--
2	Aside from existing roads and transmission lines, other management factors did
3	not influence the selection of treatments for this PPA.
4	Fuels Management
5	No fuels management is proposed.
6	Habitat Recovery/Restoration
7	In the Little Lost PPA, there are approximately 5,600 acres of potential 2nd
8	priority habitat restoration (other) sagebrush restoration areas. All treatments
9	would be coordinated with other land management agencies and private
10	landowners, as appropriate, and monitored post-treatment to ensure
П	effectiveness.
12	The main goal is to increase perennial grass cover for nesting. Conifer
13	encroachment and invasive annuals are not significant issues in this FIAT PPA;
14	therefore, no treatments are currently proposed.
15	Potential treatments for habitat recovery/restoration include the following*:
16	• Little Lost Habitat restoration (other) 2nd priority: 5,600 acres
17	*See associated GIS data layers for position and extent within the PPA and
18	Table 4-49.

Table 4-49	
Little Lost Potential Habitat Restoration T	reatments

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres		5,000		600	5600
	% of PPA		3		0	4
19						
20		Fire Ope	rations			
21		Respons	e to wildfires in	and around critical	GRSG habitat is ac	complished
22		primarily	y with engines, do	zers, and water tend	ers, with support fro	m a variety
23		of aviati	on assets. BLM st	ations provide for ra	apid initial attack res	ponse from
24		multiple	locations to the i	najority of focal area	s, and response plans	s have been
25		updated	with increased rea	sponse to such areas.		
26		Idaho Fa	Ils District Engine	Stations are located i	in Malad, Soda Springs	s, Pocatello,
27		America	n Falls, Fort Hal	l, Blackfoot, Atomic	City, Idaho Falls, D	Jubois, and
28		Salmon.	The Salmon/Chal	lis National Forest	provides initial attack	to several
29		focal are	eas, with engines	and helicopters from	n Mackey, Challis, Le	adore, and
30		Salmon.	The Caribou/Targ	hee National Forest	provides additional re	sources for
31		several o	of the focal areas,	with engines from Ma	alad, Pocatello, and A	shton being
32		the close	est to the focal are	eas.		_

I	The response time to the majority of the focal areas is thirty minutes to one
2	hour to have multiple resources on scene. Additional resources could be staged
3	in Arco to provide more coverage for the Big Lost and Big Desert focal areas.
4	Resources could also be staged in Aberdeen, Arco, Clyde, Rexburg, and
5	Holbrook to provide for quicker response to the more remote focal areas,
6	including Curlew, Big Desert, Big Lost, Pasemeroi, Medicine Lodge, and Sand
7	Creek. The Idaho Falls BLM has mutual aid agreements with over 50 rural or
8	municipal fire departments that can be used to further supplement initial attack,
9	as many of the departments are the closest resource to many focal areas and
10	would likely be the first to respond. GRSG suppression guidelines will be
11	discussed with cooperators during AOP meetings and training will be provided
12	to increase their capacity where possible. Contract resources, including dozers,
13	engines, and water tenders, can be hired and staged during high fire danger
14	periods such as high wind events and predicted dry lightning at any of the above
15	locations. To supplement the air tanker base in Pocatello, portable SEAT bases
16	can be operated in Malad, Arco, and Challis to reduce flight times to many of
17	the focal areas. Portable SEAT bases will be staged in Arco and Malad for the
18	fire season, with all agreements in place to activate them in a timely manner
19	during the fire season. Water sources have been mapped in remote locations
20	where water supply is limited, including contact information on existing wells. In
21	addition, more wells can be developed and existing wells can be improved with
22	more funding and completion of NEPA.
23	Priority areas for fire operations include the following*:

24	Little Lost fire 2nd priority: 72,700 acres
25	Little Lost fire 3rd priority: 56,300 acres
26	*See associated GIS data layers for position and extent within the PPA and
27	Table 4-50.

Table 4-50Little Lost Potential Fire Operations Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Null	Total					
	Acres		72,700	56,300		129,000					
	% of PPA		51	39		90					
28											
29		Post-	Fire Rehabilitation								
30		The Step 2 FIAT process identified areas within the focal habitats with moderate									
31		to hi	igh shrub cover in v	warm-dry soil condition	s as the highest prio	rity for post-					
32		fire	rehabilitation. The	Idaho Falls District O	ffice will continue v	working with					
33		othe	other stakeholders to coordinate and prioritize post-fire rehabilitation activities.								
34		*See	associated GIS da	ta layers for position	and extent within 1	the PPA and					
35		Tab	le 4-5 I.								

	Priority	Priority I	Priority 2	Priority 3	Null	Total			
	Acres		71,300	54,600		125,900			
	% of PPA		50	38		88			
L									
2		Propos	ed Management						
3		Because	conifer encroach	ment and invasive a	nnual grasses are n	ot significant			
4		issues in	issues in the Little Lost PPA, a largely passive management approach is being						
5		propose	ed. One shrub plar	ting project environr	nental assessment a	nd one weed			
6		treatme	nt project envi	ironmental assessm	ent provides cur	rrent NEPA			
7		docume	ntation. See Table	e 4-52 for projects th	nat have been identi	fied presently			
8		within 1	the NEPA plannir	ng process. See Fig	u res 4-56 through	4-61 for a			
9		graphic	depiction of the pr	oposed treatments a	nd strategies in the	PPA.			

Table 4-51 Little Lost Potential Post-Fire Rehabilitation Management Strategies

Table 4-52								
PPA Treatment Summar	y Table ((Little L	ost PPA)					

Treatment Description		Priority		Threats Addressed			NEPA			Treatments							
						s (I)	(R)					Tir Fra	ne me	Certa Effectiv	inty of veness ¹	ame.	ame.
Name/Type	Acres	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian Degradation	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely Maintenance Time Frar	Maintenance Time Fr (Years) ²	Completion Time Fr (0-2, 3-5, 5+ years) ³
USFO Shrub/ Tree Planting EA	143,712	Х				I	R	W		С			I	LI		10	5+
USFO Weed Treatment EA	143,712	Х				I				С			Ι	LI		5	5+

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely
 2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

²Describe frequency of maintenance necessary to continue effectiveness (years)

³Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

l 2	4.3.4	Little Wood River
3 4		Project Planning Area Description
5		Geographic Overview
6		The Little Wood River PPA is in the BLM Twin Falls District Office north of
7		Carey, Idaho, east from Hailey to Blizzard Mountain, and north generally to the
8		Forest Service boundary. Landownership includes approximately 35 percent
9		BLM-administered land, 15 percent state land, and 50 percent private land.
10		There are approximately 295,100 acres within the PPA. Topography ranges
		from hilly to rugged and mountainous, with a complex drainage network to flat
12		valley bottoms. Elevation ranges from approximately 4,800 feet (1,463 meters)
13		to 8,600 feet (2,621 meters) at Garfield Mountain.
14		This PPA is characterized by moderate to high cover cool-moist soil
15		temperature and moisture classes. See Table 4-53 .

Table 4-53
Little Wood GRSG Habitat Matrix Categories

	Matrix Category	No Data	IA	IB	IC	2 A	2 B	2C	3A	3B	3C	
	Acres	6,129	334	58,739	229,900							
	% of PPA	2	0	20	78							
16												
17		Nat	ural wat	er source	es occur t	hrough	out th	e PPA, i	ncluding th	ne Little '	Wood	
18		Rive	River, Seamans Creek, and Fish Creek. Major manmade water sources include									
19		the	the High Line Canal, Little Wood Reservoir, and Fish Creek Reservoir.									
20		Agriculture and residential development is likely to be common due to the										
21		sign	ificant an	nount of	private land	d in this	s PPA.					
22		All	focal hab	itats in th	ne PPA are	e less t	han 12	miles fr	om electric	al transm	nission	
23		tow	vers. A	highway	runs alc	ong th	e sou	theaster	n portion	of the	PPA.	
24		Арг	proximate	ely I5 pe	rcent of t	he PPA	A is les	s than f	ive miles f	rom road	ds and	
25		арр	roximate	ly 50 p	percent is	five	to ni	ne mile	s from p	orimary	roads.	
26		Арг	proximate	ely 25 pe	rcent of t	he hab	itat in	the sou	thwestern	portion	of the	
27		Litt	le Wood	PPA is fo	our to nine	miles f	rom tr	ansmissio	on lines.	-		
28		Hig	hway 20	bounds	the PPA	to the	south,	and Hi	ghway 75	runs alor	ng the	
29		wes	stern bou	Indary. T	opography	and la	ndown	ership pa	attern may	limit acc	ess to	
30		mo	re remot	e portion	s of the PF	PA.			-			
31		GRS	G Charac	teristics								
32		Abo	out 80 pe	ercent of	the area is	in bre	eding a	and wint	er habitat.	Telemetr	y data	
33		are	clustere	d along R	ocky Bar	to Mule	doon C	Creek in	the northe	ern portic	on and	
34		on	Jasper fla	ts in the s	outheaster	rn port	ion of	the PPA.		·		

I	Vegetation
2	Conifer encroachment is not currently a significant concern.
3	Most annual invasives occur on southern-facing slopes in dryer soils.
4	Fire
5	There is a moderate fire history since 1980. Perimeters are of limited size, but
6	significant fires have occurred to the west and south of the PPA.
7	Over 90 percent of the PPA is in the high burn probability category. See Table
8	4-54.

Table 4-54Little Wood Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres) 257,100
	High and Very High Burn Probability in PPA (percent) 87
9	
10	Existing Treatments
11	Less than five percent of the PPA has undergone recorded vegetation
12	treatments.
13	Other Management Factors
14	Aside from existing roads and transmission lines, other management factors did
15	not influence the selection of treatments for this PPA.
16	Fuels Management
17	The PPA includes approximately 85 miles of potential linear fuel treatments.
18	These treatments follow a network of existing travel routes throughout the PPA
19	and are depicted in the GIS data accompanying this report. While the primary
20	treatment is reduction of hazardous fuels to reduce fire behavior, associated
21	related targets such as reduction of invasive annual grass, conifer, and invasive
22	weeds will also be accomplished.
23	See associated GIS data layers for position and extent within the PPA and
24	Table 4-55.

Table 4-55
Little Wood Potential Fuels Management Treatments

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Miles			85		85
25						
26		Habitat	Recovery/Restoratior	ı		
27		No habi	tat restoration tre	atments are identified	at this time.	

1	Fire Operations
2	Approximately 80 percent of the Little Wood River PPA is third priority for fire
3	suppression. See associated GIS data layers for position and extent within the
4	PPA and Table 4-56 .

Table 4-56Little Wood Potential Fire Operations Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres			227,000		227,000
	% of PPA			77		77
5						
6		Post-Fire	Rehabilitation			
7		ESR trea	atments may be l	imited due to topogr	aphy. The entire ar	ea is a third
8		priority	due to the cool-	moist soils; however,	, southern-facing slo	opes may be
9		targeted	l for treatment firs	st. Important riparian	and brood-rearing h	nabitat exists
0		and is m	nanaged by federal	and private, current	Natural Resources C	Conservation
		Service	(NRCS) cooperat	tive projects. The Lit	tle Wood River ES	SR moderate
12		polygon	follows the bour	ndary of the PPA. Th	e Twin Falls Distric	t Office will
13		continue	e working with otl	her stakeholders to co	pordinate and priori	tize post-fire
14		rehabilit	ation activities.		•	•

I 5See associated GIS data layers for position and extent within PPA and Table 4-I 657.

Priority	Priority I	Priority 2	Priority 3	Null	Total
Acres			225,200		225,200
% of PPA			76		76
	Propos	ed Management			
	Potentia	al treatments iden	tified through the Ste	p 2 FIAT process	for the Little
	Wood	River PPA include	e linear fuel treatmen	ts along existing	roadways. As
	shown	on Table 4-58 nd	projects have been i	dentified at this tir	me within the
	NEPA p	lanning process. Se	ee Figures 4-62 thro	ugh 4-67 for a grap	phic depiction
	of the p	roposed treatmen	ts and strategies in the	PPA.	•

Table 4-57Little Wood Potential Post-Fire Rehabilitation Management Strategies

Treatm Descrip	nent tion	P	Priorit	y		Thr Addr	eats essed			NEPA	N			Т	reatmen	its	
						(I) s:	(R)					Tiı Fra	me Ime	Certa Effecti	inty of veness ^ı	ame	me
Name/Type	Acres	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian Degradation	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
None	0																

Table 4-58Little Wood River PPA Treatment Summary Table

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective ²Describe frequency of maintenance necessary to continue effectiveness (years)

³Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

4.3.5 Magic

3 4 Project Planning Area Description 5 6 Geographic Overview 7 The Magic PPA is on the north side of the Snake River Plain from Highway 46 8 east to Craters of the Moon National Monument. The PPA is in the BLM Twin 9 Falls District Office. Land status includes approximately 60 percent BLM-10 administered land, 20 percent National Park Service land, and 20 percent state П and private land. 12 There are approximately 1,789,400 acres within the PPA. Topography varies 13 from flat to rolling hills, with a general southern aspect and lava beds on the 14 northeast portion. Elevation ranges from approximately 4,170 feet (1,270 15 meters) to 8,100 feet (2,470 meters). 16 This PPA is represented with all shrub cover types (low, moderate, and high) 17 and cool-moist, cool-dry, and warm-dry soil temperature and moisture class. 18 See Table 4-59.

Magic GRSG Habitat Matrix Categories										
Matrix	No	I۵	IB	IC	20	2B	20	30	3B	ĩ
Category	Data	14				20	20	74	50	
Acres	88,645	340,358	236,608	185,197	1,874	15,644	45,436	291,571	397,809	186,264
% of PPA	5	19	13	10	0	I	3	16	22	10

Table 4-59 Magic GRSG Habitat Matrix Categories

19

Most water sources occur on the western side of the PPA and include Magic Reservoir, Little Wood River, and Big Wood River. There are numerous playas and stock ponds that supply surface water for GRSG. Additionally, the lava rock terrain tends to retain water in small cracks and bowls that are occasionally available for use by GRSG. Anderson Ranch Reservoir is over 20 miles northwest of the most northwestern corner of the Magic PPA. The Magic PPA contains Magic Reservoir as well as segments of Camas Creek, Big Wood River, Little Wood River, and Silver Creek. Large irrigation canals that occur in the southern portion of the Magic PPA also act as a water source during the summer fire season.

- 11Approximately 85 percent of the PPA is within 12 miles of electrical12transmission towers, and the remaining habitat is 12 to 21 miles from towers.13Several primary roads occur in the southern half of the PPA, and approximately14half of the habitat is less than five miles from primary roads. One transmission15corridor bisects the Magic PPA, with approximately five percent of habitat16within four miles, and 10 percent is four to nine miles from a transmission17corridor.
- Highways on edges and through the PPA make burnable areas accessible; muchof the WSAs in the area are lava beds.
- 20 GRSG Characteristics

There are several leks in the Magic PPA with average attendance greater than 20 males. Leks are primarily aligned with the Arco Minidoka Road and occur both in BFO and Craters of the Moon National Monument. Lek attendance appears to be stable or increasing, as habitats are recovering from past fires. GRSG in this PPA are well connected to GRSG in the Big Desert PPA and north up to Arco.

- 27 Vegetation
 - There is scattered conifer expansion in this PPA, but it is not a significant management concern at this time.
- 30Former GRSG habitats near and to the south and east of Gooding and31Shoshone are now dominated by annual grasses due to recent fires. The PPA32has been drawn further south to include more area that has been converted to33invasive annuals and noxious weeds.

Fire

35Extensive fire perimeters surround this PPA, with several large fires having36occurred within the PPA from 1980 to 2013. Over sixty percent of the PPA is in37the high and very high burn probability category. See Table 4-60.

L

2

3

4

5

6

7

8

9

10

21

22

23

24

25

26

28

29

	High and Very High Burn Probability in PPA (acres)	1,154,600
	High and very High Burn Probability in PPA (percent)	65
1	- · · · -	
2	Existing Treatments	
3	Many treatments have occurred in this PPA, and they	appear to be associated
4	with post-fire activities. ESR treatments and fuel treatr	ments have occurred to
5	control medusahead and cheatgrass.	
6	ESR treatments have commonly been implemented to	o preempt annual grass
7	invasions and have occurred over the majority of the	PPA. Shrub planting has
8	been an ongoing effort to aid in the reestablishment	of shrubs and has been
9	moderately successful. Forage Kochia fuelbreaks are in p	place along several major
10	roads.	
П	The success of past treatments in the Magic PPA has be	en remarkably high both
12	in the long-term productivity of past treatments and thr	ough recent ESR efforts.
13	Perennial grasses are establishing and spreading in tre	eated areas, and annual
14	grass cover has been reduced. Shrub planting treat	tments have also been
15	moderately successful, with plantings in areas having reco	ent fires.
16	Other Management Factors	
17	Aside from existing roads and transmission lines, other	management factors did
18	not influence the selection of treatments for this PPA.	
19	Fuels Management	
20	The potential treatment area includes approximately	230 miles of linear fuel
21	treatments and 70,800 acres of potential fuel treatmen	t area. These linear fuel
22	treatments follow a network of existing travel routes t	throughout the PPA and
23	are depicted in the GIS data accompanying this repor	rt. Proposed treatments
24	primarily include green stripping along the ident	ified roadways. These
25	treatments can be accomplished within the next five y	ears. Twin Falls District
26	has a history of treating $45,000$ to $80,000$ acres per y	year. While the primary
27	treatment is reduction of hazardous fuels to reduce f	fire behavior, associated
28	related targets such as reduction of invasive annual gra	ass, conifer, and invasive
29	weeds will also be accomplished.	
30	See associated GIS data layers for position and exte	ent within the PPA and
31	Table 4-61.	

Table 4-60Magic Summary of Burn Probability

Table 4-6 IMagic Potential Fuels Management Treatments

Priority	Priority I	Priority 2	Priority 3	Null	Total
Miles	170		60		230
Acres	52,800	8,600		8,300	70,900

I	Habitat Recovery/Restoration
2	Former GRSG habitats near and to the south and east of Gooding and
3	Shoshone are now dominated by annual grasses due to recent fires. The PPA
4	has been drawn further south to include winter habitat and area that has been
5	converted to invasive annuals and noxious weeds. By managing these areas
6	more proactively, this will decrease the risk of invasion further into the 75
7	percent BBD areas.
8	Priority areas for potential habitat restoration/recovery include the following*:
9	• Magic invasive annual grasses potential treatment 1st priority:
10	approximately 141,200 acres
П	• Magic habitat restoration (other) 1st priority: 150,600 acres
12	 Magic habitat restoration (other) 2nd priority: 41,600 acres
13	• Magic habitat restoration (other) 3rd priority: 354,300 acres
14	*See associated GIS data layers for position and extent within the PPA and
15	Table 4-62.

Table 4-62Magic Potential Habitat Restoration Treatments

	Priority	Priority I	Priority 2	Priority 3	Null Tot	al				
	Acres	291,800	41,600	163,400	496,80)0				
	% of PPA	16	2	9	2	27				
16										
17		Fire Oper	rations							
18		Priority areas for fire operations include the following*:								
19			• Magic fire 1st	priority: 974,600 acres						
20		*See ass	ociated GIS data	layers for position a	nd extent within the PPA ar	۱d				
21		Table 4	-63.							

Table 4-63
Magic Potential Fire Operations Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres	974,600		626,000		1,600,600
	% of PPA	54		35		89
22						
23		Post-Fire	Rehabilitation			
24		The Step	o 2 FIAT process i	dentified areas within	the focal habitats w	ith moderate
25		to high :	shrub cover and v	varm-dry soil conditio	ns as the first prio	rity for post-
26		fire reh	abilitation. The T	win Falls District Off	ice will continue	working with
27		other st	akeholders to coo	rdinate and prioritize	post-fire rehabilitat	ion activities.

l 2	Potential treatment areas for post-fire rehabilitation management include the following*:
3	Magic ESR 1st priority: 408,600 acres
4 5	*See associated GIS data layers for position and extent within the PPA and Table 4-64 .

Table 4-64
Magic Potential Post-Fire Rehabilitation Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres	408,600	38,600	360,600		807,800
	% of PPA	23	2	20		45
6						
7		Propose	ed Management			
8		Fuels m	anagement and h	abitat recovery/restor	ration treatments	in the Magic
9		PPA wo	ould mitigate invas	ive annual grass issue	s resulting from p	oast fires and
10		roadside	e disturbances. Se	e Table 4-65 for pro	ojects that have be	een identified
11		presentl	y within the NEP	A planning process. Se	ee Figures 4-68 t	through 4-75
12		for a gra	phic depiction of t	he proposed treatmer	nts and strategies ir	n the PPA.

Table 4-65PPA Treatment Summary Table

Treatm Descrip	ient tion	Priority			Threats Addressed			I	NEPA			Treatments							
								s (I)	(R)					Tiı Fra	me Ime	Certa Effecti	Certainty of Effectiveness ¹		ame
Name/ Type	Acres	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian Degradation	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³		
TF District ESR	N/A									Х		Х		Х		NA	0-2		
Tri-County Weeds	7,500					Х		Х		Х		Х	Х	Х		2-5	5+		
Southern Idaho BioControl	12,500					Х		Х		Х		Х	Х	x		2-5	5+		
Shoshone Minidoka Weeds	1,000					Х		Х		Х		Х	Х	X		2-5	5+		
Burley Minidoka Weeds	1,000					Х		Х		Х		Х	Х	×		2-5	5+		
Roadside Fuelbreaks	710							Х		Х		Х	Х	X		Yearly	5+		
Big Desert Fuelbreaks	108							Х		Х		Х	Х	Х		Yearly	5+		

March 2015

Treatment Description Priority			t y	Threats Addressed			NEPA			Treatments									
						(I) sa	(R)					Tiı Fra	Time Frame		Time Frame		inty of veness ¹	ame	me
Name/ Type	Acres	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian Degradation	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years)²	Completion Time Fra (0-2, 3-5, 5+ years) ³		
Preacher Sagebrush Restoration	8,000					Х		Х		Х			Х	X		NA	0-2		
Laidlaw Sagebrush Restoration	4,000					Х		Х		Х			Х	×		NA	0-2		
Flat Top Sagebrush Restoration	4,000					Х		Х		Х			Х	X		NA	0-2		
Wildhorse Fuelbreaks	17,000					Х		Х	Х			Х		Х		3	5+		
Jim Brown Annuals	13,600					Х		Х	Х			Х		Х		3	3-5		
Preacher Annuals	20,000					Х		Х	х			X		Х		3	3-5		
Arco Minidoka Fuelbreaks	10,000					Х		Х	Х			Х		×		3	5+		
East Cinder Restoration	5,000					Х		Х		Х		Х		Х		NA	3-5		
East Wildhorse Annuals	5000					Х		Х	Х			Х		X		NA	0-2		
Shoshone Brush Restoration	30,000					Х		Х		Х		Х		X		NA	5+		
Minidoka Brush Restoration	5,000					Х		Х		Х			Х	×		NA	0-2		
Minidoka Annuals	2,000					Х		Х	×			X		X		5-10	3-5		

Table 4-65PPA Treatment Summary Table

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

²Describe frequency of maintenance necessary to continue effectiveness (years)

³Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

 2	4.3.6	Medicine Lodge
3		Project Planning Area Description
5		Geographic Overview
6		The Medicine Lodge PPA is in the BLM Idaho Falls District Office north of
7		Highway 22 and west from Dubois to the Forest Service administrative
8		boundary. Landownership includes about 60 percent BLM-administered land, 20
9		percent Forest Service land, and 20 percent state and private land.
10		There are approximately 251,700 acres within the PPA. Topography is flat in the
11		southeastern corner, with increasing mountainous slopes to the north. Aspect is
12		generally southeast and west-southwestern. Elevation ranges from 5,000 feet
13		(1,524 meters) to 8,000 feet (2,438 meters).
14		Much of the PPA is not defined within the resistance and resilience data layers.
15		Where there are available data, there is moderate to high cover with cool-dry
16		soil regimes in the southern portion of the PPA and moderate cover with cool-
17		moist soil regimes in the northern portion. See Table 4-66 .

				-				-			
	Matrix Category	No Data	IA	IB	IC	2 A	2B	2C	3 A	3B	3C
	Acres	190,455	159	2,979			10,371	47,685			
	% of PPA	76	0	I			4	19			
18											
19		-	The main	natural s	urface	water	sources	are Me	dicine Lodg	e Creek	and
20		1	tributaries t	hat hisoct	the Pl	PΔ					
20			ci ibutai ies i	liat Disect	uic i i	Λ.					
21			Private lanc	ls may lim	it acce	ess to so	ome area	as within t	he PPA. Exi	sting high	ıways
22		(on the sout	, hern and e	easterr	n bound	aries faci	litate fire i	response tim	ne.	,
23		(Over 90 p	ercent of	the fo	ocal hab	oitat in t	he PPA is	less than	12 miles	from
24			electrical tr	ansmissio	n towe	ers. A h	ighway r	uns along	the souther	n bounda	ary of
25		1	the PPA. ar	nd approxi	imately	v 40 per	rcent of	the area i	s less than f	ive miles	from
26		1	the highway	/ The wee	stern h	, is per alf of th	ne Medici	ine Lodge	PPA is less	than five	miles
27			from transp	aission lin	oc or t		and the y	wostorn ha	lf is five to 1	2 milos o	Max a
21			ii Oili u alisi			0000015, 6		vestern na		Jinnes a	way.
28		(GRSG Chara	cteristics							
29		-	Telemetry	data are li	mited	within 1	this PPA.	but nearl	v all areas a	re cover	ed by
30			hreeding an	d winter k	nahitat				,		
50					abreat	•					
31			Vegetation								
32			Conifer end	roachmer	nt exist	s in the	norther	n portion	of the PPA		
52				actific			nor aren	Portion			
33			Invasive anr	uals are n	ot a si	gnificant	issue in	this FIAT	ΡΡΔ		
55			invasive ani		or a si	Simean	L ISSUE III				

Table 4-66Medicine Lodge GRSG Habitat Matrix Categories

1 2

3

4

About 20 percent of this PPA has burned between 1980 and 2013. Approximately 50 percent of the PPA is identified in the high and very high burn probability model. See **Table 4-67**.

Table 4-67Medicine Lodge Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres) 120,800
	High and Very High Burn Probability in PPA (percent)48
5	
6	Existing Treatments
7	Past treatments have been associated with post-fire rehabilitation efforts, with
8	less than 10 percent of the areas having been treated. Two 1,000-acre fuels
9	treatments (Deep Creek and Crooked Creek) were implemented in 2003 to
10	promote the herbaceous understory growth. Irregular patterns were mowed
11	into the sagebrush canopy, which helped to release the existing understory
12	vegetation. The 2,000-acre Deep Creek aerial sagebrush seeding treatment
13	(2004) focused on increasing the sagebrush component following the 2003 Deep
14	Creek fire. The seeding was considered a success.
15	A number of prescribed burns were also presumably conducted in the 1980s
16	and early 1990s; however, no written record was available to verify whether the
17	burns were just planned or actually implemented. The burns would have been
18	used to reduce sagebrush and promote the herbaceous understory. The
19	following identifies the burn name, date, and approximate acreage:
20	Burnside Butte (1987): 1,920 acres
21	Thunder Gulch (1987): 6,380 acres
22	Patelzick Creek (1991): 3,075 acres
23	 Dry Creek (1996): 1,380 acres
24	Other Management Factors
25	Aside from existing roads and transmission lines in the PPA, other management
26	factors did not influence the selection of treatments for this PPA.
27	Fuels Management
28	No fuels management is proposed.
29	Habitat Recovery/Restoration
30	There are approximately 13,600 acres of potential habitat restoration treatment
31	areas. All treatments would be coordinated with other land management
32	agencies and private landowners, as appropriate, and monitored post-treatment
33	to ensure effectiveness.

I	Invasive annuals are not a significant issue in this FIAT PPA. Therefore, no
2	applicable treatment strategy for invasive annuals is needed at this time. In the
3	high-density GRSG lek and nesting habitat, the main goal would be to increase
4	perennial grass cover.
5	Potential treatments for habitat recovery/restoration include the following*:
6	Medicine Lodge conifer 1st priority: 7,600 acres
7	 Medicine Lodge conifer 2nd priority: approximately 500 acres
8	• Medicine Lodge habitat restoration (other) 2nd priority:
9	approximately 5,500 acres
10	*See associated GIS data layers for position and extent within the PPA and
	Table 4-68.

Table 4-68Medicine Lodge Potential Habitat Restoration Treatments

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres	7,600	6000			13,600
	% of PPA	3	2			5
12						
13		Fire Oper	rations			
14		Respons	e to wildfires in	and around critical	GRSG habitat is ac	complished
15		primarily	with engines, do	ozers, and water tende	ers, with support fro	m a variety
16		of aviation	on assets. BLM s	tations provide for ra	pid initial attack res	ponse from
17		multiple	locations to the	majority of focal areas	, and response plans	s have been
18		updated	with increased re	esponse to such areas.		
19		Idaho Fa	lls District Engine	Stations are located in	n Malad, Soda Spring	s, Pocatello,
20		America	n Falls, Fort Ha	ll, Blackfoot, Atomic	City, Idaho Falls, E	Dubois, and
21		Salmon.	The Salmon/Cha	llis National Forest p	rovides initial attack	to several
22		focal are	eas, with engines	and helicopters from	Mackey, Challis, Le	eadore, and
23		Salmon.	The Caribou/Tar	ghee National Forest p	rovides additional re	sources for
24		several c	of the focal areas,	with engines from Ma	lad, Pocatello, and A	shton being
25		the close	est to the focal ar	eas.		
26		The resp	oonse time to th	e majority of the foca	l areas is thirty minu	utes to one
27		hour to	have multiple res	ources on scene. Addi	tional resources coul	ld be staged
28		in Arco	to provide more	coverage for the Big	Lost and Big Desert	focal areas.
29		Resource	es could also b	e staged in Aberdee	n, Arco, Clyde, Re	exburg, and
30		Holbroo	k to provide for	· quicker response to	the more remote	focal areas,
31		including	g Curlew, Big De	sert, Big Lost, Paseme	eroi, Medicine Lodge	e, and Sand
32		Creek. 7	The Idaho Falls B	LM has mutual aid agr	reements with over	50 rural or
33		municipa	l fire department	s that can be used to f	further supplement i	nitial attack,
34		as many	of the departme	nts are the closest re	source to many foca	al areas and
35		would li	kely be the firs	t to respond. GRSG	suppression guideling	nes will be

I	discussed with cooperators during AOP meetings and training will be provided
2	to increase their capacity where possible. Contract resources, including dozers,
3	engines, and water tenders, can be hired and staged during high fire danger
4	periods such as high wind events and predicted dry lightning at any of the above
5	locations. To supplement the air tanker base in Pocatello, portable SEAT bases
6	can be operated in Malad, Arco, and Challis to reduce flight times to many of
7	the focal areas. Portable SEAT bases will be staged in Arco and Malad for the
8	fire season, with all agreements in place to activate them in a timely manner
9	during the fire season. Water sources have been mapped in remote locations
10	where water supply is limited, including contact information on existing wells. In
11	addition, more wells can be developed and existing wells can be improved with
12	more funding and completion of NEPA.
13	The highest priority areas (2nd priority) are the southern areas of the PPA. As
14	approximately 75 percent of this PPA (190,500 acres) is absent of soil moisture
15	temperature regime data, local knowledge was used to interpolate potential fire

l6 operations priority areas.

See associated GIS data layers for position and extent within the PPA and **Table 4-69**.

Priority	Priority I	Priority 2	Priority 3	Null	Total
Acres		146,600	78,100		224,700
% of PPA		58	31		89
	Post-Fire	Rehabilitation			
	The Ste	p 2 FIAT process i	dentified areas with	in the focal habitats w	ith moderate
	to high	brush cover and	warm-dry soil con-	ditions as the highest	priority for
	post-fire	e rehabilitation. T	he Idaho Falls Dist	rict Office will conti	nue working
	with ot	her stakeholders	to coordinate and	prioritize post-fire	rehabilitation
	activities	s. As approximate	ly 75 percent of thi	s PPA (190,500 acres)) is absent of
	soil moi	sture temperature	regime data, local l	knowledge was used t	o interpolate
	potentia	l post-fire rehabili	tation priority areas		·
	The mo	derate to high sh	rub cover in the co	ool-dry soil moisture	temperature
	regimes	in the southern a	reas of the PPA are	the highest (2nd pric	ority) priority
	areas fo	r post-fire rehabili	tation management.		.,
	See asso	ociated GIS data I	ayers for position a	and extent within PPA	A and Table
	4-70				

Table 4-69Medicine Lodge Potential Fire Operations Strategies

17

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres		146,200	71,800		218,000
	% of PPA		58	29		87
I						
2		Propose	ed Management			
3		Identifie	d treatments for	the Medicine Lodg	e PPA primarily include	e conifer,
4		particula	arly in the north	nern portion of th	e PPA. Some potentia	al habitat
5		restorat	ion (other) treat	ments have been	identified. Invasive ann	ual grass
6		treatme	nts and fuel treatr	ments are not propo	osed due to the limited	extent of
7		annual g	rasses in the PPA.	See Table 4-71 for	projects that have been	identified
8		present	y within the NEP	A planning process.	See Figures 4-76 thro	ugh 4-82
9		for a gra	aphic depiction of t	he proposed treatm	ents and strategies in the	e PPA.

Table 4-70Medicine Lodge Potential Post-Fire Rehabilitation Management Strategies

Table 4-71								
PPA Treatment Summary	Table ((Medicine Lodge	PPA)					

Treatment Description		Priority		Threats Addressed			NEPA			Treatments							
						s (I)	(R)					Ti Fra	me Ime	Certai Effectiv	inty of veness ¹	ame	me
Name/Type	Acres	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian Degradation	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Patelzick Creek Restoration	741	Х			С			W	I			Р		LI		20	5+
USFO Shrub/Tree Planting EA	251,652		Х			I	R	W		С			I	LI		10	5+
USFO Weed Treatment EA	251,652	X				I				C			I	LI		5	5+

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

²Describe frequency of maintenance necessary to continue effectiveness (years)

³Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

1	4.3.7	Pahsimeroi
2		
3		Project Planning Area Description
4		
5		Geographic Overview
6		The Pahsimeroi PPA is within the Pahsimeroi Valley west of the Lemhi Range.
7		The PPA is in the BLM Idaho Falls District Office. Landownership includes about
8		70 percent BLM-administered land, 20 percent Forest Service land, and 10
9		percent state and private land.
10		There are approximately 377,600 acres within the PPA. Topography includes
11		valley bottoms transitioning to rugged mountainous topography on the western
12		and eastern boundaries of the PPA. Elevation ranges from approximately 7,600
13		feet (2,300 meters) to 10,800 feet (3,300 meters).
14		The PPA is represented with moderate to high shrub cover and cool-moist and
15		cool-dry soil temperature and moisture classes. Approximately one-quarter of
16		the PPA (87,200 acres) has no soil moisture temperature regime data. See
17		Table 4-72.

	Matrix Category	No Data	IA	ΙB	IC	2 A	2B	2C	3 A	3B	3C
	Acres	87,233		34,129	99,950	156	36,858	119,282			
	% of PPA	23		9	26	0	10	32			
18											
19			The main I	natural su	urface wat	ter sou	irce is the	e Pahsimero	i River tha	t runs th	rough
20			the middle	of the P	PA, with	springs	and stre	ams occurri	ing through	nout the	PPA.
21			Access to	upper e	elevations	is lim	ited, but	there is g	ood acces	s throug	h the
22			middle of t	the PPA	via a main	tained	road.	-		-	
23			The Pahsir	neroi PP	A is almo	ost ent	irely mo	re than five	miles from	n any pr	imary
24			roads. Nea	arly half o	of the foc	al habi	, tat is five	to 13 mile	s from trai	nsmissior	n lines
25			or electric	al transn	nission to	owers,	and a sm	nall portion	at the nor	rth end i	is less
26			than five m	niles from	n transmis	ssion lii	nes or to	wers.			
27			GRSG Char	acteristics	5						
28			Most of th	ne PPA i	s within	breedi	ng habita	t, while wii	nter habita	t occurs	over
29			about 20 p	ercent o	f the PPA	, most	ly at the s	south end.			
30			Vegetation								
31			Conifer ex	kpansion	is occur	ring or	n the we	stern boun	dary of the	e focal h	abitat
32			areas and	in the so	utheaster	rn sect	ions with	in IB and I	C habitat,	just nor	theast
33			of the foc	al habita	ts. These	areas	are whe	ere Douglas	s firs are e	expanding	g into
34			sagebrush.					2			

Table 4-72 Pahsimeroi GRSG Habitat Matrix Categories

1	Cheatgrass is found on lower elevations of the northwestern side of the PPA.
2	However, infestations generally occur as patches of less than an acre.
3	Fire
4	Approximately 40 percent of the PPA is high and very high burn probability,
5	with the remaining approximately 60 percent of the PPA in the moderate burn
6	probability category. See Table 4-73 .

Table 4-73Pahsimeroi Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres) 137,800
	High and Very High Burn Probability in PPA (percent)36
7	
8	Surface water availability is limited for numerous reasons, including lack of
9	access to water sources and limited surface water. Water is generally provided
10	through use of water tenders and/or aerial support.
11	Existing Treatments
12	Past treatments have occurred on less than five percent of the PPA in the
13	northeast quadrant.
14	Other Management Factors
15	Aside from existing roads and transmission lines in the PPA, other management
16	factors did not influence the selection of treatments for this PPA.
17	Fuels Management
18	No fuels management is proposed.
19	Habitat Recovery/Restoration
20	Potential habitat recovery and restoration treatment areas were identified for
21	the reduction of Douglas fir and other conifer in the western portion of the
22	PPA. Invasive annual grass is minimal in the PPA. Some potential habitat
23	restoration (other) treatments are identified in this PPA.
24	All treatments would be coordinated with other land management agencies and
25	private landowners as appropriate and subsequently monitored post-treatment
26	to ensure effectiveness.
27	Potential treatments for habitat recovery/restoration include the following*:
28	Pahsimeroi conifer expansion 1st priority: 99,500 acres
29	• Pahsimeroi habitat restoration (other) 2nd priority: 63,500 acres
30	*See associated GIS data layers for position and extent within the PPA and
31	Table 4-74.

	Priority	Priority I	Priority 2	Priority 3	Null	Total						
	Acres	99,500	63,500		26,700	189,700						
	% of PPA	26	17		7	50						
I												
2		Fire Oper	rations									
3		The high	ner priority areas	are moderate to hi	gh cover, cool-dry so	oil moisture						
4		tempera	ture regime areas	, including areas iden	tified by the local GRS	G Working						
5		Group.	Sagebrush in thes	e areas provides nes	sting and wintering ha	bitat. Local						
6		knowled	knowledge considered this a higher priority.									
7		Respons	e to wildfires in	and around critical	l GRSG habitat is ac	complished						
8		primarily	v with engines, do	ozers, and water tend	lers, with support fro	m a variety						
9		of aviation	on assets. BLM st	tations provide for r	apid initial attack resp	oonse from						
10		multiple	locations to the	majority of focal area	as, and response plans	; have been						
11		updated	with increased re	sponse to such areas								
12		Idaho Fa	Ils District Engine	Stations are located	in Malad, Soda Springs	s, Pocatello,						
13		America	n Falls, Fort Hal	ll, Blackfoot, Atomic	: City, Idaho Falls, D	Jubois, and						
14		Salmon.	The Salmon/Cha	llis National Forest	provides initial attack	to several						
15		focal are	eas, with engines	and helicopters from	m Mackey, Challis, Le	adore, and						
16		Salmon.	The Caribou/Targ	ghee National Forest	provides additional re	sources for						
17		several o	of the focal areas,	with engines from M	lalad, Pocatello, and A	shton being						
18		the close	est to the focal are	eas.								
19		The res	ponse time to the	e majority of the foc	al areas is thirty minu	utes to one						
20		hour to	have multiple reso	ources on scene. Add	litional resources coul	d be staged						
21		in Arco	to provide more	coverage for the Big	Lost and Big Desert	focal areas.						
22		Resourc	es could also be	e staged in Aberde	en, Arco, Clyde, Re	xburg, and						
23		Holbroo	ok to provide for	quicker response t	o the more remote	focal areas,						
24		including	g Curlew, Big De	sert, Big Lost, Pasen	neroi, Medicine Lodge	e, and Sand						
25		Creek.	The Idaho Falls B	LM has mutual aid ag	greements with over	50 rural or						
26		municipa	al fire department	s that can be used to	further supplement ir	nitial attack,						
27		as many	of the departme	nts are the closest r	esource to many foca	l areas and						
28		would li	ikely be the first	to respond. GRSG	3 suppression guidelir	nes will be						
29		discusse	d with cooperato	rs during AOP meet	ings and training will b	provided						
30		to increa	ase their capacity	where possible. Con	tract resources, incluc	ling dozers,						
31		engines,	and water tende	ers, can be hired and	d staged during high	fire danger						
32		periods	such as high wind	events and predicted	l dry lightning at any o	f the above						
33		locations	s. To supplement	the air tanker base i	n Pocatello, portable S	SEAT bases						
34		can be c	operated in Malad	, Arco, and Challis t	o reduce flight times	to many of						
35		the foca	l areas. Portable	SEAT bases will be s	taged in Arco and Ma	alad for the						
36		fire seas	on, with all agree	ements in place to a	ctivate them in a tim	ely manner						
37		during t	he fire season. W	/ater sources have b	een mapped in remot	e locations						
38		where w	ater supply is limi	ited, including contac	t information on existi	ing wells. In						
			,	5		-						

Table 4-74Pahsimeroi Potential Habitat Restoration Treatments

l 2	addition, more wells can be developed and existing wells can be improved with more funding and completion of NEPA.
3	Priority areas for fire operations include the following*:
4	Pahsimeroi fire 2nd priority: 144,000 acres
5	*See associated GIS data layers for position and extent within the PPA and
6	Table 4-75.

Table 4-75Pahsimeroi Potential Fire Operations Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres		144,000	111,600		255,600
	% of PPA		38	30		68
7						
8		Post-Fire	Rehabilitation			
9		The hig	her priority areas	are moderate to hig	n cover, cool-dry soi	il moisture
10		tempera	ture regime areas,	, including areas identi	fied by the local GRS	G Working
П		Group.	The Idaho Falls	District Office will	continue working v	with other
12		stakehol	lders to coordinate	e and prioritize post-fi	re rehabilitation activi	ties.
13		Potentia	l treatment areas	for post-fire rehabili	tation management i	nclude the
14		followin	g*:			
15		•	Pahsimeroi ESR 2n	nd priority: 140,400 act	res	
16		*See as	sociated GIS data	layers for position a	nd extent within the	e PPA and
17		Table 4	I-76 .			

Table 4-76Pahsimeroi Potential Post-Fire Rehabilitation Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres		I 40,400	111,600		252,000
	% of PPA		37	30		67
18						
19		Propos	ed Management			
20		The FIA	T Step 2 team ide	entified conifer treatn	nents as the primary	need in the
21		Pahsime	roi PPA. Some	potential habitat	restoration (other)	treatment
22		opportu	inities are identifie	d. The team did not i	dentify a need for inva	asive annual
23		grass re	storation/recovery	or fuels managemen	t treatment. See Tab	le 4-77 for
24		projects	that have been p	resently identified wi	thin the NEPA planni	ing process.
25		See Fig	gures 4-83 throu	ugh 4-89 for a grap	hic depiction of the	e proposed
26		treatme	nts and strategies	in the PPA.		

Treatme Descripti	ent ion	F	Priorit	y		Thr Addr	eats essed		I	NEPA	•			Trea	tments		
					s (I)	(R)			Time Frame		Certainty of Effectiveness ¹		ame	ame me			
Name/Type	Acres	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian Degradation	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Pahsimeroi Focal Area – Weed Treatments	20					Х	Х	Х		Х			Х	Х		I	5+
Pahsimeroi Focal Area – Upper Pahsimeroi GRSG Vegetation Treatment	700					X	x	X	X			X		X		NA	0-2
Pahsimeroi Focal Area- Conifer Encroachment Treatment	4,880				Х	Х	Х	Х		Х		Х		Х		5-10	5+
Pahsimeroi Focal Area – GRSG Vegetation Treatment	73,404					Х	Х	Х	X			X		Х		5-10	5+

Table 4-77 PPA Treatment Summary Table

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

²Describe frequency of maintenance necessary to continue effectiveness (years)

³Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

2 3		
4		
5		
6		
7		
8		
9		
10		
11		

Т

12

4.3.8 Sand Creek

Project Planning Area Description

Geographic Overview

The Sand Creek PPA is east of Dubois, Idaho and northwest of Saint Anthony, Idaho. The PPA is in the BLM Idaho Falls District Office. Landownership includes about 30 percent BLM-administered land, 10 percent Forest Service land, 20 percent state land, and 40 percent private land with many checkerboard areas.

There are approximately 461,100 acres within the PPA. Topography is mostly flat to gently sloping with areas punctuated by buttes and St. Anthony Sand

Dunes. There are some steep south-facing slopes on the northern end of the PPA. Elevation ranges from approximately 5,085 feet (1,550 meters) to 7,218 feet (2,200 meters).

The Sand Creek PPA is represented by low, moderate, and high shrub cover in cool-moist and cool-dry soil moisture temperature regimes. Approximately 25 percent of the PPA has no soil moisture temperature regime data. Local knowledge was used to interpolate appropriate resistance and resilience matrix priorities. See **Table 4-78**.

	Matrix Category	No Data	IA	ΙB	IC	2 A	2B	2C	3 A	3B	3C
	Acres % of PPA	112,333 24	2,088 0	72,325 16	185,270 40	3,921 I	36,728 8	48,406 10			
9											
10			The main	natural	surface wa	ater sou	rce is C	amas Cree	ek, which f	lows fron	n the
11			north-cen	tral port	ion of the	PPA th	rough th	e southw	estern cor	ner. Lakes	s and
12			reservoirs	exist are	ound the r	margins	of much	of the PPA	Α.		
13			The PPA	is bound	ed by Inte	erstate	15 to the	e west. Hi	ghway 20	runs alon	g the
14			southeast	ern port	ion. Ther	e are r	oads thr	oughout t	he PPA to	o facilitate	e fire
15			response.								
16			A single 2	230-kV ti	ransmissio	n line r	uns in a	north-sou	ith directio	n through	n the
17			western p	ortion o	f the Sand	Creek	PPA. Ov	er 90 per	cent of the	e habitat i	n the
18			PPA is les	s than 12	2 miles fro	m elect	rical tran	smission t	owers. Abo	out 10 pe	rcent
19			of the Sar	nd Creek	PPA is le	ess than	five mile	s from ro	ads, and ar	n addition	al IO
20			percent is	s five to	nine mile	s away	in the no	orthweste	rn portion	. I ransmi	ssion
21			the PPA	About 20	thin the w	estern	edge and	i adjacent	to the sol	utnern ed	ge of
23			or towers	, and an	additional	30 perc	ent is fou	in to nine	miles from	towers.	mes
. (•					
24			GRSG Cha	racteristic				•		L:	
25 26			about 10	percent percent c	of the PPA	in the v	eding nad vestern d	ortion.	vintering na	iditat exis	ts on
							·				
27			Vegetation								
28			Scattered	juniper v	vould requ	uire min	imal trea	tments of	phase I en	croachme	nt.
29			Annual gr	asses ar	e not a s	ignifican	t issue f	or this Fl	AT PPA a	nd are m	nainly
30			confined t	o the dis	turbed are	eas adjao	cent to ro	oadways.			
31			Fire								
32			One large	fire bur	ned about	10 per	ent of th	ne PPA in	1981. Othe	er smaller	fires
33			have burn	ed an ad	ditional 10	to 15 p	ercent o	f the PPA	since 1980	•	

Table 4-78 Sand Creek GRSG Habitat Matrix Categories

1 2

3

4

5

6

7

About 15 percent of the PPA along the southern edge is moderate for fire risk, while approximately 80 percent is in the high and very high burn probability category. Small areas are either in the low category or undefined. See **Table 4-79**.

Table 4-79Sand Creek Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres) 360,000
_	High and Very High Burn Probability in PPA (percent)78
5	
6	Existing Treatments
7	Past treatments have occurred on approximately 12 percent of the PPA in the
8	eastern quadrant.
9	Approximately 20 prescribed burns were successfully implemented in the Sand
10	Creek PPA between 1980 and 1997, with the intent of reducing sagebrush cover
11	and promoting the herbaceous understory. A total of 49,350 acres were
12	successfully treated over the 18-year period.
13	The I,500-acre Hump Ditch chemical treatment (2005) was successfully
14	implemented for the purpose of reducing sagebrush cover and promoting the
15	herbaceous understory.
16	The 1,000-acre Dry Lakes prescribed burn (2007) was successfully implemented
17	for the purpose of reducing sagebrush cover and promoting the herbaceous
18	understory.
19	Other Management Factors
20	Aside from existing roads and a transmission line in the western portion of the
21	PPA, other management factors did not influence the selection of treatments for
22	this PPA.
23	Fuels Management
24	No fuels management is proposed.
25	Habitat Recovery/Restoration
26	Potential habitat recovery and restoration treatments identified would be
27	designed to reduce conifer encroachment in select areas throughout the PPA.
28	All treatments would be coordinated with other land management agencies and
29	private landowners, as appropriate, and monitored post-treatment to ensure
30	effectiveness.
31	Potential treatments for habitat recovery/restoration include the following*:
32	Sand Creek conifer 1st priority: 153,900 acres
33	Phase I scattered juniper would require minimal treatment

I

2

3

1 2 *See associated GIS data layers for position and extent within the PPA and **Table 4-80**.

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres	153,900				153,900
2	% of PPA	33				33
3		51 01				
4		Fire Ope	rations			
5		I he higi	nest priority area	s are the 3A, 3B, and	3C habitats in the so	outhwestern
6		areas of	the PPA.			
7		Respons	se to wildfires i	n and around critical	GRSG habitat is a	ccomplished
8		primaril	y with engines, d	ozers, and water tend	ers, with support fro	om a variety
9		of aviati	on assets. BLM	stations provide for ra	apid initial attack res	sponse from
10		multiple	locations to the	majority of focal area	s, and response plan	is have been
11		updated	with increased r	esponse to such areas.		
12		Idaho Fa	alls District Engin	e Stations are located i	in Malad, Soda Spring	gs, Pocatello,
13		America	in Falls, Fort Ha	all, Blackfoot, Atomic	City, Idaho Falls,	Dubois, and
14		Salmon.	The Salmon/Ch	allis National Forest p	provides initial attac	k to several
15		focal ar	eas, with engine	s and helicopters from	n Mackey, Challis, L	eadore, and
16		Salmon.	The Caribou/Tai	rghee National Forest	provides additional r	esources for
17		several	of the focal areas	, with engines from Ma	alad, Pocatello, and A	Ashton being
18		the clos	est to the focal a	reas.		
19		The res	ponse time to th	ne majority of the foca	al areas is thirty min	utes to one
20		hour to	have multiple rea	sources on scene. Add	itional resources cou	ıld be staged
21		in Arco	to provide more	e coverage for the Big	Lost and Big Desert	focal areas.
22		Resourc	es could also b	oe staged in Aberdee	en, Arco, Clyde, R	exburg, and
23		Holbroo	ok to provide fo	r quicker response to	the more remote	focal areas,
24		including	g Curlew, Big D	esert, Big Lost, Pasem	ieroi, Medicine Lodg	ge, and Sand
25		Creek.	The Idaho Falls I	3LM has mutual aid ag	reements with over	50 rural or
26		municipa	al fire departmen	ts that can be used to	further supplement	initial attack,
27		as many	of the departm	ents are the closest re	esource to many foc	al areas and
28		would I	ikely be the firs	st to respond. GRSG	suppression guidel	ines will be
29		discusse	d with cooperate	ors during AOP meeti	ngs and training will	be provided
30		to incre	ase their capacity	where possible. Cont	ract resources, inclu	iding dozers,
31		engines,	and water tend	ers, can be hired and	I staged during high	fire danger
32		periods	such as high wine	d events and predicted	dry lightning at any	of the above
33		location	s. To supplemen	t the air tanker base ir	ו Pocatello, portable	SEAT bases
34		can be o	operated in Mala	d, Arco, and Challis to	o reduce flight times	to many of
35		the foca	l areas. Portable	SEAT bases will be st	taged in Arco and M	lalad for the
36		fire seas	son, with all agre	eements in place to a	ctivate them in a tin	nely manner
37		during t	he fire season. V	Vater sources have be	een mapped in remc	ote locations

Table 4-80Sand Creek Potential Habitat Restoration Treatments

 2 3	where water supply is limited, including contact information on existing wells. In addition, more wells can be developed and existing wells can be improved with more funding and completion of NEPA.
4	Priority areas for fire operations include the following*:
5	Sand Creek fire 2nd priority: 84,500 acres
6	*See associated GIS data layers for position and extent within the PPA and
7	Table 4-81.

Table 4-81
Sand Creek Potential Fire Operations Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres		84,500	317,400		401,900
	% of PPA		18	69		87
8						
9		Post-Fire	Rehabilitation			
10		The Ste	p 2 FIAT proces	s identified areas wit	hin the 75 percen	t BBD with
11		moderat	te to high cover an	id warm-dry soil moist	ure temperature re	egimes as the
12		highest	priority for post-f	ire rehabilitation. The	Idaho Falls Distric	t Office will
13		continue	e working with oth	ner stakeholders to co	ordinate and priori [,]	tize post-fire
14		rehabilit	ation activities.		F -	
15		Potentia	l treatment areas	for post-fire rehabilit	ation management	include the
16		following	g*:	•	U U	
		·	5			
17			Sand Creek ES	R 2nd priority: 57,500	acres	
18		*See ass	sociated GIS data	layers for position a	nd extent within t	he PPA and
19		Table 4	I-82 .			

Table 4-82Sand Creek Potential Post-Fire Rehabilitation Management Strategies

Priority	Priority I	Priority 2	Priority 3	Null	Total
Acres		57,500	339,000		396,500
% of PPA		12	74		86
20					
21	Propos	ed Management			
22	Potentia	al treatments ident	ified for the Sand Cre	ek PPA include tho	se for conifer
23	expansi	on, which are wid	ely distributed throug	hout the PPA. See	Table 4-83
24	for proj	ects that are ident	ified presently within	the NEPA planning	process. See
25	Figure	s 4-90 through 4-9	95 for a graphic depic	tion of the propose	ed treatments
26	and stra	tegies in the PPA			

Treatment Description		P	Priority Threats Addressed				NEPA			Treatments															
														s (I)	(R)					Tiı Fra	me Ime	Certa Effecti	inty of veness ¹	ame	me
Name/Type	Acres	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian Degradation	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fra (Years) ²	Completion Time Frai (0-2, 3-5, 5+ years) ³								
USFO Shrub/Tree Planting EA	461,074	Х				Ι		W		С			Ι	LI		10	5+								
USFO Weed Treatment EA	461,074	X				Ι				C			Ι	LI		5	5+								

 Table 4-83

 PPA Treatment Summary Table (Sand Creek PPA)

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

²Describe frequency of maintenance necessary to continue effectiveness (years)

³Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

|--|

4

Project Planning Area Description

Geographic Overview

The Table Butte PPA is in the BLM Idaho Falls District Office west of Interstate 15 and north of Highway 33 and Mud Lake. Landownership includes about 90 percent BLM-administered land, with less than 10 percent state and private land.

10There are approximately 80,600 acres within the PPA. Topography is mostly flat11to gently sloping with areas punctuated by Table Butte on the south end and12Cedar Butte on the north end. Elevation ranges from approximately 4,800 feet13(1,463 meters) to 5,200 feet (1,585 meters).

- 14The Table Butte PPA is represented by moderate to high shrub cover in cool-15dry soil condition regimes. See **Table 4-84**.
- 16Water is very limited within the PPA; however, Mud Lake and Camas Creek are17just south of the PPA boundary.
- 18The PPA is west of Interstate 15 and is surrounded by state highways. There are19roads throughout much of the PPA, which could facilitate fire response.

1 2

3 4

5 6

7

8

Matrix Category	No Data	IA	ΙB	IC	2 A	2 B	2C	3 A	3B	3C
Acres	1,630					20,044	58,919			
% of PPA	2					25	73			
	All	focal habit	ats in t	he PPA	are les	s than	12 miles fr	om electric	al transm	nission
	tow	vers. Appr	oximate	ly 30 j	percent	of the	habitat aro	und the pe	erimeter (of the
	Tab	ole Butte	PPA is	five	to nine	miles	from prin	nary roads	. Transm	nission
	cor	ridors run	n adjace	nt to	the eas	tern an	d western	boundarie	s of the	Table
	But	te PPA; a	about 7	0 per	cent of	the ha	abitat is w	ithin five	miles an	d the
	ren	nainder is l	ess than	nine r	niles fro	om trans	mission lin	es and/or to	owers.	
	GRS	SG Characte	eristics							
	The	e entire PP	A provi	des bre	eeding a	nd wint	er habitat.			
	Veg	etation								
	Co	nifer and a	nnual gr	asses a	ire not s	significar	nt issues in	this FIAT F	PPA.	
	Fire									
	Ар	oroximatel	y 20 pe	rcent c	of the ar	ea has t	ourned sinc	e 1980. Ab	out 95 pe	ercent
	of t	he PPA is	, in the m	odera	te burn	probabi	lity categor	v. See Tab	le 4-85.	

Table 4-84Table Butte GRSG Habitat Matrix Categories

Table 4-85
Table Butte Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres)0High and Very High Burn Probability in PPA (percent)0
15	
16	Existing Treatments
17	Past treatments have occurred on approximately 11 percent of the PPA, with
18	many of the treatments focused in and around old fire scars.
19	Between 1986 and 2001, 8,045 previously burned acres were aerially seeded
20	with sagebrush. All of the seeding treatments were considered a failure.
21	Between 1950 and 1970, much of the Table Butte area was drill seeded with
22	crested wheatgrass to increase forage. While no official record exists to provide
23	the number and exact acreage of the treatments, most of the seedings still exist
24	and were considered a success.
25	In 2010 and 2012, approximately 45,000 sagebrush seedlings were hand planted
26	throughout portions of the 7,180-acre Camas Fire (2000). Monitoring revealed
27	that survivability of the seedlings was approximately 80 percent. This hand
28	planting effort was in response to the multiple failed attempts to reestablish
29	sagebrush through aerial seedings within the fire scar.

l 2 3 4 5	Other Management Factors Aside from existing roads, which cross many portions of the PPA, and transmission lines that run along the eastern and western portions of the PPA, other management factors did not influence the selection of treatments for this PPA.
6	Fuels Management
7	No fuels management is proposed.
8 9 10 11	Habitat Recovery/Restoration Identified treatments would focus on reestablishing sagebrush back into the historic fire scars where natural recovery has not occurred. All treatments would be coordinated with other land management agencies and private
12	andowners, as appropriate, and monitored post-treatment to ensure
14	Potential treatments for habitat recovery/restoration include the following*:
15	• Table Butte habitat restoration (other) 2nd priority: 21,900 acres
16 17	*See associated GIS data layers for position and extent within PPA and Table 4-86 .

Table 4-86	
Table Butte Potential Habitat Restoration	Treatments

Priority	Priority I	Priority 2	Priority 3	Null	Total
Acres		21,900			21,900
% of PPA		27			27
8					
9	Fire Ope	rations			
20	Respons	se to wildfires in	and around critical	GRSG habitat is a	ccomplished
21	primaril	y with engines, do	ozers, and water tende	ers, with support fro	om a variety
22	of aviati	on assets. BLM s	tations provide for ra	pid initial attack res	ponse from
23	multiple	locations to the	majority of focal areas	, and response plan	s have been
24	updated	with increased re	esponse to such areas.		
25	Idaho Fa	alls District Engine	e Stations are located ir	n Malad, Soda Spring	s, Pocatello,
26	America	an Falls, Fort Ha	II, Blackfoot, Atomic	City, Idaho Falls, I	Dubois, and
27	Salmon.	The Salmon/Cha	Illis National Forest p	rovides initial attacl	k to several
28	focal ar	eas, with engines	and helicopters from	Mackey, Challis, L	eadore, and
29	Salmon.	The Caribou/Tar	ghee National Forest p	rovides additional re	esources for
80	several	of the focal areas,	with engines from Ma	lad, Pocatello, and A	shton being
31	the clos	est to the focal ar	eas.		
32	The res	ponse time to th	e majority of the focal	areas is thirty min	utes to one
33	hour to	have multiple res	ources on scene. Addit	cional resources cou	ld be staged
34	in Arco	to provide more	coverage for the Big I	ost and Big Desert	focal areas.

I	Resources could also be staged in Aberdeen, Arco, Clyde, Rexburg, and
2	Holbrook to provide for quicker response to the more remote focal areas,
3	including Curlew, Big Desert, Big Lost, Pasemeroi, Medicine Lodge, and Sand
4	Creek. The Idaho Falls BLM has mutual aid agreements with over 50 rural or
5	municipal fire departments that can be used to further supplement initial attack,
6	as many of the departments are the closest resource to many focal areas and
7	would likely be the first to respond. GRSG suppression guidelines will be
8	discussed with cooperators during AOP meetings and training will be provided
9	to increase their capacity where possible. Contract resources, including dozers,
10	engines, and water tenders, can be hired and staged during high fire danger
11	periods such as high wind events and predicted dry lightning at any of the above
12	locations. To supplement the air tanker base in Pocatello, portable SEAT bases
13	can be operated in Malad, Arco, and Challis to reduce flight times to many of
14	the focal areas. Portable SEAT bases will be staged in Arco and Malad for the
15	fire season, with all agreements in place to activate them in a timely manner
16	during the fire season. Water sources have been mapped in remote locations
17	where water supply is limited, including contact information on existing wells. In
18	addition, more wells can be developed and existing wells can be improved with
19	more funding and completion of NEPA.
20	The entire PPA would be high priority given the continuous sagebrush habitat

throughout.

21

23

24 25

- 22 Priority areas for fire operations include the following*:
 - Table Butte fire 1st priority: 79,000 acres

*See associated GIS data layers for position and extent within the PPA and **Table 4-87**.

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres	79,000			1,600	80,600
	% of PPA	98			2	100
26						
27		Post-Fire	Rehabilitation			
28		The Ste	o 2 FIAT process i	dentified areas within	the focal habitats wi	th moderate
29		to high	shrub cover and	warm-dry soil moistu	ure temperature reg	gimes minus
30		past ESF	R acreage as the l	nighest priority for po	st-fire rehabilitation	n. The Idaho
31		Falls Dis	trict Office will co	ontinue working with c	ther stakeholders to	o coordinate
32		and prio	ritize post-fire rel	abilitation activities.		
33		Potentia	l treatment areas	for post-fire rehabili	tation management	include the
34		following	g*:			
35			• Table Butte E	SR 1st priority: 57,500	acres	

Table 4-87Table Butte Potential Fire Operations Management Strategies

1 2 *See associated GIS data layers for position and extent within the PPA and **Table 4-88**.

Table 4-88Table Butte Potential Post-Fire Rehabilitation Management Strategies

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres	57,500				57,500
	% of PPA	71				71
3						
4		Propose	ed Management			
5		Conifer	encroachment and	d invasive annual grass	es are not notable	issues in the
6		Table B	utte PPA. Accord	ingly, the FIAT assess	sment team identifi	ed a passive
7		manager	nent approach as	the most appropria	te strategy for the	e PPA, with
8		approxii	mately 30 percent	t of the PPA identifie	ed as second priori	ty areas for
9		sagebrus	sh habitat restorat	tion. See Table 4-89	for projects that a	re presently
10		identifie	d within the NEPA	A planning process. Se	e Figures 4-96 thr	ough 4-102
		for a gra	phic depiction of t	the proposed treatmer	nts and strategies in	the PPA.

Table 4-89PPA Treatment Summary Table (Table Butte PPA)

Treatment Description		Priority			Threats Addressed			NEPA			Treatments						
						(I) si	(R)					Tiı Fra	me Ime	Certa Effecti	ainty of iveness ¹	ame	me
Name/ Type	Acres	lst	2nd	3rd	Conifer (C)	Invasive annual grasse	Riparian Degradation	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ¹	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fr (Years) ²	Completion Time Fra (0-2, 3-5, 5+ years) ³
Table Butte Restoration	23,217	Х				I		W	I			Р		LI		10	3-5
USFO Shrub/Tree Planting EA	80,595		Х			I		W		С			I	LI		10	5+
USFO Weed Treatment EA	80,595	Х				Ι				С			Ι	LI		5	5+

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

²Describe frequency of maintenance necessary to continue effectiveness (years)

³Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

Twin Butte
Project Planning Area Description
Geographic Overview
The Twin Butte PPA is in the BLM Idaho Falls District Office north of Highway
20 and northwest of Idaho Falls. Landownership includes approximately 20
percent BLM-administered land, 40 percent Department of Energy, Idaho
National Laboratory land, and 30 percent state and private land.
There are approximately 756,700 acres within the PPA. Topography is mostly
flat to gently sloping with some rugged BLM-administered land in the far
western portion. Elevation ranges from approximately 5,000 feet (1,500 meters)
to 7,500 feet (2,300 meters).
The Twin Butte PPA is represented by low, moderate, and high cover and cool-
moist and cool-dry soil temperature and moisture regimes. Local information
advises that in this model, the cool-dry soil moisture temperature regime
functions more as a warm-dry regime. See Table 4-90 .

Matrix Category	No Data	IA	ΙB	IC	2 A	2B	2 C	3A	3B	3C
Acres	30,998	1,165	4,760	20,614	149,993	270,067	279,091			
% of PPA	4	0	I	3	20	36	37			
		Water is	limited	within th	ne PPA.					
		The PPA	is near	Idaho Fa	alls. and th	nere are m	nany roads	throughou	t much o	of the
		PPA that	could f	acilitate f	ire respon	ise.	,			
		All focal	habitats	in the F	PA are le	ss than 12	2 miles fror	n electrica	l transm	ission
		towers.	Due to	highways	along the	northern	and southe	ern dortior	ns of the	Twin
		Butte PP	A, appr	oximatel ^y	y 50 perce	ent of the	focal habit	at is less t	han five	miles
		from pri	mary ro	bads and	, 40 perce	ent is five	to nine m	iles from	any high	ways.
		Transmis	ssion co	orridors	occur tł	nrough th	e western	, central,	and ea	stern
		portions	of the ⁻	Twin But	te PPA; ap	proximate	ely 70 perce	ent of the f	ocal hab	itat is
		within fiv	ve miles	and the	remaining	, g focal hat	oitat is less	than 13 m	niles fror	n any
		transmis	sion lin	es. A sir	ngle 230-l	V transm	nission line	runs nor	th and	south
		through	the eas	tern por	tion of th	ne Twin B	uttes PPA	along the	Intersta	te 15
		corridor		ľ				0		
		GRSG Ch	aracteris	tics						
		Approxi	mately 4	40 perce	nt of the	area is b	reeding ha	bitat, and	less that	n five
							0			

Table 4-90 Twin Butte GRSG Habitat Matrix Categories

l 2	Vegetation Some conifer encroachment is occurring on the western side of the PPA.
3	Invasive annuals are not a significant issue in this PPA.
4	Fire
5	Approximately 30 percent of the area has burned since 1980. The Jefferson Fire
6	burned over 100,000 acres in the central part of the PPA in 2010, and an
7	adjacent 44,000 acres burned in 2011. About 70 percent of the area is in the
8	high and very high burn probability categories. See Table 4-91 .

Table 4-91Twin Butte Summary of Burn Probability

	High and Very High Burn Probability in PPA (acres)523,100High and Very High Burn Probability in PPA (percent)69
9	
10	Existing Treatments
П	Some sagebrush planting was completed on BLM-administered lands following
12	the Jefferson Fire. Sagebrush planting efforts are expected to continue into the
13	future, with approximately 50,000 sagebrush seedlings slated to be planted
14	within the Jefferson Fire scar in 2015.
15	In 2001, 2,870 previously burned acres were aerially seeded with sagebrush.
16	Both of the seeding treatments were considered a failure.
17	Between 1960 and 1973, approximately 8,590 acres were drill seeded with
18	crested wheatgrass to improve range condition and increase forage. All of the
19	seedings still exist and were considered a success.
20	In 2007, approximately 900 acres were treated through the Joint Fire Science
21	Program as a way to evaluate the effects of various restoration treatments in
22	sagebrush steppe communities throughout the Great Basin. All treatments were
23	considered a success based upon the parameters of the study.
24	In 2010, the Jefferson ESR project was initiated, treating 11,640 acres within the
25	Jefferson fire scar. Treatments included aerial sagebrush seedings, drill seeding
26	sagebrush seed, hand planting sagebrush seedlings, and drill seeding native
27	herbaceous seed. While the aerial seeding produced little to no results, many of
28	the other treatments were successful in increasing the native herbaceous and
29	sagebrush cover.
30	In 2014, the Deadman sagebrush restoration project was initiated. The initial
31	treatment consisted of broadcast seeding and masticating approximately 100
32	acres of phase II juniper. While it is still too early to tell, initial observations
33	point to a success. An additional 1,100 acres will be treated over the next five
34	to I 0 years.

I	Other Management Factors
2	Aside from roads, including Interstate 15, and a 230-kV transmission line
3	adjacent to Interstate 15, other management factors did not influence the
4	selection of treatments for this PPA.
5	Fuels Management
6	The potential treatment area includes approximately 900 acres within the PPA.
7	These treatments are first order priority and can be accomplished within the
8	next five years. While the primary treatment is reduction of hazardous fuels to
9	reduce fire behavior, associated related targets such as reduction of invasive
10	annual grass, conifer, and invasive weeds will also be accomplished.
11	Potential treatments for fuels management include the following*:
12	• Twin Buttes fuelbreaks 1st priority: 900 acres
13	*See associated GIS data layers for position and extent within the PPA and
14	Table 4-92.

Table 4-92Twin Butte Potential Fuels Management Treatments

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Miles	0	0	0	0	0
	Acres	900				900
15						
16		Habitat I	Recovery/Restoration	า		
17		Potentia	l treatments for h	abitat recovery/restora	tion include the foll	owing*:
18			• Twin Buttes c	onifer expansion 1st pr	iority: 49,800 acres	
19		• Twin Buttes habitat restoration (other) 1st priority: 32,200 acres				
20			 Increase pere 	nnial grass and sagebr	rush cover for nes	ting habitat:
21			two to 500 ac	res		C
22		*See ass	sociated GIS data	layers for position a	nd extent within t	he PPA and
23		Table 4	-93.			

Table 4-93
Twin Butte Potential Habitat Restoration Treatments

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres	82,100				82,100
	% of PPA	11				11
24						
25		All treat	tments would be o	oordinated with othe	r land management	agencies and
26		private	landowners, as ag	propriate, and monit	ored post-treatme	nt to ensure
27		effective	eness.		·	

Fire Operations

L

2

3

4

5

6

7

8

9

10

11

12

13

36

37

39

Response to wildfires in and around critical GRSG habitat is accomplished primarily with engines, dozers, and water tenders, with support from a variety of aviation assets. BLM stations provide for rapid initial attack response from multiple locations to the majority of focal areas, and response plans have been updated with increased response to such areas.

Idaho Falls District Engine Stations are located in Malad, Soda Springs, Pocatello, American Falls, Fort Hall, Blackfoot, Atomic City, Idaho Falls, Dubois, and Salmon. The Salmon/Challis National Forest provides initial attack to several focal areas, with engines and helicopters from Mackey, Challis, Leadore, and Salmon. The Caribou/Targhee National Forest provides additional resources for several of the focal areas, with engines from Malad, Pocatello, and Ashton being the closest to the focal areas.

14 The response time to the majority of the focal areas is thirty minutes to one 15 hour to have multiple resources on scene. Additional resources could be staged 16 in Arco to provide more coverage for the Big Lost and Big Desert focal areas. 17 Resources could also be staged in Aberdeen, Arco, Clyde, Rexburg, and 18 Holbrook to provide for quicker response to the more remote focal areas, 19 including Curlew, Big Desert, Big Lost, Pasemeroi, Medicine Lodge, and Sand 20 Creek. The Idaho Falls BLM has mutual aid agreements with over 50 rural or 21 municipal fire departments that can be used to further supplement initial attack, 22 as many of the departments are the closest resource to many focal areas and 23 would likely be the first to respond. GRSG suppression guidelines will be 24 discussed with cooperators during AOP meetings and training will be provided 25 to increase their capacity where possible. Contract resources, including dozers, 26 engines, and water tenders, can be hired and staged during high fire danger 27 periods such as high wind events and predicted dry lightning at any of the above 28 locations. To supplement the air tanker base in Pocatello, portable SEAT bases 29 can be operated in Malad, Arco, and Challis to reduce flight times to many of 30 the focal areas. Portable SEAT bases will be staged in Arco and Malad for the 31 fire season, with all agreements in place to activate them in a timely manner 32 during the fire season. Water sources have been mapped in remote locations 33 where water supply is limited, including contact information on existing wells. In 34 addition, more wells can be developed and existing wells can be improved with 35 more funding and completion of NEPA.

- Within the PPA, cool-dry soil moisture temperature regimes function as warmdry regimes.
- 38 Priority areas for fire operations include the following*:
 - Twin Butte fire 1st priority: 622,000 acres
- 40*See associated GIS data layers for position and extent within the PPA and41Table 4-94.

March 2015

	Priority	Priority I	Priority 2	Priority 3	Null	Total
	Acres	622,000	56,700	47,000	31,000	756,700
	% of PPA	82	7	6	4	100
I						
2		Post-Fire	Rehabilitation			
3		The Step	2 FIAT process i	dentified areas within	the focal habitats w	vith warm-dry
4		soil con	ditions as the hig	hest priority for pos	st-fire rehabilitation	. Within the
5		PPA, coo	ol-dry soil moistur	e temperature regime	es function as warm	-dry regimes.
6		The Idaho Falls District Office will continue working with other stakeholders to				
7		coordina	te and prioritize p	oost-fire rehabilitation	activities.	
8			• Twin Butte ES	R 1st priority: 399,40	0 acres	
9		*See ass	ociated GIS data	layers for position a	and extent within	the PPA and
0		Table 4	-95.	, ,		

Table 4-94Twin Butte Potential Fire Operations Management Strategies

Table 4-95Twin Butte Potential Post-Fire Rehabilitation Management Strategies

1 1 101 109	Friority	Friority Z	Priority 3	Null	l otal												
Acres	399,400	1,000	19,700		420,100												
% of PPA	53	0	3		56												
	Propose	d Management															
	Identifie	d treatments with	in the Twin Butte PP	A include a mixture	e of potential												
	fuel trea	fuel treatments and habitat restoration/recovery strategies intended to enhance															
	the pere	nnial grass unders	story, while reducing o	conifer overstory e	ncroachment												
	in some	areas. See Table	4-96 for projects that	at are identified pre	sently within												
	the NEF	A planning proce	ss. See Figures 4-10	3 through 4-110 f	for a graphic												
	depictio	n of the proposed	treatments and strate	gies in the PPA.	- •												
	Acres % of PPA	Acres 399,400 % of PPA 53 Propose Identified fuel trea the pere in some the NEP depiction	Acres 399,400 1,000 % of PPA 53 0 Proposed Management Identified treatments with fuel treatments and habita the perennial grass unders in some areas. See Table the NEPA planning proce depiction of the proposed	Acres 399,400 1,000 19,700 % of PPA 53 0 3 Proposed Management Identified treatments within the Twin Butte PP/ fuel treatments and habitat restoration/recovery the perennial grass understory, while reducing of in some areas. See Table 4-96 for projects that the NEPA planning process. See Figures 4-10 depiction of the proposed treatments and strate	Acres 399,400 1,000 19,700 % of PPA 53 0 3 Proposed Management Identified treatments within the Twin Butte PPA include a mixture fuel treatments and habitat restoration/recovery strategies intended the perennial grass understory, while reducing conifer overstory elin some areas. See Table 4-96 for projects that are identified pre the NEPA planning process. See Figures 4-103 through 4-110 for depiction of the proposed treatments and strategies in the PPA.												
Treatm Descrip	nent otion	P	riorit	y		Thre Addre	eats essed		I	NEPA	1	Treatments					
-----------------------------------	---------------	-----	--------	---------------	-------------	-----------------------	----------------------	---------------	---------------	--	------------	----------------------------------	-------------------------------	--------	----------	---	---
				ss (I) (R)				Time Frame		Certainty of Effectiveness ¹		ame	ame				
Name/ Type	Acres	lst	2nd	3rd	Conifer (C)	Invasive annual grass	Riparian Degradatior	Wildfire (W)	Initiated (I)	Completed (C)	Needed (N)	Pending Funding (P) ^I	Implementing (I) ^I	Likely	Unlikely	Maintenance Time Fi (Years) ²	Completion Time Fr (0-2, 3-5, 5+ years) ³
Deadman	1,211	Х			С	I		W		С				LI		20	3-5
Twin Buttes Restoration	16,215		Х			I		W	I			Ρ		L4		10	3-5
USFO Shrub/Tree Planting EA	756,691	Х				I		W		С			I	LI		10	5+
USFO Weed Treatment EA	756,691	X				I				С			Ι	LI		5	5+

Table 4-96PPA Treatment Summary Table (Twin Buttes PPA)

¹ State if treatment, once completed, is likely or unlikely to be effective. Provide rationale using these codes:

I = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness likely

2 = site conditions (soils, resilience, species composition, disturbances) make treatment effectiveness unlikely

3 = continued current management (grazing, recreation, or other land uses) make likelihood of effectiveness low

4 = Based upon professional opinion, treatment is likely to be effective

²Describe frequency of maintenance necessary to continue effectiveness (years)

³Identify potential treatment completion time frame, considering NEPA adequacy, relative priority, and local ranking factors

This page intentionally left blank.

I

SECTION 5 LOOKING AHEAD: IMPLEMENTATION, NEPA, AND MONITORING

4 5.1 IMPLEMENTATION STRATEGY

5

6

7

8

9

10

11

12

13

14

Management strategies identified in this assessment are broadly consistent with and fall within broader land use plan direction. FIAT assessments are referenced in appendices of each subregional environmental impact statement. As such, the **potential implementation of all FIAT management strategies is fully subject to all direction and constraints in the overarching land use plans and treatment-level NEPA.** Topics such as noxious weed control and use of native seed for habitat restoration projects are included in this section to assist land managers in the selection of appropriate treatments as FIAT Step 2 assessments are used to develop site-specific treatments and conduct the appropriate NEPA analyses (i.e., Step 3).

- 15 The planning, implementation, and monitoring cycle for FIAT strategies are a 16 multiyear process. Within or near the focal habitats within the FIAT assessment 17 areas, the identified management strategies occur across the spectrum of the 18 planning process. Some FIAT management strategies have planning completed, 19 are NEPA compliant, and are ready for implementation. Others are beyond the 20 NEPA scoping phase, but planning is not yet complete. Finally, many potential 21 treatments identified in this assessment were conceptualized in FIAT 22 workshops, and in these cases planning has not been initiated.
- Prioritizing the sequence of project/treatment implementation is an important
 process, and may consider NEPA compliance, budgeting, unit capacity, and other
 factors such as immediacy of the threat to GRSG. Furthermore, this
 prioritization is a necessary step to produce an out-year program of work. This
 program of work is scheduled to follow the completion of FIAT Step 2
 assessments. The program of work will portray the year(s) for implementation,
 scale of treatment, and type of treatment by program/management strategy

March 2015

area. **Figure 5-I**, FIAT Process, illustrates the sequence of FIAT steps, project implementation, and monitoring.

Figure 5-1: FIAT Process

FIAT assessments were not designed to address project area practices such as specific changes in management to promote habitat recovery, what types of seed mixtures to use, or to address invasive species other than the invasive annual grasses. These activities are **fully subject to all direction and constraints in the overarching land use plans and treatment-level NEPA**; however, the following suggestions are provided to assist in the transition from FIAT Step 2 to the project planning and NEPA stage.

5.1.1 Habitat Restoration and Recovery

Habitat restoration and recovery are two approaches to rebuilding or maintaining GRSG habitats. Habitat restoration (active restoration) treatments are on-the-ground activities (e.g., seeding, control of invasive annual grasses and conifer expansion), whereas habitat recovery (passive approach) involves changes in management practices. Opportunities for passive restoration includes, but is not limited to, changing livestock grazing management to improve GRSG habitat, applying appropriate wild horse and burro management, spot-treating weed infestations in treatment areas, and limiting or mitigating soildisturbing activities (i.e., off-road vehicle use). These types of management changes were not specifically identified nor prioritized in the FIAT Step 2 stage.

24Habitat restoration is expensive and requires time for plant establishment and25recovery. Livestock grazing exclusion is a common practice to promote26vegetation recovery or establishment after a surface-disturbing treatment or27disturbance. Appropriate exclusion periods after habitat restoration activities28should be considered and incorporated into the project planning/NEPA process.29Similar consideration should be given to wild horse and burro, recreation, and30other uses as well.

31It is also important to institute appropriate long-term management strategies32that will maintain habitat restoration projects into the future. For example,33livestock grazing management should be evaluated and changes implemented to34ensure that species diversity in a successful restoration seeding is maintained35over time.

Т

2

3

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

I 2 3 4 5 6			Habitat restoration, including post-fire rehabilitation treatments, may need to be repeated if projects initially fail to meet restoration objectives. Therefore, retreatment options should be considered in all proposed actions and implemented if needed. This is especially true in warm and dry soil temperature/moisture regimes where climatic conditions are often problematic for new plant establishment or recovery.
7		5.1.2	Use of Native Species for Habitat Restoration and Post-Fire
8			Rehabilitation
9			The use of adapted, native plant seed in restoration and post-fire rehabilitation
10			projects is addressed in land use plans. To the extent practicable and in concert
П			with the appropriate land use plans, it is recommended that agencies use locally
12			adapted seeds and native plant materials appropriate to the location, conditions,
13			and management objectives for vegetation management and restoration
14			activities, including strategic sourcing for acquiring, storing, and using genetically
15			appropriate seeds and other plant materials. In certain circumstances, nonnative
16			species may be needed to achieve site stabilization, fire breaks, weed control, as
17			transitional species for sequential restoration, and to meet restoration
18			objectives (2015 Draft of the National Seed Strategy and Implementation Plan:
19			2015-2020).
20		E 1 3	Investive Species other than Investive Annual Creases
20		5.1.5	ELAT assessments address two estagonies of invesive species
21			TAT assessments address two categories of invasive species.
22			I) Invasive annual grasses
23			2) Expansion of conifer species into sagebrush habitats
24			This does not negate the importance of controlling other noxious plants in
25			sagebrush habitat; however, the FIAT assessment was not designed to address
26			other invasive plants, including noxious plants. Therefore, locating infestations,
27			decreasing propagule pressure (especially along roadside areas), treating satellite
28			infestations, and preventing future infestations in focal habitats has not been
29			addressed nor prioritized in these assessments.
30			It is recognized that nevious wood risk is especially high in areas undergoing
30			FIAT treatments that may disturb the soil or remove competitive vegetation
37			Accordingly novious weed management is an important consideration for all
32			land treatments originating from the FIAT assessment. Weed management
34			within these treatment areas can be funded to include notious weed inventories
35			during the planning process subsequent weed treatments (preferably before
36			project implementation) and subsequent monitoring and follow up weed
37			treatments following project implementation.
20	F 2	DNORTH	
38 20	5.2		
37 40			Prioritizing the sequence of project/treatment implementation is an important
40			process; INEPA compliance, budgeting, unit capacity, and other factors may be

I	considered. Furthermore, this prioritization is a necessary step in order to
2	produce an out-year program of work. The FIAT Technical Team concluded
3	that this program of work would be developed immediately following the
4	completion of FIAT Step 2 assessments.

5 5.3 SUMMATION OF TREATMENTS

6 7

8 9

10 11

12

13

14

15

16

28

29

30

31

The time necessary for implementation, the scale of treatment, and the type of treatment by management strategy will be considered. The program of work will portray the years for implementation, scale of treatment, and type of treatment by program area (see **Table 5-1**).

		Acre	es		Miles				
Treatment Type	l st Priority	2nd Priority	3rd Priority	Total	l st Priority	2nd Priority	3rd Priority	Total	
Habitat	1,016,300	302,700	173,000	1,492,000	•	•	•		
Restoration									
Fuels Treatments	78,400	8,600	300	87,300	200	0	200	400	
Fire Operations	2,463,400	786,900	1,991,500	5,241,800					
Post-Fire	990,200	1,674,800	1,048,900	3,713,900					
Treatments (ESR)				. ,					

Table 5-1 Assessment Area Treatment Summary

For this assessment, two strategies identified in focal habitat are considered to be emphasis areas and are intended to be implemented in or next to focal habitats. The two strategies—habitat restoration and fuels management—are to be implemented with prior planning. These two strategies, along with fire operations and post-fire rehabilitation, are in response to wildland fire, an environmental factor on the landscape.

17	All four strategies have an effect on the vegetative community and may be
18	viewed as a continuum on the landscape. For this assessment, the primary goal
19	or effect on the natural community is how each strategy is primarily identified.
20	For instance, removing hazardous fuels along a roadside may have the primary
21	purpose of modifying fire behavior, but such treatments may also include
22	herbicide application to treat invasive annual grasses. Similarly, removing
23	conifers may be the primary objective of a treatment, but it may also include
24	seeding perennial grasses and planting sagebrush.

Potential projects and treatments contained in this assessment are subject to
change based on field verification and other information obtained during project
development and environmental analysis process.

5.3.1 Fuels Management

Fuels management is a proactive strategy designed to reduce wildfire behavior by changing the size, structure, arrangement, and amount of live and dead vegetation.

I	The focus of the FIAT process was very specific to the identified habitats and
2	the associated buffers of these areas (see Table 5-2). In the vegetation types
3	being addressed, fire growth can cross large tracts of ground in very short time
4	frames. Due to the focus on the habitats and buffers, many types of treatments,
5	existing or planned, were not addressed in this process. The areas outside of
6	the planning areas will need to be addressed in the future because they are
7	often the only option available to minimize fires entering the planning areas and
8	the identified leks.

PPA	Total Acres of Fuels Management Treatments	Null	Percentage of PPA	Total Miles o Potentia Fuelbreak
Antelope Flat/Big Lost				
Bennett Hills	14,500			80
Big Desert	8,600	0	1	
Big Lost				
Birch Creek				
Hat Creek	300	0	0	
Lemhi-Birch				
Little Lost				
Little Wood River				85
Magic	70,900	8,300	4	228
Medicine Lodge				
Pahsimeroi				
Sand Creek				
Table Butte	400		0	
Twin Butte	900		0	
Total for all SSB PPAs	95,600		6	393

Table 5-2 Fuels Management Potential Treatment Areas Within PPAs in the

increasing habitat and connecting the identified areas.

13 Additionally, fuelbreak treatments that use nonnative species, such as forage 14 kochia, should be carefully evaluated. BLM field office staff should carefully 15 consider where and to what extent these nonnative vegetative treatments are 16 used. An example to avoid is planning multiple concentric polygons of nonnative 17 vegetative fuelbreaks within intact resistant and resilient sagebrush communities. 18 This would only exacerbate habitat fragmentation of these ecologically 19 functional communities.

20 There are also applicable and successful ways that natives such as Sanberg 21 bluegrass (Poa secunda) stands are used as fuelbreaks in Nevada and southwest 22 Idaho. At the Next Steppe Conference in Boise (November 5-7, 2014), the BLM 23 Winnemucca District staff identified the following advantages of using natives for 24 seeding fuelbreaks:

l 2	• The low stature of <i>Poa secunda</i> reduces the fuel height and fuel loading, as compared to crested wheatgrass.
3 4	• Poa secunda and squirrel tail (Elymus elymoides) compete well with cheatgrass, reducing fine fuel loading and fuel continuity.
5 6	 Poa secunda and Elymus elymoides are tolerant to drought and grazing.
7 8 9	5.3.2 Habitat Restoration and Recovery Habitat restoration is a proactive strategy that uses the following types of treatments (see Table 5-3):
10 11	• Reducing usually phase I and phase 2 conifers through mechanical treatment
12 13	 Managing invasive annual grasses, generally through the use of herbicides
14	Seeding or planting sagebrush
15 16 17 18	• Other types of treatments, with the primary goal of restoring or enhancing native plant species and vegetative structure within the native sagebrush steppe ecosystem; this may include removing undesirable plant species
19 20 21 22 23 24 25 26	All natural systems vary in space and time; in many cases, restoring a range of target vegetative conditions may be desirable. Where historic processes are not likely to be reestablished, full restoration may not be possible; however, site resilience can be leveraged to increase ecological function over time. This assumes that proper post-disturbance management does not continue to bring a site back to a ruderal successional state. By further defining the restoration continuum, treatments can be further defined and prioritized at finer local scales.
27 28	The following are considerations for habitat restoration and recovery project planning, project implementation, and NEPA.

Table 5-3
Habitat Restoration/Recovery Potential Treatment Areas in the Snake/Salmon/Beaverhead Landscape

РРА	Total Acres of Conifer Encroachment Potential Treatments	Percentage of PPA	Null	Total Acres of Invasive Annual Grasses Potential Treatments	Percentage of PPA	Null	Total Acres of Other Habitat Restoration/ Recovery Potential Treatments	Percentage of PPA	Null
Antelope	62,200	11	36,600				5,500	I	300
Flat/Big Lost									
Bennett Hills				82,200	13		20,400	3	
Big Desert	5,100	l					250,900	44	3,000
Big Lost									
Birch Creek	22,900	21	1,200						
Hat Creek	60,600	39	8,000						
Lemhi-Birch	53,600	13	41,600				11,700	3	
Little Lost							5,000	3	600
Little Wood									
River									
Magic				141,200	8		354,300	20	
Medicine	8,100	3					5,600	2	
Lodge									
Pahsimeroi	99,500	26	25,000				63,500	17	1,700
Sand Creek	146,300	32							
Table Butte							21,900	27	
Twin Butte	49,800	7					32,200	4	
Total for all	508,100	7	112,400	223,400	3	0	771,000		5,600
SSB PPAs									

Ι

I	Project Planning
2	 Identify site challenges, such as site preparation requirements,
3	anticipated repeated treatments that could be required, topography,
4	soils, climate, and other biotic and abiotic site factors
5	 Develop goals, objectives, and monitoring triggers
6 7	 Identify equipment that takes into consideration seed size, species interactions, and the following:
8	 separate seed boxes for broadcast and drill seed mixes
9 10	 the capacity for different drill attachments that increase broadcast seed to soil contact
 2	 the ability to meter and drill the appropriate depths for smaller seeds, such as native forbs
13	 is of a design that minimizes impacts on biological soil crust
14	Project Implementation
15	• Develop seed mixes by considering a range of types, with higher
16	seed ratios on early to mid-successional native species that provide
17	ecosystem services more quickly than later successional species.
18	This includes such species as rabbit brush (Ericameria) that have high
19	germination and establishment rates and provide rapid site structure
20	and pollinator benefits.
21	• Select genetically appropriate seed sources. This is one of the most
22	critical aspects for long-term sustainability of restoration projects. If
23	empirical studies do not contain a specific species, local seeds or
24	provisional seed zones can be used.
25	• Design restoration islands that are irregular in shape and extent and
26	where more expensive forb seed can be strategically applied.
27	• Combine seedings and live plantings of target species to achieve
28 29	more compositionally and structurally diverse restoration projects in shorter time frames
27	
30	• Integrate existing site structure and microsites to leverage micro
31	and macro climate for seedings and live plantings, and, if these are
32	unavailable, use such structures as straw wattles and snow fences to
33 34	create wind barriers and snow collection sites to improve seed/plant germination and persistence
25	
36	 Ose existing topographic features to prioritize where seeding or live plantings would occur, including north-facing slopes and swales.
37	Consider plant increases for specific species necessary for meeting
38	habitat objectives. This would more often include forb species that
39	are less available and would require a minimum two- to three-year
40	planning window from collection to contracting to grow out.

NEPA-related Considerations L 2 Develop analysis at the watershed level 3 • Use a programmatic approach with a multiyear capacity 4 Use robust adaptive monitoring triggers • 5 Include well documented rationale that is spatially explicit . 6 Address direct and indirect impacts comprehensively, including type 7 and intensity of management and maintenance, timing and duration, 8 and cumulative impacts 9 Address habitat impacts and fragmentation, fuel treatment density, and potential redundancy and user conflicts 10 Ш **Biological Control** 12 Classical biological weed control involves the introduction and management of 13 selected natural enemies to reduce and suppress problematic noxious and 14 invasive weeds. Most of the Great Basin's weeds originated on other continents. 15 These newly introduced plants, free from the natural enemies found in their 16 native ranges, gained a competitive advantage over native plants. Once these 17 populations become unmanageable, other methods of weed control are not 18 always economical or physically possible. 19 The need for a method of weed reduction that is inexpensive, self-sustaining, 20 and environmentally safe provides opportunities for biological control. The 21 natural enemies for invasive weeds (biological control agents) in the Great Basin 22 have been rigorously tested to ensure that they are host specific. Testing is an 23 expensive and time-consuming task that must be done before the agents are 24 allowed to be introduced into the United States. 25 Biological control has many benefits and some disadvantages. Its benefits are 26 long-term, self-perpetuating control; low cost per acre; reducing herbicide 27 residues in the environment; host specificity on target weeds; host-finding 28 capabilities; synchronizing agents to hosts' life cycles; and the unlikelihood that 29 hosts will develop resistance to agents. The disadvantages of biological control 30 are the limited availability of agents from their native lands; the dependence of 31 control on plant density; the slow rate at which control sometimes occurs and 32 uncertainty of the level of control; biotype matching; and host specificity when 33 host populations are low. 34 Since 1987, there have been over 1,000 releases in designated GRSG habitat; 35 over eight million biological control agents have been released over that time. In 36 the Great Basin, biological control agents have shown well-documented success 37 in the control of Canada thistle (51 percent reduction), Dalmatian toadflax (77 38 percent reduction), diffuse knapweed (47 percent reduction), leafy spurge (38 39 percent reduction), and spotted knapweed (31 percent reduction). These 40 reductions are summarized across the range of the infestations of the target weeds from 2007 to 2013. Additional targets of biological control are cheatgrass, field bindweed, medusahead rye, rush skeletonweed, Russian knapweed, and Russian thistle. The biological control agents for these species are not currently available for release or have not been present long enough to determine their ability to control their host weed, as it can take several years for their densities to increase and begin impacting weed populations.

In the case of cheatgrass and medusahead rye, a new bacterial biopesticide, *Pseudomonas fluorescens* D7, was recently registered by the US Environmental Protection Agency. *P. fluorescens* does not stand alone, but works well when added to an integrated restoration program. The bacteria can be applied on the seed coat of desirable seeds during the seeding process or applied in the fall. This approach, combined with an herbicide application in the early fall to kill any of the germinating annual grasses, has shown to be very effective for restoring cheatgrass- and medusahead rye-dominated landscapes.

15 Russian thistle rust, Colletotrichum salsolae, has been recommended for release 16 by the Technical Advisory Group (TAG), which is the independent review 17 committee for all new biological control petitions. This rust has proven to be 18 aggressive and damaging on Russian thistle, with 37 to 100 percent of the test 19 plants in greenhouse and field tests attacked. When combined with Aceria 20 salsolae, a recently approved eriophyid mite that causes necrosis and stunts plant 21 growth, Colletotrichum salsolae could damage Russian thistle and rapidly reduce 22 infestations. Both of these agents are awaiting final NEPA clearance from the 23 Animal Plant Health Inspection Service, which is the governing body for 24 biological control, and the USFWS, which has proven to be problematic for a 25 number of potential biological control agents that have been petitioned for 26 release.

> Biological control can be integrated with other management practices to reduce weed populations, as discussed above. For example, once weeds are weakened by biological control, competitive plantings may be used to out-compete the weeds. In addition, satellite weed populations can be controlled by chemical or physical means to reduce weed spread while biological control agents attack the primary infestation. Biological control is not a panacea; it will not eradicate noxious and invasive weeds, but it does offer a self-sustaining way of controlling invasives that is cost effective and applicable on a large scale.

5.3.3 Fire Operations

As opposed to proactive site-specific planned treatments, fire operations and post-fire rehabilitation are reactive responses to random wildfires. Fire operations are preparedness, prevention, and suppression; accordingly, in prioritizing these "what if" scenarios, the following rule set was used within the focal habitat-derived PPAs, which corroborates priorities between fire operations and ESR, based on the soil moisture temperature regimes resistance and resilience concepts outlined in Chambers et al. (2014; see **Table 5-4**).

L

2

3

4

5

6

7

8

9

10

11

12

13

14

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

				-			
РРА	Total Acres of High (1st priority) Fire Suppression Areas	Percent of Ist Priority in each PPA	Total Acres of Moderate (2nd priority) Fire Suppression Areas	Percent of 2nd Priority in each PPA	Total Acres of 3rd Priority Fire Suppression Areas	Total Percent of 3rd Priority Fire Suppression Areas	Nulls in Fire Acres
Antelope			126,100	23	182,000	33	35,300
Flat/Big Lost							
Bennett	227,400	36			186,900	29	2,200
Hills							
Big Desert	560,500	99					4,600
Big Lost			47,700	26	120,500	65	6,700
Birch Creek			41,500	38			6,200
Hat Creek			85,800	55	30,600	20	0
Lemhi-Birch			96,600	23	163,000	39	0
Little Lost			72,700	51	56,300	39	0
Little					227,100	77	0
Wood							
River							
Magic	974,600	54			626,100	35	0
Medicine			146,600	58	78,000	31	0
Lodge							
Pahsimeroi			144,000	38	111,600	29	0
Sand Creek			84,500	18	317,400	69	0
Table Butte	79,000	98					1,600
Twin Butte	622,000	82	56,700	7	47,000	6	31,000
Total for all SSB PPAs	2,463,500	36	902,200	13	2,146,500	32	358,300

Table 5-4
Fire Operations Potential Treatment Areas Within PPAs in the Snake/Salmon/Beaverhead
Landscape

1 2

3

4

5

6

7

8

9

10

Fire suppression and ESR treatments are understandably a high priority throughout most of the northern Great Basin. Accordingly, districts were often initially inclined to assign a 1st priority throughout each project area, until they understood that the purpose of the exercise was to determine the highest priorities within these high-priority project areas. For that reason, numerical priorities were assigned as opposed to a high, medium, and low. Most project areas contained a 1st and 2nd priority for fire operations and ESR. Some areas contained three priorities, and a few smaller project areas, consisting of important low resiliency vegetation, were categorized entirely as a 1st priority.

- 11Low resiliency habitat with moderate to high shrub cover was assigned 1st12priority for both fire operations and ESR treatments because of their high risk13to annual grass conversion following wildfire. Soil temperature regimes14associated with the higher resiliency areas were assigned a lower priority15because they are more adapted to periodic wildfire and typically recover16naturally.
- Within the lower resiliency areas, native plant communities are prioritized over
 established seedings. In the absence of ESR treatments, recently burned native
 communities may irrevocably be converted to invasive annual-dominated

communities; however, in existing seedings, the herbaceous component typically recovers naturally even though the sagebrush would be killed. Additionally, when seedings do burn, the more discontinuous fuels associated with established perennial bunch grasses often result in a mosaic burn pattern. This maintains some of the sagebrush, resulting in an existing seed source for natural reestablishment.

- Regardless of the above, practical limitations to the rule set, especially regarding
 fire operations, was acknowledged and incorporated in the prioritization
 process.
- 10Wildfire typically moves rapidly throughout Snake/Salmon/Beaverhead11environments. Because of this, it is unrealistic and misleading to differentiate fire12operations priorities between high resiliency and low resiliency when both types13are distributed equally on the landscape or when minor amounts of either14occurs in the other. Where such conditions exist, priorities are adjusted to15more realistically reflect on-the-ground conditions.
- 16Other exceptions were applied occasionally, based on district- and project-17specific issues. These exceptions are documented for the respective project18areas.

19	5.3.4	Post-fire Rehabilitation
20		Post-fire rehabilitation includes the BLM's ESR program and the Forest Service's
21		Burned Area Emergency Response Program. Program policies limit available
22		funding from one to three years (see Table 5-5).

					•		
РРА	Total Acres of High (Ist priority) Post-Fire Rehab Areas	Percent of Ist Priority in each PPA	Total Acres of Moderate (2nd priority) Post-Fire Rehab Areas	Percent of 2nd Priority in each PPA	Total acres of 3rd Priority Post-Fire Rehab Areas	Total Percent of 3rd Priority Post-Fire Rehab Areas	Null
Antelope			113,800	20	182,000	33	35,300
Flat/Big Lost							
Bennett Hills	30,300	5	72,500	11	172,000	27	3,400
Big Desert	94,500	17	225,400	40			6,600
Big Lost			47,700	26	120,500	65	6,200
Birch Creek			41,400	37			
Hat Creek			85,800	55	30,600	20	
Lemhi-Birch			95,500	23	163,100	39	
Little Lost			71,300	50	54,600	38	
Little Wood					225,200	76	
River							
Magic	408,600	23	38,600	2	360,600	20	
Medicine			146,200	58	71,800	28	
Lodge							
Pahsimeroi			140,400	37	111,600	29	
Sand Creek			57,500	12	339,000	73	

Table 5-5 Post-Fire Rehabilitation Potential Treatment Areas Within PPAs in the Snake/Salmon/Beaverhead Landscape

Т

2

3

4

5

⁵⁻¹²

РРА	Total Acres of High (1st priority) Post-Fire Rehab Areas	Percent of Ist Priority in each PPA	Total Acres of Moderate (2nd priority) Post-Fire Rehab Areas	Percent of 2nd Priority in each PPA	Total acres of 3rd Priority Post-Fire Rehab Areas	Total Percent of 3rd Priority Post-Fire Rehab Areas	Null
Table Butte	57,500	71					
Twin Butte	399,400	53	1,000	0	19,700	3	
Total for all SSB PPAs	990,300	15	1,137,100	17	1,850,700	27	51,500

Table 5-5Post-Fire Rehabilitation Potential Treatment Areas Within PPAs in the
Snake/Salmon/Beaverhead Landscape

I

2

3

4

5

6

7

5.4 MONITORING AND ADAPTIVE MANAGEMENT

Once implemented, projects and treatments identified in this assessment will follow the same monitoring protocols as non-FIAT management actions, per overarching guidance in land use plans. Specifically, monitoring that evaluates the implementation and effectiveness of FIAT management strategies will follow the Greater GRSG Monitoring Framework (BLM/Forest Service 2014).

8 In this framework, monitoring and evaluation of the individual FIAT actions, as 9 with all projects designed to enhance and/or restore GRSG habitats, will use the 10 approved fine- and site-scale monitoring methods. For the BLM, these methods 11 are found in the BLM Core Terrestrial Indicators and Methods (from the AIM 12 Monitoring: A component of the Assessment, Inventory, and Monitoring [AIM] 13 Strategy), Interpreting Indicators of Rangeland Health (BLM Technical Reference 14 1734-6), and the GRSG Habitat Assessment Framework (HAF – BLM Technical 15 Reference 6710-1 in press). Fine- and site-scale monitoring methods for the 16 Forest Service include those listed for the BLM and Forest Service Rangeland 17 Ecosystem Analysis and Monitoring Handbook, Chapter 40-Rangeland Trend 18 Monitoring and Monitoring Manual for Grassland, Shrubland, and Savanna 19 Ecosystems Volume I and II.

20During the annual broad- and mid-scale monitoring of GRSG habitats, the FIAT21actions will be assessed as they relate to GRSG habitat measures of sagebrush22availability, anthropogenic disturbance levels, and sagebrush conditions.23Monitoring results from the implemented FIAT actions can provide information24to adapt future actions if necessary to enhance and restore GRSG habitats.

25Wildfires will be evaluated at the end of the fire season to determine if they26have occurred in FIAT focal habitats and, in these habitats, if the wildfires have27affected the prioritization or potential implementation of previously identified28management strategies. For example, fuelbreak locations may need to be29adjusted if a wildfire occurs within an area previously identified as a high priority30for sagebrush maintenance. Surrounding areas with intact sagebrush stands may31now be a higher priority for fuelbreaks than the burned area.

March 2015

During the annual broad-scale and mid-scale monitoring of GRSG habitats, the FIAT actions will be assessed as they relate to GRSG habitat measures of sagebrush availability, human disturbance levels, and sagebrush conditions. Monitoring results from the implemented FIAT actions can provide information to adapt future actions, if necessary, to enhance and restore GRSG habitats.

6 There must be adaptive management processes to identify new focal habitats 7 and new PPAs to adjust where projects are implemented on the future 8 landscape. This is because the landscape is dynamic and a function of changing 9 environmental, physical, and biological factors. A focal habitat identified in 2014 10 may have 50 percent of its GRSG habitat altered by wildfire in 2015; thus, 11 GRSG populations may relocate to another area outside of a PPA.

- 12A second reason for using adaptive management processes is that there are13many portions in the landscape assessment area that have not been inventoried14and monitored for GRSG populations. As we learn more about GRSG15populations from improved monitoring, there needs to be a process to16implement activity plans in response to new information regarding 75 percent17BBD leks.
- 18 Third, there are negative and positive trends within wildlife populations. As 19 information becomes available regarding GRSG lek population growth or 20 reduction, there need to be adaptive management mechanisms in place to 21 provide activity plans in other focal habitats identified outside of this 2015 22 report. As information comes to light, indicating an area outside of a previously 23 identified focal habitat or PPA is important; the BLM, state, and federal partners 24 working to conserve the species need to consider its importance as they make 25 decisions for GRSG conservation.

L

2

3

4

SECTION 6

2 LIST OF PREPARERS

BUREAU OF LAND MANAGEMENT				
Name	Title/Role			
Doug Havlina	FIAT Project Coordinator			
Joe Adamski	FIAT Project Lead, Idaho State Office			
Travis Cooper	GIS Specialist, Idaho State Office			
Don Major	Fire Ecologist, Idaho State Office			
Dominika Lepak	Rangeland Management Specialist			
Glen Burkhardt	Fire Management Specialist (Fuels)			
William Brandon Brown	Supervisory Fire Management Specialist			
Justin Boeck	Fire Management Specialist (Planning)			
Anne Halford	Vegetation/Restoration Specialist			
Jeremy Bisson	Wildlife Biologist			
Steve Jirik	Weeds and ESR Specialist			

CONTRACTOR

ENVIRONMENTAL MANAGEMENT AND PLANNING SOLUTIONS, INC. WWW.EMPSI.COM

Name	Role
Jordan Adams	Meeting Support
David Batts	Principal
Amy Cordle	Technical Editing
Sean Cottle	Environmental Scientist
Peter Gower	FIAT Deputy Project Manager
Mario Murillo	Formatting
Holly Prohaska	FIAT Project Manager
Cindy Schad	Formatting
Morgan Trieger	Meeting Support
Randy Varney	Technical Editing

March 2015

IDFG, Forest Service, and NRCS				
Name	Title/Role	Agency		
Don Kemner	Liaison	IDFG		
Tim Metzger	Liaison	Forest Service		
Trisha Cracroft	Liaison	NRCS		

USFWS			
Name	Title/Role		
Jason Pyron	Liaison		
Katie Powell	Liaison		

This GRSG Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessment of the Snake/Salmon/Beaverhead landscape was made possible by the strong engagements of the following agencies: The USFWS, NRCS, Forest Service, IDFG, Nevada Department of Wildlife, Oregon Department of Wildlife, Oregon Department of Fish and Game, and BLM field and district offices across Idaho, Utah, Nevada, and Oregon. In addition, we wish to thank the many partners and contributors, too numerous to list, but whose engagement and significant contributions were vital to the completion of this project. All participants in the meetings and workshops to develop this assessment are listed in Appendix D.

6

7

8

9

10

11

12

SECTION 7

2 **REFERENCES**

- 3 Baker, W. L. 2011. "Pre-Euro-American and recent fire in sagebrush ecosystems." In: Greater Sage-4 Grouse: Ecology and Conservation of a Landscape Species and Its Habitats (S. T. Knick and J. W. 5 Connelly, editors). University of California Press, Berkeley. Pp. 185-201. 6 Chambers, J. C., R. F. Miller, J. B. Grace, D. A. Pyke, B. Bradley, S. Hardegree, and C. D'Antonio. 2014. 7 "Resilience to stress and disturbance, and resistance to Bromus tectorum (L.) invasion in the cold 8 desert shrublands of western North America." Ecosystems 17:360-375. 9 Chambers, Jeanne C., David A. Pyke, Jeremy D. Maestas, Mike Pellant, Chad S. Boyd, Steven B. 10 Campbell, and Shawn Espinosa, et al. 2014. "Using resistance and resilience concepts to reduce Ш impacts of invasive annual grasses and altered fire regimes on the sagebrush ecosystem and 12 greater GRSG: A strategic multi-scale approach." Gen. Tech. Rep. RMRS-GTR-326. Fort Collins, 13 Colorado: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 14 Condon, L., P. J. Wiesberg, and J. C. Chambers. 2011. "Abiotic and biotic influences on Bromus tectorum 15 invasion and Artemisia tridentata recovery after fire." International Journal of Wildland Fire 20:597-16 604. 17 Connelly, J. W., S. T. Knick, M. A. Schroeder, and S. J. Stiver. 2004. Conservation Assessment of Greater 18 Sage-Grouse and Sagebrush Habitats. Western Association of Fish and Wildlife Agencies. 19 Unpublished report. Cheyenne, Wyoming. 20 Doherty, K. E.; J. D. Tack, J. S. Evans, and D. E. Naugle. 2010. Mapping Breeding Densities of Greater 21 Sage-Grouse: A Tool for Range-Wide Conservation Planning. BLM completion report: 22 Agreement #L10PG00911.
- Epanchin-Niell, R. S., M. B. Hufford, C. E. Aslan, J. P. Sexton, J. D. Port, and T. M. Waring. 2009.
 "Controlling invasive species in complex social landscapes." *Front. Ecol. Environ.* doi:10.1890/090029.

March 2015

- Fire and Invasive Assessment Team. June 2014. Greater Sage-Grouse Wildfire, Invasive Annual Grasses
 & Conifer Expansion Assessment (Fire and Invasive Assessment Tool [FIAT]).
- Knapp, P. A. 1996. "Cheatgrass (Bromus tectorum [L.]) Dominance in the Great Basin Desert." Global
 Environmental Change 6(1):37-52.
- Knick, S. T., S. E. Hanser, and K. L. Preston. 2013. "Modeling ecological minimum requirements for distribution of greater GRSG leks: Implications for population connectivity across their western range, USA." *Ecology and Evolution* 3(6):1539-1551.
- Maestas, J. D., and S. B. Campbell. Mapping Potential Ecosystem Resilience and Resistance across Sage Grouse Range using Soil Temperature and Moisture Regimes. Fact Sheet. Sage Grouse Initiative,
 www.sagegrouseinitiative.com.
- Manier, D. J., D. J. A. Wood, Z. H. Bowen, R. M. Donovan , M. J. Holloran, L. M. Juliusson, and K. S.
 Mayne, et al. 2013. Summary of Science, Activities, Programs, and Policies That Influence the
 Range-Wide Conservation of Greater Sage-Grouse (*Centrocercus urophasianus*): US Geological
 Survey Open-File Report 2013-1098. Internet website: http://pubs.usgs.gov/of/2013/1098/.
- Miller, R. F., J. D. Bates, T. J. Svejcar, F. B. Pierson, and L. E. Eddleman. 2005. "Biology, ecology, and
 management of western juniper." Oregon State University Agricultural Experiment Station
 Technical Bulletin 152, Corvallis.
- Reisner, Michael D., James B. Grace, David A. Pyke, and Paul S. Doescher. 2013. "Conditions favouring
 Bromus tectorum dominance of endangered sagebrush steppe ecosystems." Journal of Applied
 Ecology 50:1039-1049.
- Rowland, M. M., L. H. Suring, and M. J. Wisdom. 2010. "Assessment of habitat threats to shrublands in the Great Basin: A case study." In: Environmental Threat Assessment and Application to Forest and Rangeland Management (J. M. Pye, H. M. Rauscher, Y. Sands, D. C. Lee, and J. S. Beatty, editors). US Forest Service, General Technical Report, PNW, Bozeman, Montana. Pp. 673-685.
- USFWS (US Fish and Wildlife Service). 2013. Greater Sage-Grouse (Centrocercus urophasianus)
 Conservation Objectives: Final Report. US Fish and Wildlife Service, Denver, Colorado.
 February 2013.
- Whisenant, Steven G. 1990. "Changing fire frequencies on Idaho's Snake River Plains: Ecological and management implications." In: Proceedings—Symposium on Cheatgrass Invasion, Shrub Die-Off, and Other Aspects of shrub Biology and Management, Las Vegas, Nevada (E. Durant McArthur, Evan M. Romney, Stanley D. Smith, and Paul T. Tueller, compilers). Gen. Tech. Rep. INT-276.
 Ogden, Utah: US Department of Agriculture, Forest Service, Intermountain Research Station. 4-10. April 5-7, 1989.

Appendix A Maps

When viewed electronically, hyperlinks embedded throughout this document allow readers to navigate directly to the maps below.

USFS Large Fire Simulator (FSim) model 2013

Large Fire Perimeter 2000-2012

💕 Preliminary Priority Habitat (PPH) 📢 Preliminary General Habitat (PGH) 💋 Fire Perimeters 2000-2011 🖉 Fire Perimeters 2012

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

March 2015 Date Saved: 3/6/2015 Data Sources: Bureau of Land Management, ESRI Basedata 1:2,737,581

Snake Salmon Beaverhead Assessment Area

Bureau of Land Management U.S. Department of the Interior

Greater Sage-Grouse Wildfire, Invasive Annual Grasses, and Conifer Expansion Assessments

Snake Salmon Beaverhead Assessment Area

Resistance-Resilience Reportable Priorities

Bureau of Land Management U.S. Department of the Interior

Snake Salmon Beaverhead Assessment Area

Bureau of Land Management U.S. Department of the Interior

Resistance-Resilience Priorities for Application of Management Strategies

Antelope Flat-Big Lost Project Planning Area **Conifer Expansion Potential Treatment Areas**

Snake Salmon Assessment Area Bureau of Land Management U.S. Department of the Interior

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

Antelope Flat-Big Lost Project Planning Area Conifer Expansion Potential Treatment Areas

March 2015 Date Saved: 3/11/2015 Data Sources: BLM, ESRI Basedata 1:565,777

Antelope Flat-Big Lost Project Planning Area **Emergency Stabilization, Rehabilitation Priority**

Snake Salmon Assessment Area Bureau of Land Management U.S. Department of the Interior

Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

N

Antelope Flat-Big Lost ESR 2nd Priority Antelope Flat-Big Lost ESR 3rd Priority

Date Saved: 3/11/2015 Data Sources: BLM, ESRI Basedata 1:565,777

Antelope Flat-Big Lost Project Planning Area **Fire Operations Priority**

Snake Salmon Assessment Area Bureau of Land Management U.S. Department of the Interior

Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

N

Antelope Flat-Big Lost Fire 2nd Priority Antelope Flat-Big Lost Fire 3rd Priority

Date Saved: 3/11/2015 Data Sources: BLM, ESRI Basedata 1:565,777

Antelope Flat-Big Lost Project Planning Area

Snake Salmon Assessment Area Bureau of Land Management U.S. Department of the Interior

Snake Salmon Assessment Area Bureau of Land Management U.S. Department of the Interior

Antelope Flat-Big Lost Project Planning Area **Habitat Restoration Potential Treatment Areas**

Snake Salmon Assessment Area Bureau of Land Management U.S. Department of the Interior

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

N

Antelope Flat-Big Lost Project Planning Area Habitat Restoration Potential Treatment Areas

March 2015 Date Saved: 3/11/2015 Data Sources: BLM, ESRI Basedata 1:565,777

Snake Salmon Assessment Area Bureau of Land Management U.S. Department of the Interior

Bennett Hills Project Planning Area Invasive Annuals Potential Treatment Areas

Snake Salmon Assessment Area Bureau of Land Management U.S. Department of the Interior

No Warranty is made by the Bureau of Land Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

Bennett Hills Project Planning Area
 Invasive Annuals Potential Treatment Areas

March 2015 Date Saved: 3/11/2015 Data Sources: BLM, ESRI Basedata 1:527,823
Bennett Hills Project Planning Area

Emergency Stabilization, Rehabilitation Priority

Bennett Hills Project Planning Area

Fire Operations Priority

Bennett Hills Project Planning Area Fuels Management Potential Treatment Areas

Snake Salmon Assessment Area Bureau of Land Management U.S. Department of the Interior

Bennett Hills Project Planning Area Resistance-Resilience Reportable Priorities

Bennett Hills Project Planning Area

Habitat Restoration Potential Treatment Areas

Snake Salmon Assessment Area Bureau of Land Management U.S. Department of the Interior

Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

Bennett Hills Project Planning Area Habitat Restoration Potential Treatment Areas

Date Saved: 3/11/2015 Data Sources: BLM, ESRI Basedata 1:527,823 Bennett Hills Project Planning Area Resistance-Resilience Priorities for Application of Management Strategies

Big Desert Project Planning Area Emergency Stabilization, Rehabilitation Priority

Big Desert Project Planning Area Resistance-Resilience Reportable Priorities

Big Desert Project Planning Area Habitat Restoration Potential Treatment Areas

Big Desert Project Planning Area Resistance-Resilience Priorities for Application of Management Strategies

Big Lost Project Planning Area Resistance-Resilience Reportable Priorities

Big Lost Project Planning Area Resistance-Resilience Priorities for Application of Management Strategies

Birch Creek Project Planning Area Conifer Expansion Potential Treatment Areas

Birch Creek Project Planning Area Emergency Stabilization, Rehabilitation Priority

Birch Creek Project Planning Area Resistance-Resilience Reportable Priorities

Birch Creek Project Planning Area Resistance-Resilience Priorities for Application of Management Strategies

Hat Creek Project Planning Area Conifer Expansion Potential Treatment Areas

Hat Creek Project Planning Area Emergency Stabilization, Rehabilitation Priority

Hat Creek Project Planning Area

Fire Operations Priority

Hat Creek Project Planning Area Fuels Management Potential Treatment Areas

Hat Creek Project Planning Area Resistance-Resilience Reportable Priorities

Hat Creek Project Planning Area Resistance-Resilience Priorities for Application of Management Strategies

Lemihi-Birch Project Planning Area

Conifer Expansion Potential Treatment Areas

Lemihi-Birch Project Planning Area

Emergency Stabilization, Rehabilitation Priority

Lemihi-Birch Project Planning Area

Fire Operations Priority

Lemihi-Birch Project Planning Area Resistance-Resilience Reportable Priorities

Lemihi-Birch Project Planning Area

Habitat Restoration Potential Treatment Areas

Lemihi-Birch Project Planning Area Resistance-Resilience Priorities for Application of Management Strategies

Little Lost Project Planning Area Resistance-Resilience Reportable Priorities

Habitat Restoration Potential Treatment Areas

Data Sources: BLM, ESRI Basedata 1:261,869

Little Lost Project Planning Area Resistance-Resilience Priorities for Application of Management Strategies

Little Wood Project Planning Area

Emergency Stabilization, Rehabilitation Priority

Little Wood Project Planning Area Fire Operations Priority

Little Wood Project Planning Area

Fuels Management Potential Treatment Areas

Little Wood Project Planning Area

Little Wood Project Planning Area Resistance-Resilience Reportable Priorities

Little Wood Project Planning Area Resistance-Resilience Priorities for Application of Management Strategies

Magic Project Planning Area Invasive Annuals Potential Treatment Areas

Magic Project Planning Area Emergency Stabilization, Rehabilitation Priority

Magic Project Planning Area

Fire Operations Priority

Snake Salmon Assessment Area Bureau of Land Management U.S. Department of the Interior

ea ant or

Magic Project Planning Area

Fuels Management Potential Treatment Areas

Magic Project Planning Area Resistance-Resilience Reportable Priorities

Magic Project Planning Area

Habitat Restoration Potential Treatment Areas

Magic Project Planning Area Resistance-Resilience Priorities for Application of Management Strategies

Medicine Lodge Project Planning Area Conifer Expansion Potential Treatment Areas

Medicine Lodge Project Planning Area Emergency Stabilization, Rehabilitation Priority

Medicine Lodge Project Planning Area Fire Operations Priority

Medicine Lodge Project Planning Area Resistance-Resilience Reportable Priorities

Medicine Lodge Project Planning Area **Habitat Restoration Potential Treatment Areas**

Snake Salmon Assessment Area Bureau of Land Management U.S. Department of the Interior

Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

Medicine Lodge Project Planning Area Habitat Restoration Potential Treatment Areas

Date Saved: 3/11/2015 Data Sources: BLM, ESRI Basedata 1:331,888

Medicine Lodge Project Planning Area Resistance-Resilience Priorities for Application of Management Strategies

Pahsimeroi Project Planning Area Emergency Stabilization, Rehabilitation Priority

Pahsimeroi Project Planning Area Resistance-Resilience Reportable Priorities

Pahsimeroi Project Planning Area Habitat Restoration Potential Treatment Areas

Pahsimeroi Project Planning Area Resistance-Resilience Priorities for Application of Management Strategies

Sand Creek Project Planning Area

Conifer Expansion Potential Treatment Areas

Sand Creek Project Planning Area Emergency Stabilization, Rehabilitation Priority

Sand Creek Project Planning Area Resistance-Resilience Reportable Priorities

Sand Creek Project Planning Area Resistance-Resilience Priorities for Application of Management Strategies

Table Butte ESR 1st Priority

1:154,836

1:154,836

Table Butte Project Planning AreaResistance-Resilience Reportable Priorities

1:154,836

Table Butte Project Planning AreaResistance-Resilience Prioritiesfor Application of Management Strategies

Twin Butte Project Planning Area Conifer Expansion Potential Treatment Areas

m

Snake Salmon Assessment Area Bureau of Land Management U.S. Department of the Interior

arghee

Twin Butte Project Planning Area Emergency Stabilization, Rehabilitation Priority

Twin Butte Project Planning Area Fire Operations Priority

Snake Salmon Assessment Area Bureau of Land Management U.S. Department of the Interior

Management as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data.

Twin Buttes Fire 1st Priority Twin Buttes Fire 2nd Priority Twin Buttes Fire 3rd Priority

Date Saved: 3/11/2015 Data Sources: BLM, ESRI Basedata 1:887,179

Twin Butte Project Planning Area Fuels Management Potential Treatment Areas

Twin Butte Project Planning Area Resistance-Resilience Reportable Priorities

Twin Butte Project Planning Area Habitat Restoration Potential Treatment Areas

Twin Butte Project Planning Area Resistance-Resilience Priorities for Application of Management Strategies

This page intentionally left blank.

Appendix B Data Viewer Link

This page intentionally left blank.

APPENDIX B

2 DATA VIEWER LINK

3 VIEWER LINK

- 4 <u>http://ilmidso3gi1.blm.doi.net/SilverlightViewer_2_2/Viewer.html?ViewerConfig=http://ilmidso3gi1.blm.doi.net/Geoc</u>
- 5 ortex/Essentials/REST/sites/NGB_FIAT_S2_Boise/viewers/Idaho_FIAT_2014/virtualdirectory/Config/Viewer.xml

6

This page intentionally left blank.

I

Appendix C

Soil Temperature and Moisture Regime Attribute Table

Soil temperature and	Common Name	Original	Revised
moisture regime with		FIAT R&R	FIAT R&R
moisture subclass		Categories	Categories
Cryic/Aridic-Typic	Cold/dry		2
Cryic/Aridic bordering on Xeric	Cold/dry bordering on moist		I
Cryic/Ustic-Typic	Cold/summer moist		I
Cryic/Xeric	Cold/moist	1	1
Cryic/Xeric-Typic	Cold/moist		1
Cryic/Xeric bordering on Aridic	Cold/moist bordering on dry		1
Frigid/Aridic	Cool/dry	3	2
Frigid/Aridic-Typic	Cool/dry		2
Frigid/Aridic bordering on Ustic	Cool/dry bordering on summer moist		2
Frigid/Aridic bordering on Xeric	Cool/dry bordering on moist		2
Frigid/Xeric	Cool/moist	1	1
Frigid/Xeric-Typic	Cool/moist		1
Frigid/Xeric bordering on Aridic	Cool/moist bordering on dry		2
Frigid/Ustic bordering on aridic	Cool/summer moist bordering on dry		2
Frigid/Ustic-Typic	Cool/summer moist	1	I
Mesic/Aridic	Warm/dry	3	3
Mesic/Aridic-Typic	Warm/dry		3
Mesic/Aridic bordering on Ustic	Warm/dry bordering on summer moist		3
Mesic/Aridic bordering on Xeric	Warm/dry bordering on moist		3
Mesic/Ustic bordering on Aridic	Warm/summer moist bordering on dry		3
Mesic/Xeric	Warm/moist	2	2
Mesic/Xeric-Typic	Warm/moist		2
Mesic/Xeric bordering on Aridic	Warm/moist bordering on dry		3

The above table of soil attributes (soil temperature/moisture regimes) and Resistance/Resilience assignments were used in the original and revised FIAT reports. Soil survey spatial and tabular data were for the from obtained Project Planning Areas the Geospatial Data Gateway (http://datagateway.nrcs.usda.gov/). Gridded Soil Survey Geographic (gSSURGO) file geodatabases were used to display a 10-meter raster dataset. Where SSURGO data were unavailable, gaps were filled in using the State Soil Geographic database (STATSGO2). The attributes of the soil component with the highest component percentage (dominant component) were used to characterize the temperature and moisture regime. Only temperature and moisture regimes applicable to sagebrush ecosystems were displayed. For additional details, see Chambers et al. 2014, and Maestas and Campbell 2014.

Sage Grouse Initiative

Fact Sheet Mapping Potential Ecosystem Resilience and Resistance across Sage-Grouse Range using Soil Temperature and Moisture Regimes

A cool and moist (frigid/xeric) mountain big sagebrush site in Nevada (left) compared to a warm and dry (mesic/aridic) Wyoming big sagebrush site in Oregon (right) illustrates the natural variability in site potential across sagebrush ecosystems. Mapping soil temperature and moisture regimes can help depict this gradient and indicate potential ecosystem resilience and resistance. Photos: Jeremy Maestas

Background

ur ability to address threats to sage-grouse and the sagebrush steppe can be greatly enhanced by understanding ecosystem resilience to disturbance and resistance to invasive species (Chambers et al. 2014a,b). A recent breakthrough in the practical application of resilience and resistance concepts has been linking *soil temperature and moisture regimes* to sagebrush ecosystem responses to disturbance and annual grass invasion.

Potential resilience and resistance to invasive annual grasses reflect the biophysical conditions of an area, and soil temperature and moisture regimes provide a useful indicator of these conditions at multiple scales. Resilience to disturbance typically increases with higher resource availability and more favorable environmental conditions for plant growth and reproduction. Thus areas with warm (mesic) soil temperature and dry (aridic) soil moisture regimes typically have low potential resilience, while those with cool (frigid) to moderately cold (cryic) soil temperature and relatively moist (xeric to ustic) soil moisture regimes have high potential resilience. Resistance to exotic annual grasses, like cheatgrass, is strongly influenced by climate suitability for establishment and persistence. Cheatgrass germination, growth and reproduction appear to be optimal under relatively warm and dry to moist regimes (mesic/aridic or xeric), limited by low and sporadic precipitation under dry regimes (aridic), and generally constrained by colder regimes (frigid to cryic). These relationships are modified by effects of: (1) elevation, landform, slope, aspect, soil characteristics, and resulting vegetation composition and structure, and (2) the ecological condition of an area (Figure 1. Chambers et al. 2014a,b)

Soil climate data (temperature and moisture) are fundamentally important in classifying and mapping soils, and as such, are widely collected as part of the National Cooperative Soil Survey program. This provides us with the ability to map temperature and moisture regimes across the range of sage-grouse to better understand potential resilience and resistance along a diverse environmental gradient.

Figure 1. Example of resilience to disturbance (A) and resistance to cheatgrass (B) over a soil temperature and moisture regime gradient in the western portion of the sagebrush ecosystem. Dominant ecological types occur along a continuum from Wyoming big sagebrush communities on warm and dry sites to mountain big sagebrush/mountain brush communities on cold and moist sites (modified from Chambers et al. 2014a,b).

Resilience is the capacity of an ecosystem to regain its fundamental structure, processes and functioning when altered by stressors like drought, and disturbances like altered fire regimes. It is a measure of the ability of an ecosystem to *recover* after stress or disturbance.

Resistance is the capacity of an ecosystem to retain its fundamental structure, processes and functioning despite stresses, disturbances or invasive species, or to remain largely unchanged.

Resistance to invasion is the capacity of an ecosystem to limit the establishment and population growth of an invading species.

New product assembles available data for rangewide use

hile soil temperature and moisture regimes can be found in published soil surveys, a single dataset aggregating all available data was compiled to facilitate broad scale analyses and to provide a simple decision support tool for field practitioners. Available soils data from across Sage-Grouse Management Zones (Stiver et al. 2006) were compiled from two primary sources: 1) completed and interim soil surveys (SSURGO), and 2) state soils geographic databases (STATSGO2).

SSURGO - Soil Survey Geographic Database

SSURGO is the most detailed soil survey product produced by the National Cooperative Soil Survey. Information was collected through field inventory and interpretation at scales ranging from 1:12,000 to 1:63,360, with 1:24,000 being the most common. SSURGO datasets consist of spatial data, tabular data, and information about how the data were created. Soil survey maps are linked in the database to information about the component soils and properties for each soil map unit.

For this rangewide product, Gridded Soil Survey Geographic (gSSURGO) file geodatabases were used to display a 10-meter raster dataset. State gSSURGO datasets were then clipped to the extent of the Sage-Grouse Management Zones and merged.

STATSG02 – State Soil Geographic Database

The Digital General Soil Map of the United States or STATSGO2 is a broad-based inventory of soils and non-soil areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at a scale of 1:250,000. The dataset was created by generalizing more detailed soil survey maps. Where more detailed soil survey maps were not available, data on geology, topography, vegetation, and climate were assembled and related to Land Remote Sensing Satellite (LANDSAT) images. Soils of similar areas were studied, and the probable classification and extent of the soils were determined. STATSGO2 was used in areas of the Sage-Grouse Management Zones where more detailed SSURGO was currently not available.

Where can I access the product?

The aggregated soils data product can be downloaded freeof-charge on the Landscape Conservation Management and Analysis Portal (LCMAP):

https://www.sciencebase.gov/catalog/ folder/538e5aa9e4b09202b547e56c

How to work with the files in a Geographic Information System (GIS)

Rangewide layer for rapid application

The data product includes a file geodatabase named SoilMoistureTemperatureRegimes.gdb that contains a single raster dataset merging best available SSURGO and STATSGO2 across Sage-Grouse Management Zones. The attribute table includes the temperature and moisture regime for the map unit dominant condition. A layer file named SoilMoistTempLayer.lyr can be used to quickly create a fully symbolized map with a legend of the predominant temperature and moisture regimes across sagebrush ecosystems (Figure 2).

Detailed data for more in-depth analyses

Separate geodatabases providing more detailed information are also available for both SSURGO and STATSGO2 data. These products allow users to explore the data in more depth at finer scales. An example of how to work with one of the geodatabases is provided here.

Figure 2. New soils product provides ability to depict potential ecosystem resilience and resistance across the range of sagegrouse using soil temperature and moisture regimes. For more information on interpretation, see Chambers et al. 2014b.

The file geodatabase named SGMZ_SSURGO_temp_moist_ regimes_v2.gdb contains a raster dataset with all the SSURGO spatial data that is currently available in the Sage-Grouse Management Zones. There are two tables in this file geodatabase that can be joined to the raster dataset using the common mukey field. The table named SSURGO SGMZ_temp_moist_dom_cond_v2 contains the temperature and moisture regime and moisture subclass for the dominant condition in each map unit. The table named SSURGO SGMZ_temp_moist_components_v2 has data for each major component, including things like soil type, precipitation range, temperature-moisture regimes and subclasses, and ecological sites. When this table is joined to the raster dataset, the data for the dominant component will be in the attribute table. The Identify tool in ArcGIS can be used to display many attributes of the dominant component.

For an even finer grain look, the SSURGO_SGMZ_temp_ moist_components_v2 table can be opened to determine the ecological site and temperature and moisture regimes that are associated with each component in a map unit, rather than just the dominant component.

For More Information

Data Contact

Steve Campbell, USDA-NRCS Soil Scientist, 503-273-2421, steve.campbell@por.usda.gov

Background on SSURGO and STATSGO data: http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/geo/

Access to soil surveys: http://websoilsurvey.sc.egov.usda.gov/App/ HomePage.htm

Acknowledgements

We thank the Western Association of Fish and Wildlife Agencies, Fire and Invasives Working Group, for laying the foundation for development of this product. Special thanks to Amarina Wuenschel and Jeanne Chambers for their contributions to this product and to the many USDA Natural Resources Conservation Service specialists who contributed soil survey program data.

Suggested Citation

Maestas, J. D., and S. B. Campbell. Mapping Potential Ecosystem Resilience and Resistance across Sage-Grouse Range using Soil Temperature and Moisture Regimes. Fact Sheet. Sage Grouse Initiative, www.sagegrouseinitiative.com.

References

Chambers, J. C.; Bradley, B.A.; Brown, C.A.; D'Antonio, C.; Germino, M. J.; Hardegree, S. P; Grace, J. B.; Miller, R. F.; Pyke, D. A. 2014a. Resilience to stress and disturbance, and resistance to Bromus tectorum L. invasion in the cold desert shrublands of western North America. Ecosystems 17: 360-375

Chambers, J. C.; Pyke, D. A.; Maestas, J. D.; Pellant, M.; Boyd, C. S.; Campbell, S. B.; Espinosa, S.; Havlina, D. W.; Mayer, K. E.; Wuenschel, A. 2014b. Using resistance and resilience concepts to reduce impacts of invasive annual grasses and altered fire regimes on the sagebrush ecosystem and greater sage-grouse: A strategic multi-scale approach. Gen. Tech. Rep. RMRS-GTR-326. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 73 p.

Stiver, S. J.; Apa, A. D.; Bohne, J. R.; Bunnell, S. D.; Deibert, P. A.; Gardner, S. C.; Hilliard, M. A.; McCarthy, C. W.; Schroeder, M. A. 2006. Greater Sage-grouse Comprehensive Conservation Strategy. Unpublished report on file at: Western Association of Fish and Wildlife Agencies, Cheyenne, WY.

Displaying Dominant Condition Vs. Dominant Component

It is important to understand some fundamental concepts in how soils are mapped in order to properly interpret information provided. Soils and their properties change over a continuous gradient but soils are described in map units. Soil map units commonly contain more than one "component" (soil types or miscellaneous areas such as rock outcrops) with unique data associated with each component. When spatially displaying soil survey information, a decision has to be made as to how to aggregate the component data to the map unit. The two most common aggregation methods are to display either *dominant component* or *dominant condition*. The example below illustrates the difference between these two methods:

Component Name	% of Map unit	Temperature/ Moisture Regime	Aggregation Method	
Alpha	45	Warm and Dry (Mesic/Aridic)	Dominant Component	
Beta	30	Cool and Dry (Frigid/Aridic)	Dominant Condition	
Gamma	25	Cool and Dry (Frigid/Aridic)		

Soil map unit: Alpha-Beta-Gamma complex, 8 to 30 percent slopes

This map unit is on highly dissected hill slopes with a complex pattern of northerly and southerly aspects. The Alpha component is on southerly aspects and the Beta and Gamma components are on cooler northerly aspects. The temperature and moisture regime for the dominant component is Warm and Dry (mesic/aridic) since the Alpha component comprises the highest percentage of the map unit. The dominant condition is Cool and Dry (frigid/aridic) since the Beta and Gamma components cumulatively comprise 55 percent of the map unit, exceeding the 45 percent of the Alpha component. For the majority of soil map units, but not all, the dominant component and dominant condition results are identical. This product provides aggregated data in both dominant condition and component tables to allow users access to advantages of each approach.

This page intentionally left blank.

Appendix D Meeting Locations and Participants
Meeting Place	Dates	Attendees	Agency
Boise, ID	10/31/2014 and 11/5/2014 and 12/5/2014 and 12/8/2014		
		Sean Cottle	EMPSi
		Jordan Adams	EMPSi
		Morgan Trieger	EMPSi
		Doug Havlina	BLM
		Joe Adamski	BLM
		Bruce Schoeberl	BLM
		Brandon Knapton	BLM
		Kavian Koleini	BLM
		Mike McGee	BLM
		Don Major	BLM
		Travis Cooper	BLM
		Lara Hannon	BLM
		Justin Boeck	BLM
		Steve Jirik	BLM
		Cindy Fritz	BLM
		Joe Weldon	BLM
		Kathi Kershaw	BLM
		Glen Burkhardt	BLM
		Anne Halford	BLM
		Mike Pellant	BLM
		Paul Mackela	BLM
		Tom Rinkes	BLM
		Jason Pyron	USFWS
		Katie Powell	USFWS
		Don Kemner	IDFG
Twin Falls ID	11/6/2014 and 11/7/2014		
		Sean Cottle	EMPSi
		loe Adamski	BLM
		Glen Burkhardt	BLM
		Don Maior	BLM
		, Travis Cooper	BLM
		Brandon Brown	BLM

		Jerry Rice	BLM
		Tara Anderson	BLM
		Tony Owens	BLM
		Jim Tharp	BLM
		Jesse Goodwin	BLM
		Scott Sayer	BLM
		Jesse German	BLM
		Jim Klott	BLM
		Julie Hilty	BLM
		Joe Russell	BLM
		Dustin Smith	BLM
		Denise Tolmess	BLM
		Tony Erickson	BLM
		Tom McGinnis	BLM
		Paul Mackela	BLM
		Mike McDonald	IDFG
		Don Kemner	IDFG
		Deb Koziol	NRCS
		Katie Powell	USFWS
		Katie Powell	USFWS
Winnemucca, NV	11/10/2014 and 11/12/2014	Katie Powell	USFWS
Winnemucca, NV	11/10/2014 and 11/12/2014	Katie Powell Sean Cottle	USFWS EMPSi
Winnemucca, NV	11/10/2014 and 11/12/2014	Katie Powell Sean Cottle Joe Adamski	USFWS EMPSi BLM
Winnemucca, NV	/ 0/2014 and / 2/2014	Katie Powell Sean Cottle Joe Adamski Glen Burkhardt	USFWS EMPSi BLM BLM
Winnemucca, NV	11/10/2014 and 11/12/2014	Katie Powell Sean Cottle Joe Adamski Glen Burkhardt Don Major	USFWS EMPSi BLM BLM BLM
Winnemucca, NV	11/10/2014 and 11/12/2014	Katie Powell Sean Cottle Joe Adamski Glen Burkhardt Don Major Travis Cooper	USFWS EMPSi BLM BLM BLM BLM
Winnemucca, NV	11/10/2014 and 11/12/2014	Katie Powell Sean Cottle Joe Adamski Glen Burkhardt Don Major Travis Cooper Steve Jirik	USFWS EMPSi BLM BLM BLM BLM BLM
Winnemucca, NV	/ 0/2014 and / 2/2014	Katie Powell Sean Cottle Joe Adamski Glen Burkhardt Don Major Travis Cooper Steve Jirik Anne Halford	USFWS EMPSi BLM BLM BLM BLM BLM BLM
Winnemucca, NV	11/10/2014 and 11/12/2014	Katie Powell Sean Cottle Joe Adamski Glen Burkhardt Don Major Travis Cooper Steve Jirik Anne Halford Mark Williams	USFWS EMPSi BLM BLM BLM BLM BLM BLM BLM
Winnemucca, NV	II/10/2014 and II/12/2014	Katie Powell Sean Cottle Joe Adamski Glen Burkhardt Don Major Travis Cooper Steve Jirik Anne Halford Mark Williams Kyra Walton Reid	USFWS EMPSi BLM BLM BLM BLM BLM BLM USFS
Winnemucca, NV	11/10/2014 and 11/12/2014	Katie Powell Sean Cottle Joe Adamski Glen Burkhardt Don Major Travis Cooper Steve Jirik Anne Halford Mark Williams Kyra Walton Reid Boyd Hatch	USFVVS EMPSi BLM BLM BLM BLM BLM BLM USFS USFS
Winnemucca, NV	11/10/2014 and 11/12/2014	Katie Powell Sean Cottle Joe Adamski Glen Burkhardt Don Major Travis Cooper Steve Jirik Anne Halford Mark Williams Kyra Walton Reid Boyd Hatch Katie Powell	USFVVS EMPSi BLM BLM BLM BLM BLM BLM USFS USFS USFVVS
Winnemucca, NV	11/10/2014 and 11/12/2014	Katie Powell Sean Cottle Joe Adamski Glen Burkhardt Don Major Travis Cooper Steve Jirik Anne Halford Mark Williams Kyra Walton Reid Boyd Hatch Katie Powell	USFWS EMPSi BLM BLM BLM BLM BLM BLM USFS USFS USFS
Winnemucca, NV	II/10/2014 and II/12/2014 II/10/2014 and II/12/2014 II/13/2014 through II/14/2014 and II/20/2014 and I2/18/2014	Katie Powell Sean Cottle Joe Adamski Glen Burkhardt Don Major Travis Cooper Steve Jirik Anne Halford Mark Williams Kyra Walton Reid Boyd Hatch Katie Powell	USFVVS EMPSi BLM BLM BLM BLM BLM BLM USFS USFS USFS

		Peter Gower	EMPSi
		Joe Adamski	BLM
		Glen Burkhardt	BLM
		Don Major	BLM
		Travis Cooper	BLM
		Steve Jirik	BLM
		Greg Mann	BLM
		Glen Guenther	BLM
		Tom Rinkes	BLM
		Ben Dyer	BLM
		Jeremy Bisson	BLM
		Jason Wright	BLM
		Scott Minnie	BLM
		Jeremy Casterson	BLM
		Justin Frye	BLM
		Joel Gosswiller	BLM
		Peggy Redick	BLM
		Andrew Hess	BLM
		Brian Weihausen	BLM
		Kasey Hill	BLM
		Bart Zwetzig	BLM
		Michael Kuyper	BLM
		James Kumm	BLM
		Shelly Mavor	BLM
		Brian Holmes	BLM
		Bill Baer	BLM
		Josh Gibbs	BLM
		Ralph Falsetto	BLM
		Anne Halford	BLM
		Katie Powell	USFWS
		Jason Pyron	USFWS
		Terri Thomas	IDFG
		Deb Koziol	NRCS
		Laura Fondow	NRCS
Vale, OR	11/17/2014 and 12/2/2014		

		Jordan Adams	EMPSi
		Joe Adamski	BLM
		Bob Narus	BLM
		Travis Cooper	BLM
		Don Major	BLM
		Glen Burkhardt	BLM
		Steve Jirik	BLM
		Ralph Falsetto	BLM
		Brian Watts	BLM
		Doug Havlina	BLM
		Megan McGuire	BLM
		Amanda Rice	BLM
		Jason Simons	BLM
		Brian Watts	BLM
		Bill Reimers	BLM
		Erin McConnell	BLM
		Tracy Skerjanec	BLM
		Justin Robinson	BLM
		Carolyn Chad	BLM
		Scott Orland	ODFW
		Trisha Cracroft	NRCS
		Aaron Roth	NRCS
		Katie Powell	USFWS
Elko, NV	11/18/2014 and 11/19/2014		
		Sean Cottle	EMPSi
		Joe Adamski	BLM
		Terri Barton	BLM
		Tom Reid	BLM
		Steve Jirik	BLM
		Glen Burkhardt	BLM
		Don Major	BLM
		Travis Cooper	BLM
		Thomas Warren	BLM
		Doug Havlina	BLM
		Terri Barton	BLM

		Tom Reid	BLM
		Tom Rinkes	BLM
		Ethan Ellsworth	BLM
		Kyra Walton Reid	USFS
		Katie Powell	USFWS
		Matt Jeffvess	NDOW
		Kari Hubner	NDOW
NW Utah	11/21/2014		
		Sean Cottle	EMPSi
		Joe Adamski	BLM
		Don Major	BLM
		Travis Cooper	BLM
		Steve Jirik	BLM
		Mace Crane	BLM
		Glen Burkhardt	BLM
		Verlin Smith	BLM
		Robin Naeve	BLM
		Justin Kincaid	BLM
		Shawn Servoss	BLM
		Kacy Burns	BLM
		Brad Washa	BLM
		Chris Bryan	BLM
		Brad Jessop	BLM
		Michael Gates	BLM
		Katie Powell	USFWS
		Jason Pyron	USFWS
		Jay Martini	USFWS
Burns, OR	12/3/2014		
		Jordan Adams	EMPSi
		Travis Cooper	BLM
		Joe Adamski	BLM
		Don Major	BLM
		Steve Jirik	BLM
		Glen Burkhart	BLM

	Jessica Gottlieb	BLM
	Nika Lapak	BLM
	Doug Havilina	BLM
	Doug Kile	BLM
	Toby White	BLM
	Andy Daniels	BLM
	Chad Rott	BLM
	Casey Burns	NRCS
	Aaron Roth	NRCS

This page intentionally left blank.